
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

ODYSSEUS/EduCOSMOS Project #2:
EduOM Project Manual

Version 1.0

2
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

Copyright (c) 2013-2015, Kyu-Young Whang, KAIST
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to
endorse or promote products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

3
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

Contents

• Introduction
– ODYSSEUS/COSMOS
– ODYSSEUS/EduCOSMOS Project

• EduOM Project
– Data Structures and Operations
– Functions to Implement
– Given Functions
– Error Handling

• How to Do the Project
• Appendix: Function Call Graph

4
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

ODYSSEUS/COSMOS

• ODYSSEUS
– An object-relational DBMS developed by Kyu-Young

Whang et al. at Advanced Information Technology
Research Center (AITrc) / Computer Science
Department of KAIST. ODYSSEUS has been being
developed since 1990.

• ODYSSEUS/COSMOS
– The storage system of ODYSSEUS, which is used as

an infrastructure for various database application
softwares.

5
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

• ODYSSEUS architecture

ODYSSEUS/COSMOS (coarse-granule locking version)

RDsM (Raw Disk Manager)

BfM (Buffer Manager)

OM
(Object Manager)

MLGF
(Multi Level Grid
File Manager)

BtM
(BtreeManager)

LOT
(Large Object
Tree Manager)

SM (Scan Manager)

RM
(Recovery
Manager)

Database Database…… …… ……

TM
(Transaction
Manager)

ODYSSEUS/OOSQL

ODYSSEUS/COSMOS API

ODYSSEUS/OOSQL API

Tightly-Coupled
Spatial DB Engine

Tightly-Coupled
IR Engine

…

LOM
(Low Object Model Manager)

LRDS (Low Relational Data System)

6
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

ODYSSEUS/EduCOSMOS Project

• Overview
– A project for educational purposes where students implement a part of the coarse-

granule locking version of the ODYSSEUS/COSMOS storage system
• Prerequisites for the project: basic C programming skill

• Objective
– To learn the functions of each module of a DBMS by implementing a part of the

ODYSSEUS/COSMOS storage system

• Project types
– EduBfM

• We implement the operations of the buffer manager.
– EduOM

• We implement the operations of the object manager and the page-related structures.
– EduBtM

• We implement the operations of the B+ tree index manager.

7
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

EduOM Project

• Objective
– We implement the operations of the slotted page

related structure to store objects.
– In EduOM, we handle only a very limited subset of

original ODYSSEUS/COSMOS OM functionality.
ODYSSEUS/COSMOS

(coarse-granule locking version)

RDsM

BfM

EduOM MLGFBtMLOT

SM

RM TM

Spatial DB
Engine

IR
Engine

ODYSSEUS/COSMOS API

LOM

LRDS

8
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

Data Structures
sm_CatOverlayForData

FileID fid
Two eff
ShortPageID firstPage
ShortPageID lastPage
ShortPageID availSpaceList10
ShortPageID availSpaceList20
ShortPageID availSpaceList30
ShortPageID availSpaceList40
ShortPageID availSpaceList50

File

Slotted
Page

…

9
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

PageID pid
Four flags
Four reserved
Two nSlots
Two free
Two unused

FileID fid
Unique unique
Unique uniqueLimit
ShortPageID nextPage
ShortPageID prevPage
ShortPageID spaceListPrev
ShortPageID spaceListNext

SlottedPage

…

…

SlottedPageHdr

Data
area

Slot array
Slot

Object

…

…

Contiguous free area

Object

ObjectHdr

Two properties
Two tag
Four length

Data area

SlottedPageSlot

Two offset
Unique unique

10
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

sm_CatOverlayForData
• Overview

– A data structure to store information about the data file
• Data file: A set of pages storing related objects

– This information is kept separately for each data file in
ODYSSEUS/COSMOS.

• Components
– fid

• ID of the file
– eff

• Extent fill factor of the file, which is not used in EduOM (You may ignore
it when implementing the EduOM function.)

– firstPage
• Page number of the first page of the file

– lastPage
• Page number of the last page of the file

11
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

– availSpaceList10 ~ availSpaceList50
• Page number of the first (most recently inserted) page of each

available space list
– 10% available space list

» A doubly linked list of pages whose size of the remaining free space is
10~20% of the page

– 20% available space list
» A doubly linked list of pages whose size of the remaining free space is

20~30% of the page

– 30% available space list
» A doubly linked list of pages whose size of the remaining free space is

30~40% of the page

– 40% available space list
» A doubly linked list of pages whose size of the remaining free space is

40~50% of the page

– 50% available space list
» A doubly linked list of pages whose size of the remaining free space is

50% or more of the page

12
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

SlottedPage
• Overview

– The page data structure to efficiently store and manage objects

• Components
– header

• The page header storing information about the page
– data[]

• The data area storing objects
– slot[1]

• The array of slots storing information required for identifying objects
stored in the page.

– Other slots (slot[-1] ~ slot[-n]) except the first slot (slot[0]) share the data area
and the memory space.

» Array index of the first slot = 0
» Array index of the next slot = Array index of the previous slot – 1
» Slot number = |Array index of the slot|

13
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

SlottedPageHdr
• Overview

– The data structure to store information about a page.

• Components
– pid

• The ID of a page
– Consists of the page number and the volume number.

– flags
• A set of bits indicating the type of a page

– If the second bit is set (SLOTTED_PAGE_TYPE), then the page is a
slotted page.

– Other bits are not used in EduOM. (You may ignore them when
implementing the EduOM function.)

– reserved
• A reserved variable to store additional information about a page

14
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

– nSlots
• The size of the page’s slot array

(= The last slot number among the slots currently being used + 1)
– To efficiently use the space in a page, the size of the slot array is

dynamically changed as an object is inserted/deleted.

– free
• The starting offset of the contiguous free area in the page’s data

area
– Contiguous free area: Continuous free space after the last object in

the data area

– unused
• The sum of the sizes of free spaces except the contiguous free

area in the page’s data area (unit: # of bytes)

– fid
• The ID of the file including the page

15
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

– unique
• The recently assigned unique number in a page

– Unique number: A unique number assigned to each object
– Initialize it to 0 at first, and call om_GetUnique() to update the value

– uniqueLimit
• The maximum value of a unique number currently assignable in a page

– Initialize it to 0 at first, and call om_GetUnique() to update the value.

– nextPage / prevPage
• The page number of the next/previous page in the same file

– Used for maintaining the doubly linked list structure between pages of a file.

– spaceListPrev / spaceListNext
• The page number of the next/previous page in the same available space

list
– Used for maintaining the doubly linked list structure between pages of the

available space list.

16
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

SlottedPageSlot

• Overview
– The data structure to store information required for identifying

the objects stored in a page

• Components
– offset

• The offset in the data area of an object stored in the page
– In case of an unused slot, offset := EMPTYSLOT

– unique
• The unique number of the object

– Call om_GetUnique() to get a unique number.

17
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

Object

• Overview
– The data structure representing an object stored in a page
– In EduOM, we handle only the small object whose size (size of

header + size of aligned data area) is smaller than that of the
data area of a page.

• Components
– header

• The object header storing information about the object

18
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

– data[]
• Data area storing the object’s data
• The size of the data area storing the data is aligned to be a

multiple of 4 (the basic unit of memory allocation in a 32-bit
operating system).

– Example) Allocating the data area where the data of size 6 is stored,

Object

ObjectHdr

. . . a b c d e f

Aligned data area
(2 x 4 bytes)

19
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

ObjectHdr

• Overview
– The data structure to store information about an object

• Components
– properties

• A set of bits indicating properties of an object
– If every bit is 0, it indicates a small object.
– Other properties are not used in EduOM. (You may ignore them when

implementing the EduOM function.)

– tag
• A tag of an object; not used in EduOM (You may ignore it when

implementing the EduOM function.)

– length
• The length of data in an object (unit: # of bytes)

– The actual length of the data stored in the data area, rather than the length of
the aligned data area

20
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

Operations

• Insert a new object into the page.

• Delete an object from the page.

• Compact the data area of the page.
– Adjust the offsets of the objects for every piece of

free space in the data area to form an
uninterrupted contiguous free area.

• Search the page.
– Search for a desired object in the page.

21
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

API Functions to Implement

• EduOM_CreateObject()
• EduOM_DestroyObject()
• EduOM_CompactPage()
• EduOM_ReadObject()
• EduOM_NextObject()
• EduOM_PrevObject()

(※ API functions mean they are part of the ODYSSEUS/COSMOS API shown in p.4)
(※ API: Application Programming Interface)

22
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

EduOM_CreateObject()

• File: EduOM_CreateObject.c

• Description
– Insert a new object into the page identical (or adjacent) to the

page where the object given as a parameter resides, and
return the ID of the object inserted.

• Initialize the header of the object to be inserted.
– properties := 0x0
– length := 0
– If the objHdr given as a parameter is not NULL,

» tag := the tag value stored in the objHdr
– If the objHdr given as a parameter is NULL,

» tag := 0

• Call eduom_CreateObject() to insert an object into the page, and
return the ID of the object inserted.

23
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

• Parameters
– ObjectID *catObjForFile

(IN) ID of an object storing information (sm_CatOverlayForData)
about the file to insert the object into

– ObjectID *nearObj
(IN) ID of an object, near which the new object is to be inserted

– ObjectHdr *objHdr
(IN) Object header storing the tag value of the object to be
inserted

– Four length
(IN) Data length of the object to be inserted (unit: # of bytes)

24
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

– char *data
(IN) Data of the object to be inserted

– ObjectID *oid
(OUT) ID of the object inserted

• Return value
– Four error code

• Related function
eduom_CreateObject()

25
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

EduOM_DestroyObject()

• File: EduOM_DestroyObject.c

• Description
– Delete an object from a page of the file.

• Delete the page storing the object to be deleted from the
currently available space list.

• Set the slot corresponding to the object deleted as an empty
unused slot.

– offset of the slot := EMPTYSLOT

• Update the page header.
– If the slot corresponding to the object deleted is the last slot of the slot array,

update the size of the slot array.
» nSlots := the last slot number in the slots currently being used + 1

– Update the variables free or unused depending on the offset in the data area
of the object deleted.

26
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

» The size of the free space obtained by deleting the object
= sizeof(ObjectHdr) + Size of the aligned data area

+ Size of the free space obtained by updating the slot array size

• If the deleted object is the only object in the page, and the page
is not the first page of the file,

– Delete the page from the list of pages of the file.
– Deallocate the page.

» Allocate a new dealloc list element from the dlPool given as a parameter.
• Dealloc list: Linked list of pages to be deallocated

» Store the information about the pages to be deallocated into the
element allocated.

» Insert the element into the dealloc list as the first element.

• If the deleted object is not the only object of a page, or if the
page is the first page of the file,

– Insert the page into the appropriate available space list.
 The ID of the file, which is immutable, is the same as the ID of its first page.

Therefore, we must not deallocate the first page even if it becomes empty.

27
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

• Parameters
– ObjectID *catObjForFile

(IN) ID of the object storing information (sm_CatOverlayForData)
about the file that contains the object to be deleted

– ObjectID *oid
(IN) ID of the object to be deleted

– Pool *dlPool
(INOUT) Pool to allocate a new dealloc list element from

– DeallocListElem *dlHead
(INOUT) Header pointing to the first element of the dealloc list

28
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

• Return value
– Four error code

• Related functions
EduOM_DestroyObject(), om_FileMapDeletePage(),
om_PutInAvailSpaceList(), om_RemoveFromAvailSpaceList(),
BfM_GetTrain(), BfM_FreeTrain(), BfM_SetDirty(),
Util_getElementFromPool()

29
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

EduOM_CompactPage()
• File: EduOM_CompactPage.c

• Description
– Adjust the offsets of the objects for every piece of free space

in the data area of the page to form an uninterrupted
contiguous free area.

• If slotNo given as a parameter is not NIL (-1),
– Store all the objects in the page except objects corresponding to

slotNo contiguously from the very front of the data area.
» Order of storing objects: Order of the corresponding slot numbers

– Store the object corresponding to slotNo as the last object in the
data area.

• If slotNo given as a parameter is NIL (-1),
– Store all the objects in a page contiguously from the very front of

the data area.
» Order of storing objects: Order of the corresponding slot numbers

• Update the page header.

30
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

• Parameters
– SlottedPage *apage

(IN) Page to be compacted

– Two slotNo
(IN) Slot number corresponding to the object to be stored as the
last one in the data area of the page to be compacted

• Return value
– Four error code

• No related functions

31
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

EduOM_ReadObject()

• File: EduOM_ReadObject.c

• Description
– Read the whole or a part of the data of an object, and return a

pointer to the data read.
• Use oid given as a parameter to access an object.
• Use start and length given as parameters to read data of the accessed

object.
– Read as much data as length from start in the data area of the object.
– If length == REMAINDER, read data to the end.

• Return the pointer to the corresponding data.

32
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

• Parameters
– ObjectID *oid

(IN) ID of an object to be read
– Four start

(IN) Offset to start reading in the data area of the object to be read
– Four length

(IN) Length of the data to be read
– char *buf

(OUT) Pointer to the data read

• Return value
– Four the number of bytes read,

or error code

• Related functions
EduOM_ReadObject(), BfM_GetTrain(), BfM_FreeTrain()

33
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

EduOM_NextObject()
• File: EduOM_NextObject.c

• Description
– Return ID of the object next to the current object.

• If curOID given as a parameter is NULL,
– Return the ID of the first object (one of the following objects) in the file.

» First object in the slot array of the first page
» (If the first page is empty) first object of the next page

– If the file is empty, return EOS (End Of Scan).

• If curOID given as a parameter is not NULL,
– Search for an object corresponding to curOID.
– Return ID of the object next to the object found in the slot array.

» If the object found is the last object of the page,
• Return ID of the next page’s first object.

» If the object found is the last object of the file’s last page,
• Return EOS.

34
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

• Parameters
– ObjectID *catObjForFile

(IN) ID of the object storing the information (sm_CatOverlayForData) about the
file that contains the current object

– ObjectID *curOID
(IN) ID of the current object

– ObjectID *nextOID
(OUT) ID of the object next to the current object

– ObjectHdr *objHdr
(OUT) Header of the object next to the current object

• Return value
– Four EOS,

or error code

• Related functions
BfM_GetTrain(), BfM_FreeTrain()

35
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

EduOM_PrevObject()

• File: EduOM_PrevObject.c

• Description
– Return ID of the object just before the current object.

• If curOID given as a parameter is NULL,
– Return ID of the last object in the slot array of the file’s last page.
– If the file is empty, return EOS (End Of Scan).

• If curOID given as the parameter is not NULL,
– Search for an object corresponding to curOID.
– Return ID of the object just before the object found in the slot array.

» If the object found is the page’s first object,
• Return the ID of the previous page’s last object.
• If the previous page is empty, return EOS.

» If the object found is the first object of the file’s first page,
• Return EOS.

36
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

• Parameters
– ObjectID *catObjForFile

(IN) ID of the object storing the information (sm_CatOverlayForData) about the
file that contains the current object

– ObjectID *curOID
(IN) ID of the current object

– ObjectID *prevOID
(OUT) ID of the object just before the current object

– ObjectHdr *objHdr
(OUT) Header of the object just before the current object

• Return value
– Four EOS,

or error code

• Related functions
BfM_GetTrain(), BfM_FreeTrain()

37
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

Internal Function to Implement

• eduom_CreateObject()

38
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

eduom_CreateObject()
• File: eduom_CreateObject.c

• Description
– Insert a new object into the page identical (or adjacent) to the

page where the object given as a parameter resides, and
return the ID of the object inserted.

• Calculate the size of the free space required for inserting the
object.

– sizeof(ObjectHdr) + Size of the aligned object data area
+ sizeof(SlottedPageSlot)

• Select a page to insert the object.
– If nearObj given as a parameter is not NULL,

» If there is available space in the page storing nearObj,
• Select the page as the page to insert the object.
• Delete the selected page from the current available space list.
• Compact the selected page if necessary.

39
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

» If there is no available space in the page storing nearObj,
• Allocate a new page to insert the object into.
• Initialize the selected page’s header.
• Insert the page as the next page of the page storing nearObj into

the list of pages of the file.

– If nearObj given as a parameter is NULL,
» If the size of the object is less than or equal to the total size of the data

area of a page, and there is any page in the available space list that has
the smallest available space among the lists whose available space is
suitable for the size of the free space required for inserting the object,

• Select the first page of the corresponding available space list as the
page to insert the object into.

• Delete the page from the current available space list.
• Compact the selected page if necessary.

» If the above condition is not satisfied, and there is available space in the
file’s last page (the last page in the linked list of the pages of the file),

• Select the file’s last page as the page to insert the object into.
• Compact the selected page if necessary.

40
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

» Else,
• Allocate a new page to insert the object into.
• Initialize the page’s header.
• Insert the page as the last page into the list of pages of the file.

• Insert an object into the selected page.
– Update the object’s header.

» length := Length of the data

– Copy the object into the selected page’s contiguous free area.
– Allocate an empty or new slot of the slot array to store the

information for identifying the object copied.
– Update the page’s header.

» The size of free space used for inserting an object
= sizeof(ObjectHdr) + Size of the aligned object data area

+ sizeof(SlottedPageSlot) in case of allocating a new slot

– Insert the page into an appropriate available space list.

• Return the ID of the object inserted.

41
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

• Parameters
– ObjectID *catObjForFile

(IN) ID of the object storing information (sm_CatOverlayForData) about
the file to insert the object into

– ObjectID *nearObj
(IN) ID of the object, near which the object is to be inserted

– ObjectHdr *objHdr
(IN) Object header storing the tag value of the object to be inserted

– Four length
(IN) Data length of an object to be inserted (unit: # of bytes)

– char *data
(IN) Data of an object to be inserted

– ObjectID *oid
(OUT) ID of the object inserted

42
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

• Return value
– Four error code

• Related functions
EduOM_CompactPage(), om_GetUnique(), om_FileMapAddPage(),
om_PutInAvailSpaceList(), om_RemoveFromAvailSpaceList(),
RDsM_PageIdToExtNo(), RDsM_AllocTrains(), BfM_GetTrain(),
BfM_GetNewTrain(), BfM_FreeTrain(), BfM_SetDirty()

43
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

Given API Functions

• RDsM_PageIdToExtNo()
– Return the extent number to which the page belongs.

• Extent: a list of physically adjacent pages

– Parameters
• PageID *pageId

(IN) ID of the page

• Four *extNo
(OUT) The extent number to which the page belongs

– Return value
• Four error code

44
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

– Example

Four eduom_CreateObject(…)
{

Four firstExt; /* number of the first extent of the file */
sm_CatOverlayForData *catEntry; /* pointer to the data file catalog information */
PhysicalFileID pFid; /* ID of the first page in the file */
…
MAKE_PHYSICALFILEID(pFid, catEntry->fid.volNo, catEntry->firstPage);

/* Get the first extent number of the file */
e = RDsM_PageIdToExtNo((PageID *)&pFid, &firstExt);
if(e < 0) ERR(e);
…

}

45
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

• RDsM_AllocTrains()
– Allocate a new page (sizeOfTrain=1) or train (sizeOfTrain>1) in

the disk, and return the ID of the page or the first page of the
train allocated.

• Train: the structure to store the large object whose size is larger than
that of the data area of a page; not used in EduOM

– Parameters
• Four volNo

(IN) The volume number to which the disk in which to allocate the page/train
belongs

• Four firstExt
(IN) The first extent number to which the first page of the file in which to allocate
the page/train belongs

• PageID *nearPID
(IN) ID of the page to which the page/train to be allocated is to be physically
adjacent on the disk

• Two eff
(IN) Extent fill factor of the file in which to allocate the page/train

46
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

• Four numOfTrains
(IN) The number of pages/trains to be allocated

• Two sizeOfTrain
(IN) Size of the train to be allocated (unit: # of pages)

(※ set sizeOfTrain to 1 to allocate the page.)

• PageID *trainIDs
(OUT) ID of the page or the first page of the train allocated

– Return value
• Four error code

47
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

– Example

Four eduom_CreateObject(…)
{

PageID pid; /* ID of a page */
PageID nearPid; /* ID of the page to which the page to be allocated is to be

physically adjacent on the disk */
Four firstExt; /* number of the first extent of the file */
sm_CatOverlayForData *catEntry; /* pointer to the data file catalog information */
…
/* Allocate a new page */
e = RDsM_AllocTrains(catEntry->fid.volNo, firstExt, &nearPid, catEntry->eff, 1,

PAGESIZE2, &pid);
if(e < 0) ERR(e);
…

}

48
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

• BfM_GetTrain()
– Fix a page (sizeOfTrain=1) or train (sizeOfTrain>1) to the buffer, and

return the pointer to the page/train fixed to the buffer.
• Every transaction should fix the page/train to the buffer before accessing

it.
• To fix the page/train that is newly allocated on the disk to the buffer, call

BfM_GetNewTrain() rather than BfM_GetTrain() for performance reasons.
– BfM_GetNewTrain() fixes the empty page/train to a buffer without accessing the disk since it

is not necessary to access the disk to read the contents of that page/train, which is empty.

– Parameters
• TrainID *trainId

(IN) ID of the page or the first page of the train to be fixed

• char **retBuf
(OUT) Pointer to the page/train fixed to the buffer

• Four type
(IN) Type of the buffer to fix the page/train to

(※ set type to PAGE_BUF to fix the page.)

– Return value
• Four error code

49
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

– Example

Four eduom_CreateObject(
ObjectID *catObjForFile, /* IN: ID of the object that contains the catalog

information */
…)

{
SlottedPage *catPage; /* pointer to a buffer */
…
/* Fix the page that contains the catalog object to the buffer */
e = BfM_GetTrain((TrainID*)catObjForFile, (char**)&catPage, PAGE_BUF);
if(e < 0) ERR(e);
…

}

50
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

• BfM_GetNewTrain()
– Fix a page (sizeOfTrain=1) or train (sizeOfTrain>1) that has

been newly allocated on the disk to a buffer, and return the
pointer to the page/train fixed to the buffer.

– Parameters
• TrainID *trainId

(IN) ID of the page or the first page of the train to be fixed

• char **retBuf
(OUT) Pointer to the page/train fixed to the buffer

• Four type
(IN) Type of the buffer to fix the page/train to

(※ set type to PAGE_BUF to fix the page.)

– Return value
• Four error code

51
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

– Example

Four eduom_CreateObject(…)
{

PageID pid; /* ID of a page */
SlottedPage *apage; /* pointer to a buffer */
…
/* Fix the page that has been newly allocated on the disk to the buffer */
e = BfM_GetNewTrain(&pid, (char **)&apage, PAGE_BUF);
if(e < 0) ERR(e);
…

}

52
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

• BfM_FreeTrain()
– Unfix a page (sizeOfTrain=1) or train (sizeOfTrain>1) from the

buffer.
• Every transaction should unfix the page/train from the buffer

after completing the access to it.

– Parameters
• TrainID *trainId

(IN) ID of the page or the first page of the train to be unfixed

• Four type
(IN) Type of the buffer the page/train is fixed to

(※ set type to PAGE_BUF to unfix the page.)

– Return value
• Four error code

53
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

– Example

Four eduom_CreateObject(
ObjectID *catObjForFile, /* IN: ID of the object that contains the catalog

information */
…)

{
…
/* Unfix the page that contains the catalog object from the buffer */
e = BfM_FreeTrain((TrainID*)catObjForFile, PAGE_BUF);
if(e < 0) ERR(e);
…

}

54
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

• BfM_SetDirty()
– Set the DIRTY bit indicating that a page (sizeOfTrain=1) or

train (sizeOfTrain>1) stored in the buffer has been modified.
– Parameters

• TrainID *trainId
(IN) ID of the page or the first page of the train to set the DIRTY bit for

• Four type
(IN) Type of the buffer the page/train is fixed to

(※ set type to PAGE_BUF to set the DIRTY bit of the page.)

– Return value
• Four error code

55
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

– Example

Four eduom_CreateObject(…)
{

PageID pid; /* ID of a page */
…
/* Set the DIRTY bit */
e = BfM_SetDirty(&pid, PAGE_BUF);
if (e < 0) ERRB1(e, &pid, PAGE_BUF);
…

}

56
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

• Util_getElementFromPool()
– Allocate memory space for a new dealloc list element from

the pool, and return the pointer to the memory space.
– Parameters

• Pool *aPool
(IN) Element pool to allocate the element from

• void *elem
(OUT) dealloc list element allocated

– Return value
• Four error code

57
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

– Example

Four EduOM_DestroyObject(…
Pool *dlPool, /* INOUT: pool of the elements of the dealloc list */
DeallocListElem *dlHead) /* INOUT: head of the dealloc list */

{
PageID pid; /* ID of a page */
DeallocListElem *dlElem; /* pointer to the element of the dealloc list */
…
/* Insert the deallocated page into the dealloc list */
e = Util_getElementFromPool(dlPool, &dlElem);
if(e < 0) ERR(e);

dlElem->type = DL_PAGE;
dlElem->elem.pid = pid; /* ID of the deallocated page */
dlElem->next = dlHead->next;
dlHead->next = dlElem;
…

}

58
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

Given Functions

• om_GetUnique()
– Allocate a unique number to be used for a page; update the

information in the page’s header; and return the unique
number allocated.

– Parameters
• PageID *pid

(IN) ID of the page for which a unique number is to be allocated

• Unique *unique
(OUT) The unique number allocated

– Return value
• Four error code

59
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

– Example

Four eduom_CreateObject(…)
{

PageID pid; /* ID of a page */
SlottedPage *apage; /* pointer to a buffer */
…
/* Allocate a unique number to be used for the page */
e = om_GetUnique(&pid, &(apage->slot[-i].unique));
if (e < 0) ERRB1(e, &pid, PAGE_BUF);
…

}

60
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

• om_FileMapAddPage()
– Insert a page into the list of pages of a file.
– Parameters

• ObjectID *catObjForFile
(IN) ID of the object storing the information about the file

• PageID *prevPID
(IN) ID of the page to become the previous page of the page to be inserted

• PageID *newPID
(IN) ID of the page to be inserted

– Return value
• Four error code

61
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

– Example

Four eduom_CreateObject(
ObjectID *catObjForFile, /* IN: ID of the object that contains the catalog

information */
ObjectID *nearObj, /* IN: create the new object near this object */
…)

{
PageID pid; /* ID of a page */
…
/* Insert the page into the list of pages of the file */
e = om_FileMapAddPage(catObjForFile, (PageID *)nearObj, &pid);
if (e < 0) ERRB1(e, &pid, PAGE_BUF);
…

}

62
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

• om_FileMapDeletePage()
– Delete a page from the list of pages of the file.
– Parameters

• ObjectID *catObjForFile
(IN) ID of the object storing the information about the file

• PageID *newPID
(IN) ID of the page to be deleted

– Return value
• Four error code

63
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

– Example

Four EduOM_DestroyObject(
ObjectID *catObjForFile, /* IN: ID of the object that contains the catalog

information */
…)

{
PageID pid; /* ID of a page */
…
/* Delete the page from the list of pages of the file */
e = om_FileMapDeletePage(catObjForFile, &pid);
if (e < 0) ERRB1(e, &pid, PAGE_BUF);
…

}

64
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

• om_PutInAvailSpaceList()
– Insert a page into an available space list.
– Parameters

• ObjectID *catObjForFile
(IN) ID of the object storing the information about the file

• PageID *pid
(IN) ID of the page to be inserted

• SlottedPage *apage
(INOUT) Page to be inserted

– Return value
• Four error code

65
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

– Example

Four eduom_CreateObject(
ObjectID *catObjForFile, /* IN: ID of the object that contains the catalog

information */
…)

{
PageID pid; /* ID of a page */
SlottedPage *apage; /* pointer to a buffer */
…
/* Insert the page into the available space list */
e = om_PutInAvailSpaceList(catObjForFile, &pid, apage);
if (e < 0) ERRB1(e, &pid, PAGE_BUF);
…

}

66
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

• om_RemoveFromAvailSpaceList()
– Delete a page from an available space list
– Parameters

• ObjectID *catObjForFile
(IN) ID of the object storing the information about the file

• PageID *pid
(IN) ID of the page to be deleted

• SlottedPage *apage
(INOUT) Page to be deleted

– Return value
• Four error code

67
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

– Example

Four eduom_CreateObject(
ObjectID *catObjForFile, /* IN: ID of the object that contains the catalog

information */
…)

{
PageID pid; /* ID of a page */
SlottedPage *apage; /* pointer to a buffer */
…
/* Delete the page from the available space list */
e = om_RemoveFromAvailSpaceList(catObjForFile, &pid, apage);
if (e < 0) ERRB1(e, &pid, PAGE_BUF);
…

}

68
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

Error Handling
• Error handling macro

– ERR(e)
• Write the error code e given as a parameter, the file name, and the

position where the error occurred into the error log file
(odysseus_error.log); return the error code.

• Usage example
if(length < 0) ERR(eBADLENGTH_OM)

– ERRB1(e, pid, t)
• The same as ERR(e) except that it unfixes the page having the page

ID, pid, given as the parameter before returning the error code e.
• Usage example

if(e < 0) ERRB1(e, &pid, PAGE_BUF)

• Error code
See the $(EduOM_HOME_DIR)/Header/EduOM_errorcodes.h File.

69
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

How to Do the Project
• Files used in the project

– Files that students are to implement
• Skeleton file (.c file)

Files containing the functions whose implementation part is omitted

– Files given to students
• Object file (.o file)

File that ODYSSEUS/COSMOS, which is the underlying system, is compiled as an
object file. It contains all the functions in ODYSSEUS/COSMOS storage system
including the given lower-level functions that are called in the modules to be
implemented.

• Header file (.h file)
Files containing the definition of data structures and function prototypes used in
the modules to be implemented and the test module

• Source code file of the test module
Source code file of the test module to test the functions in the implemented
module

• Executable solution file
Executable file showing a correct test result

70
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

• How to perform the project
– Implement the functions in the skeleton files.

• For the implementation, a variety of macros are available in the header files in the
$(EduOM_HOME_DIR)/Header directory.

– Use the command make clean (deleting the object files and DB volumes) and make
(compiling) to compile the skeleton files implemented and link them with the given
object file.

• As a result of compiling and linking, an executable file is created to test functions of the
modules implemented.

– Compare the execution results of your executable file with those of the given executable
solution file.

 How to test a function without implementing other functions
 In the file $(EduOM_HOME_DIR)/Header/EduOM_TestModule.h,

 For the API function that you have implemented, define the value of the corresponding
macro to TRUE.

 For the API function that you have not implemented, define the value of the corresponding
macro to FALSE.

 Enter the Make command to recompile the project.

 How to implement an API function without implementing some of its internal functions
 Use the default solution function (internal function name with the prefix “edu” omitted).

 e.g., the default solution function of the internal function eduom_CreateObject() is
om_CreateObject().

Appendix
Function Call Graph

ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

EduOM_CreateObject EduOM_DestroyObject

EduOM_CompactPage

EduOM_ReadObject

EduOM_NextObject

EduOM_PrevObject

eduOM_CreateObject
BfM_GetTrain BfM_FreeTrain

BfM_GetTrain BfM_FreeTrain

BfM_GetTrain BfM_FreeTrain

BfM_GetTrain BfM_FreeTrain

BfM_SetDirty BfM_GetNewTrain

om_getUnique om_FileMapAddPa
ge

om_PutInAvailSpa
ceList

om_RemoveFromAv
ailSpaceList

RDsM_PageIdToExt
No

RDsM_AllocTrain
s

EduOM_CreateObject

BfM_GetTrain BfM_FreeTrain

BfM_SetDirty om_RemoveFromAv
ailSpaceList

om_PutInAvailSp
aceList

om_FileMapDelet
ePage

Util_getElement
FromPool

ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

EduOM_DestroyObject

BfM_GetTrain BfM_FreeTrain

BfM_SetDirty om_RemoveFromAv
ailSpaceList

om_PutInAvailSp
aceList

om_FileMapDelet
ePage

Util_getElement
FromPool

EduOM_DestroyObject
EduOM_CreateObject

EduOM_CompactPage

EduOM_ReadObject

EduOM_NextObject

EduOM_PrevObject

eduOM_CreateObject
BfM_GetTrain BfM_FreeTrain

BfM_GetTrain BfM_FreeTrain

BfM_GetTrain BfM_FreeTrain

BfM_GetTrain BfM_FreeTrain

BfM_SetDirty BfM_GetNewTrain

om_getUnique om_FileMapAddPa
ge

om_PutInAvailSpa
ceList

om_RemoveFromAv
ailSpaceList

RDsM_PageIdToExt
No

RDsM_AllocTrain
s

ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

EduOM_ReadObject, EduOM_NextObject,
EduOM_PrevObject

EduOM_DestroyObject

BfM_GetTrain BfM_FreeTrain

BfM_SetDirty om_RemoveFromAv
ailSpaceList

om_PutInAvailSp
aceList

om_FileMapDelet
ePage

Util_getElement
FromPool

EduOM_CreateObject

EduOM_CompactPage

EduOM_ReadObject

EduOM_NextObject

EduOM_PrevObject

eduOM_CreateObject
BfM_GetTrain BfM_FreeTrain

BfM_GetTrain BfM_FreeTrain

BfM_GetTrain BfM_FreeTrain

BfM_GetTrain BfM_FreeTrain

BfM_SetDirty BfM_GetNewTrain

om_getUnique om_FileMapAddPa
ge

om_PutInAvailSpa
ceList

om_RemoveFromAv
ailSpaceList

RDsM_PageIdToExt
No

RDsM_AllocTrain
s

ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

EduOM_CompactPage
EduOM_DestroyObject

BfM_GetTrain BfM_FreeTrain

BfM_SetDirty om_RemoveFromAv
ailSpaceList

om_PutInAvailSp
aceList

om_FileMapDelet
ePage

Util_getElement
FromPool

EduOM_CreateObject

EduOM_CompactPage

EduOM_ReadObject

EduOM_NextObject

EduOM_PrevObject

eduOM_CreateObject
BfM_GetTrain BfM_FreeTrain

BfM_GetTrain BfM_FreeTrain

BfM_GetTrain BfM_FreeTrain

BfM_GetTrain BfM_FreeTrain

BfM_SetDirty BfM_GetNewTrain

om_getUnique om_FileMapAddPa
ge

om_PutInAvailSpa
ceList

om_RemoveFromAv
ailSpaceList

RDsM_PageIdToExt
No

RDsM_AllocTrain
s

	ODYSSEUS/EduCOSMOS Project #2:�EduOM Project Manual
	슬라이드 번호 2
	Contents
	ODYSSEUS/COSMOS
	슬라이드 번호 5
	ODYSSEUS/EduCOSMOS Project
	EduOM Project
	Data Structures
	슬라이드 번호 9
	sm_CatOverlayForData
	슬라이드 번호 11
	SlottedPage
	SlottedPageHdr
	슬라이드 번호 14
	슬라이드 번호 15
	SlottedPageSlot
	Object
	슬라이드 번호 18
	ObjectHdr
	Operations
	API Functions to Implement
	EduOM_CreateObject()
	슬라이드 번호 23
	슬라이드 번호 24
	EduOM_DestroyObject()
	슬라이드 번호 26
	슬라이드 번호 27
	슬라이드 번호 28
	EduOM_CompactPage()
	슬라이드 번호 30
	EduOM_ReadObject()
	슬라이드 번호 32
	EduOM_NextObject()
	슬라이드 번호 34
	EduOM_PrevObject()
	슬라이드 번호 36
	Internal Function to Implement
	eduom_CreateObject()
	슬라이드 번호 39
	슬라이드 번호 40
	슬라이드 번호 41
	슬라이드 번호 42
	Given API Functions
	슬라이드 번호 44
	슬라이드 번호 45
	슬라이드 번호 46
	슬라이드 번호 47
	슬라이드 번호 48
	슬라이드 번호 49
	슬라이드 번호 50
	슬라이드 번호 51
	슬라이드 번호 52
	슬라이드 번호 53
	슬라이드 번호 54
	슬라이드 번호 55
	슬라이드 번호 56
	슬라이드 번호 57
	Given Functions
	슬라이드 번호 59
	슬라이드 번호 60
	슬라이드 번호 61
	슬라이드 번호 62
	슬라이드 번호 63
	슬라이드 번호 64
	슬라이드 번호 65
	슬라이드 번호 66
	슬라이드 번호 67
	Error Handling
	How to Do the Project
	슬라이드 번호 70
	슬라이드 번호 71
	슬라이드 번호 72
	슬라이드 번호 73
	슬라이드 번호 74
	슬라이드 번호 75

