
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

ODYSSEUS/EduCOSMOS Project #3:
EduBtM Project Manual

Version 1.0

2
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

Copyright (c) 2013-2015, Kyu-Young Whang, KAIST
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to
endorse or promote products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

3
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

Contents

• Introduction
– ODYSSEUS/COSMOS
– ODYSSEUS/EduCOSMOS Project

• EduBtM Project
– Data Structures and Operations
– Functions to Implement
– Given Functions
– Error Handling

• How to Do the Project
• Appendix: Function Call Graph

4
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

ODYSSEUS/COSMOS

• ODYSSEUS
– An object-relational DBMS developed by Kyu-Young

Whang et al. at Advanced Information Technology
Research Center (AITrc) / Computer Science
Department of KAIST. ODYSSEUS has been being
developed since 1990.

• ODYSSEUS/COSMOS
– The storage system of ODYSSEUS, which is used as

an infrastructure for various database application
softwares.

5
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

• ODYSSEUS architecture

ODYSSEUS/COSMOS (coarse-granule locking version)

RDsM (Raw Disk Manager)

BfM (Buffer Manager)

OM
(Object Manager)

MLGF
(Multi Level Grid
File Manager)

BtM
(BtreeManager)

LOT
(Large Object
Tree Manager)

SM (Scan Manager)

RM
(Recovery
Manager)

Database Database…… …… ……

TM
(Transaction
Manager)

ODYSSEUS/OOSQL

ODYSSEUS/COSMOS API

ODYSSEUS/OOSQL API

Tightly-Coupled
Spatial DB Engine

Tightly-Coupled
IR Engine

…

LOM
(Low Object Model Manager)

LRDS (Low Relational Data System)

6
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

ODYSSEUS/EduCOSMOS Project

• Overview
– A project for educational purposes where students implement a part of the coarse-

granule locking version of the ODYSSEUS/COSMOS storage system
• Prerequisites for the project: basic C programming skill

• Objective
– To learn the functions of each module of a DBMS by implementing a part of the

ODYSSEUS/COSMOS storage system

• Project types
– EduBfM

• We implement the operations of the buffer manager.
– EduOM

• We implement the operations of the object manager and the page-related structures.
– EduBtM

• We implement the operations of the B+ tree index manager.

7
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

EduBtM Project

• Objective
– We implement the operations of the B+ tree index

and of the index page related structure.
– In EduBtM, we handle only a very limited subset of

original ODYSSEUS/COSMOS BtM functionality.
ODYSSEUS/COSMOS

(coarse-granule locking version)

RDsM

BfM

OM MLGFLOT

SM

RM TM

Spatial DB
Engine

IR
Engine

ODYSSEUS/COSMOS API

LOM

LRDS

EduBtM

8
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

B+ Tree Index

Data Structures
sm_CatOverlayForSysTables
sm_CatOverlayForData data
sm_CatOverlayForBtree btree

sm_CatOverlayForBtree

FileID fid
Two eff
ShortPageID firstPage

Root
Page

Internal
Page

Internal
Page

Internal
Page

Leaf
Page

Leaf
Page

Leaf
Page

…

…

… … …

…

… … …

T O O B J E C T S

...

9
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

BtreeLeaf

…

BtreeLeafHdr

Data
area

Slot array

Leaf
Index Entry

Contiguous free area

Slot

PageID pid
Four flags
Four reserved
One type
Two nSlots
Two free
ShortPageID prevPage
ShortPageID nextPage
Two unused

…

Two nObjects
Two klen
char kval[]

Btm_LeafEntry

BtreeCursor

One flag
ObjectID oid
KeyValue key
PageID leaf
PageID overflow
Two slotNo
Two oidArrayElemNo

10
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

BtreeInternal

…

BtreeInternalHdr

Data
area

Slot array

Internal
Index Entry

Contiguous free area

Slot

PageID pid
Four flags
Four reserved
One type
ShortPageID p0
Two nSlots
Two free
Two unused

…

ShortPageID spid
Two klen
char kval[]

Btm_InternalEntry

11
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

sm_CatOverlayForSysTables

• Overview
– Data structure to store information about the data

file and related index file.
• Data file: A set of pages storing related objects
• Index file: A set of pages of a B+ tree index created for the

data file

• Components
– data

• Data structure to store information about the data file
– Refer to the EduOM project manual

– btree
• Data structure to store information about an index file

12
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

sm_CatOverlayForBtree
• Overview

– Data structure to store information about an index file

• Components
– fid

• ID of the index file
– eff

• Extent fill factor of an index file, which is not used in EduBtM.
(You may ignore it when implementing the EduBtM function.)

– firstPage
• Page number of the first page of the index file

– The page number of the root of a newly created B+ tree index

13
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

BtreeLeaf

• Overview
– The page data structure representing a leaf node of

a B+ tree index

• Components
– hdr

• Page header storing information about the page
– data[]

• Data area of a page storing leaf index entries
– An <object key, object ID> pair and related information is stored

as an index entry
– Data area must always be filled more than 50%.

» Exception: when the page is the root

14
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

– slot[1]
• Array of slots storing the offsets of the index entries stored

in the data area of the page.
– All the slots (slot[-1] ~ slot[-n]) except the first slot (slot[0]) share

the memory space with the data area.
» Array index of the first slot = 0
» Array index of the next slot

= Array index of the previous slot – 1
» Slot number = |Array index of the slot|

– For efficient search, the index entries’ offsets are stored in the
slots as sorted in the order of the keys of the index entries.

» The first slot: the offset of the index entry with the smallest
key in the page is stored.

» The last slot: the offset of the index entry with the largest
key in the page is stored.

» We do not need to sort the index entries themselves in the
data area.

15
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

BtreeLeafHdr
• Overview

– Data structure to store information about a leaf page of a B+ tree index.

• Components
– pid

• ID of the page
– flags

• Set of bits indicating the page’s type
– If both the first and third bits are set (BTREE_PAGE_TYPE): indicates that the page is a B+ tree index

page.
– Other bits are not used in EduBtM. (You may ignore them when implementing the EduBtM function.)

– reserved
• Reserved variable to store additional information about the page

– type
• Set of bits indicating the type of a B+ tree index page

– If the first bit is set (ROOT): indicates a root page.
– If the second bit is set (INTERNAL): indicates an internal page.

16
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

– If the third bit is set (LEAF): indicates a leaf page.
– If both the second and fourth bits are set (FREEPAGE): indicates a page to be deallocated.
– Other bits are not used in EduBtM. (You may ignore them when implementing the EduBtM function.)

– nSlots
• Size of the slot array of the page

(= The last slot number of the slots being used + 1)
– The size of the slot array is changed dynamically as an index entry is inserted/deleted.

– free
• Starting offset of the contiguous free area in the page’s data area.

– Contiguous free area: continuous free area after the last index entry in the data area. (※ When
deleting the last index entry, the contiguous free area after the start offset of the entry deleted is
the contiguous free area.)

– prevPage / nextPage
• Page number of the next/previous leaf page

– Used for maintaining the doubly linked list structure among leaf pages of the B+ tree index.

– unused
• Total size of free areas except the contiguous free area in the page’s data area (unit: bytes)

17
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

Btm_LeafEntry

• Overview
– Data structure representing a leaf index entry

stored in a leaf page of a B+ tree index

• Components
– nObjects

• The number of objects in the index entry with the same
key

– In EduBtM, we handle only one object corresponding to each
key (i.e., we handle only a unique key).

– klen
• Length of the key stored in the index entry (unit: bytes)

– The actual length of the key (but not the size of the aligned key
area).

18
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

– kval[]
• Data area storing the <object’s key, object ID>

pairs
– The area storing an object’s key is aligned to be a

multiple of 4 (the basic unit of memory allocation in a
32-bit operating system).

» Example) when a key ‘abc’, whose length is 3, is
stored,

Btm_LeafEntry

nObjects

a b c

Alignedkey area
(1 x 4 byte)

klen

. . .

Object ID

kval[]

19
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

BtreeInternal

• Overview
– The page data structure representing an internal

node of a B+ tree index

• Components
– hdr

• Page header storing information about the page.
– data[]

• Data area of a page storing internal index entries.
– An <object’s key, child page’s page number> pair and related

information is stored as an index entry.
– Data area must always be filled more than 50%.

» Exception: when the page is the root

20
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

– slot[1]
• Array of slots storing the offsets of the index entries stored

in the data area of the page.
– All the slots (slot[-1] ~ slot[-n]) except the first slot (slot[0]) share

the memory space with the data area.
» Array index of the first slot = 0
» Array index of the next slot

= Array index of the previous slot – 1
» Slot number = |Array index of the slot|

– For efficient search, the index entries’ offsets are stored in the
slots as sorted in the order of the keys of the index entries.

» The first slot: the offset of the index entry with the smallest
key in the page is stored.

» The last slot: the offset of the index entry with the largest
key in the page is stored.

» We do not need to sort the index entries themselves in the
data area.

21
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

BtreeInternalHdr
• Overview

– Data structure to store information about an internal page of a B+ tree index

• Components
– pid

• ID of the page
– flags

• Set of bits indicating the page’s type
– If both the first and third bits are set (BTREE_PAGE_TYPE): indicates that the page is a B+ tree index

page.
– Other bits are not used in EduBtM. (You may ignore them when implementing the EduBtM function.)

– reserved
• Reserved variable to store additional information about the page

– type
• Set of bits indicating the type of a B+ tree index page

– If the first bit is set (ROOT): indicates a root page.
– If the second bit is set (INTERNAL): indicates an internal page.

22
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

– If the third bit is set (LEAF): indicates a leaf page.
– If both the second and fourth bits are set (FREEPAGE): indicates a page to be

deallocated.
– Other bits are not used in EduBtM. (You may ignore them when implementing the

EduBtM function.)

– p0
• The page number of a child page storing index entries with keys smaller than

the key of the first index entry (slot number = 0) of the page.
– nSlots

• Size of the slot array of the page
(= The last slot number of the slots being used + 1)

– The size of the slot array is changed dynamically as an index entry is
inserted/deleted.

– free
• Starting offset of the contiguous free area in the page’s data area

– unused
• Total size of free areas except the contiguous free area in the page’s data area

(unit: bytes)

23
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

Btm_InternalEntry

• Overview
– Data structure representing an internal index entry

stored in an internal page of a B+ tree index

• Components
– spid

• The page number of a child page storing index entries
with keys greater than or equal to the key of the current
index entry and smaller than the key of the next index
entry

– klen
• Length of the key stored in an index entry (unit: bytes)

– The actual length of the key (but not the size of the aligned key
area).

24
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

– kval[]
• Data area storing the discriminator key

– The area storing the discriminator key + klen is aligned
to be a multiple of 4 (the basic unit of memory
allocation in a 32-bit operating system).

» Example) when a key “abc”, whose length is 3, is
stored,

Btm_InternalEntry

spid

a b c

Aligned data areaklen

(2 x 4 byte)

25
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

KeyValue

• Overview
– Data structure to store a key and related information used in a

B+ tree index
– Possible to store multi-attribute keys and variable length keys.

• Multi-attribute key: a key composed of two or more attributes.

• Components
– len

• Length of the key

– val[]
• Sequence of attribute values of the key

– Information, which is needed to separate individual attribute values in a
sequence, is stored in the data structure KeyDesc.

26
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

– In case of an attribute value of the variable length string type, the attribute
value is stored together with its length.

» Example) key value composed of 3 (an attribute value of the integer type)
and “abcde” (an attribute value of the variable length string type)

5 abcde

2 bytes

val[]

3

Attribute valueof
the variable length string type

Attribute valueof
the integer type

4 bytes 5 bytes

27
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

KeyDesc

• Overview
– Data structure to store information for separating

individual attribute values in a sequence of attribute
values of a key

• Components
– flag

• Set of bits indicating the type of a key
– If the first bit is set (KEYFLAG_UNIQUE): indicates a unique key.
– Other bits are not used in EduBtM. (You may ignore them when

implementing the EduBtM function.)

– nparts
• Number of attribute values in a key

28
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

– kpart[]
• Array data structure storing information about each attribute

of a key
– type

» Type of the attribute
• In case of the integer type, type := SM_INT
• In case of the variable length string type, type :=

SM_VARSTRING
• Other types are not used in EduBtM. (You may ignore

them when implementing the EduBtM function.)
– offset

» Offset of the attribute value residing in array val[] of KeyValue.
This is not used in EduBtM. (You may ignore it when
implementing the EduBtM function.)

– length
» Length of the attribute value
» This is not used in the case of an attribute value of the variable

length string type.

29
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

BtreeCursor
• Overview

– Data structure of the cursor pointing to a leaf index entry of the B+
tree index

– Used for storing the information about the current leaf index entry
being searched and the next leaf index entry to be searched when
sequentially searching for objects satisfying the search condition.

• Components
– flag

• Variable indicating the cursor’s status
– CURSOR_ON: indicates that the cursor points to a leaf index entry satisfying the

search condition.
– CURSOR_EOS: indicates that there is no leaf index entry satisfying the search

condition (meaning the end of search).

– oid
• Object ID (OID) stored in the leaf index entry pointed to by the cursor

30
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

– key
• Key value of the object stored in the leaf index entry pointed to by

the cursor
– leaf

• Page ID of the leaf page storing the leaf index entry pointed to by
the cursor

– overflow
• Page ID of the page storing the IDs of objects (OIDs) with the same

key value when duplicated keys are allowed. This is not used in
EduBtM allowing only unique keys. (You may ignore it when
implementing the EduBtM function.)

– slotNo
• The slot number of the leaf index entry pointed to by the cursor.

– oidArrayElmNo
• Index of the array storing the IDs of objects (OIDs) with the same key

value when using duplicated keys. This is not used in EduBtM
allowing only unique keys. (You may ignore it when implementing
the EduBtM function.)

31
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

Related Operations
• Create / Delete a B+ tree index.

• Insert a new object into the B+ tree index.
– Consider the split operation when insertion causes overflow.

• Delete an object from the B+ tree index
– Implementation of the delete operation is optional (not

mandatory).
• An extra credit will be given.

– Handle the merge/redistribute operation when deletion causes
underflow by using the functions given.

• Search for an object in the B+ tree index.

32
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

API Functions to Implement

• EduBtM_CreateIndex()
• EduBtM_DropIndex()
• EduBtM_InsertObject()
• EduBtM_DeleteObject() - optional
• EduBtM_Fetch()
• EduBtM_FetchNext()

(※ API functions mean they are part of the ODYSSEUS/COSMOS API shown in p.4)
(※ API: Application Programming Interface)

33
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

EduBtM_CreateIndex()

• File: EduBtM_CreateIndex.c

• Description
– Create a new B+ tree index in an index file, and

return the page ID of the root page of index
created.

• Call btm_AllocPage() to allocate the first page of the
index file.

– The page number of the first page is stored in the
variable firstPage of sm_CatOverlayForBtree.

• Initialize the allocated page as the root page.
• Return the page ID of the root page initialized.

34
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

• Parameters
– ObjectID *catObjForFile

(IN) OID of the object that contains information
(sm_CatOverlayForSysTables) about the index file in which a B+ tree
index is created and about the data file to be indexed

– PageID *rootPid
(OUT) Page ID of the root page of the B+ tree index created

• Return value
– Four error code

• Related functions
edubtm_InitLeaf(), btm_AllocPage(), BfM_GetTrain(),
BfM_FreeTrain()

35
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

EduBtM_DropIndex()

• File: EduBtM_DropIndex.c

• Description
– Delete a B+ tree index from an index file.

• Deallocate a root page and every child page of
the B+ tree index.

36
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

• Parameters
– PhysicalFileID *pFid

(IN) File ID of the index file containing the B+ tree index to be deleted (= page
ID of the first page of the index file)

– PageID *rootPid
(IN) Page ID of the root page of the B+ tree index to be deleted

– Pool *dlPool
(INOUT) Pool from which to allocate a new dealloc list element

– DeallocListElem *dlHead
(INOUT) Header pointing to the first element of the dealloc list

• Return value
– Four error code

• Related functions
edubtm_FreePages()

37
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

EduBtM_InsertObject()

• File: EduBtM_InsertObject.c

• Description
– Insert a new object into a B+ tree index.

• Call edubtm_Insert() to insert the <object’s key,
object ID> pair for the new object into the B+
tree index.

• If it is necessary to create a new root page
because the root page has been split, call
edubtm_root_insert() to handle it.

38
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

• Parameters
– ObjectID *catObjForFile

(IN) OID of the object that contains information (sm_CatOverlayForSysTables) about the index file containing the B+ tree
index and about the data file indexed

– PageID *root
(IN) Page ID of the root page of the B+ tree index to which to insert the object

– KeyDesc *kdesc
(IN) Information for separating individual attribute values of the key

– KeyValue *kval
(IN) Key value of the object to be inserted

– ObjectID *oid
(IN) OID of the object to be inserted

– Pool *dlPool
(INOUT) Pool from which to allocate a new dealloc list element. This is not used in EduBtM. (You may ignore it when
implementing the EduBtM function.)

– DeallocListElem *dlHead
(INOUT) Header pointing to the first element of the dealloc list. This is not used in EduBtM. (You may ignore it when
implementing the EduBtM function.)

• Return value
– Four error code

• Related functions
edubtm_Insert(), edubtm_root_insert(), BfM_GetTrain(), BfM_FreeTrain()

39
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

EduBtM_DeleteObject()
• File: EduBtM_DeleteObject.c

• Description
– Delete an object from a B+ tree index

• Call edubtm_Delete() to delete the <object’s key, object ID>
pair for the object to be deleted from the B+ tree index.

• If underflow has occurred in the root page, call
btm_root_delete() to handle it.

– btm_root_delete() checks whether the root page is empty; if so,
delete the root.

• If the root page has been split, call edubtm_root_insert() to
handle it.

– The root page may split in the process of redistribution since an
index entry in the root may have been replaced with another whose
length is longer than itself.

40
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

• Parameters
– ObjectID *catObjForFile

(IN) OID of the object that contains information (sm_CatOverlayForSysTables) about the index file containing
the B+ tree index and about the data file indexed

– PageID *root
(IN) Page ID of the root page of the B+ tree index from which to delete an object

– KeyDesc *kdesc
(IN) Information for separating individual attribute values of the key

– KeyValue *kval
(IN) Key value of the object to be deleted

– ObjectID *oid
(IN) OID of the object to be deleted

– Pool *dlPool
(INOUT) Pool from which to allocate a new dealloc list element

– DeallocListElem *dlHead
(INOUT) Header pointing to the first element of the dealloc list

• Return value
– Four error code

• Related functions
edubtm_root_insert(), edubtm_Delete(), btm_root_delete(), BfM_GetTrain(), BfM_FreeTrain()

41
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

EduBtM_Fetch()
• File: EduBtM_Fetch.c

• Description
– Search for the first object satisfying the search condition in

the B+ tree index, and return the cursor pointing to the object
found.

• If startCompOp given as a parameter is SM_BOF,
– Search for the first object (the leaf index entry with the smallest key value) in

the B+ tree index.
• If startCompOp given as a parameter is SM_EOF,

– Search for the last object (the leaf index entry with the largest key value) in
the B+ tree index.

• Other cases,
– Call edubtm_Fetch() to search for a leaf index entry containing the first

<object’s key, object ID> pair satisfying the search condition in the B+ tree
index.

• Return the cursor pointing to the leaf index entry found.

42
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

• Parameters
– PageID *root

(IN) Page ID of the root page of the B+ tree index
– KeyDesc *kdesc

(IN) Information for separating individual attribute values of the key
– KeyValue *startKval

(IN) Start key value for search
– Four startCompOp

(IN) Comparison operator to apply to the start key value
– KeyValue *stopKval

(IN) Stop key value for search
– Four stopCompOp

(IN) Comparison operator to apply to the stop key value
– BtreeCursor *cursor

(OUT) Cursor pointing to the leaf index entry corresponding to the first object satisfying the search condition

• Return value
– Four error code

• Related functions
edubtm_Fetch(), edubtm_FirstObject(), edubtm_LastObject()

43
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

EduBtM_FetchNext()

• File: EduBtM_FetchNext.c

• Description
– Fetches the object next to the current object

satisfying the search condition (considering only
the stop key value but not start key value) in
the B+ tree index, and return the cursor
pointing to the object found.

• Call edubtm_FetchNext() to search for the leaf index
entry next to the current leaf index entry satisfying
the search condition in the B+ tree index.

• Return the cursor pointing to the leaf index entry
found.

44
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

• Parameters
– PageID *root

(IN) Page ID of the root page of the B+ tree index
– KeyDesc *kdesc

(IN) Information for separating individual attribute values of the key
– KeyValue *kval

(IN) Stop key value for searching
– Four compOp

(IN) Comparison operator to apply to the stop key value
– BtreeCursor *current

(IN) Cursor pointing to the leaf index entry corresponding to the current object satisfying the search condition
– BtreeCursor *next

(OUT) Cursor pointing to the leaf index entry corresponding to the next object satisfying the search condition

• Return value
– Four error code

• Related functions
edubtm_FetchNext(), edubtm_KeyCompare(), BfM_GetTrain(), BfM_FreeTrain()

45
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

Internal Functions to Implement

• edubtm_InitLeaf()
• edubtm_InitInternal()
• edubtm_FreePages()
• edubtm_Insert()
• edubtm_InsertLeaf()
• edubtm_InsertInternal()
• edubtm_SplitLeaf()
• edubtm_SplitInternal()
• edubtm_root_insert()
• edubtm_Delete()

• edubtm_DeleteLeaf()
• edubtm_CompactLeafPage()
• edubtm_CompactInternalPage()
• edubtm_Fetch()
• edubtm_FetchNext()
• edubtm_FirstObject()
• edubtm_LastObject()
• edubtm_BinarySearchLeaf()
• edubtm_BinarySearchInternal()
• edubtm_KeyCompare()

46
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

edubtm_InitLeaf()
• File: edubtm_InitPage.c

• Description
– Initialize a page as a leaf page of the B+ tree index.

• Initialize the page header as a leaf page.
– pid := Page ID given as a parameter
– flags

» Set a bit indicating that the page is a B+ tree index page
– type

» Set a bit indicating that the page is a leaf page
» If root given as a parameter is TRUE, set a bit indicating that the page is

a root page.
– nSlots := 0
– free := 0
– prevPage := NIL
– nextPage := NIL
– unused := 0

47
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

• Parameters
– PageID *leaf

(IN) Page ID of the page to be initialized
– Boolean root

(IN) Flag indicating that the page to be initialized is a root page
– Boolean isTmp

(IN) Flag indicating that the page to be initialized is a temporary page.
This is not used in EduBtM. (You may ignore it when implementing the
EduBtM function.)

• Return value
– Four error code

• Related functions
BfM_GetNewTrain(), BfM_FreeTrain(), BfM_SetDirty()

48
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

edubtm_InitInternal()
• File: edubtm_InitPage.c

• Description
– Initialize a page as an internal page of the B+ tree index

• Initialize the page header as an internal page
– pid := Page ID given as a parameter
– flags

» Set a bit indicating that the page is a B+ tree index page
– type

» Set a bit indicating that the page is an internal page
» If root given as a parameter is TRUE, set a bit indicating that

the page is a root page.
– p0 := NIL
– nSlots := 0
– free := 0
– unused := 0

49
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

• Parameters
– PageID *internal

(IN) Page ID of the page to be initialized
– Boolean root

(IN) Flag indicating that the page to be initialized is a root page
– Boolean isTmp

(IN) Flag indicating that the page to be initialized is a temporary page.
This is not used in EduBtM. (You may ignore it when implementing the
EduBtM function.)

• Return value
– Four error code

• Related functions
BfM_GetNewTrain(), BfM_FreeTrain(), BfM_SetDirty()

50
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

edubtm_FreePages()
• File: edubtm_FreePages.c

• Description
– Deallocate a B+ tree index page.

• Call edubtm_FreePages() recursively for every child page of the page
given as a parameter to deallocate the corresponding pages.

• Deallocate a page given as a parameter.
– In the page header’s type, set a bit indicating that the page is to be

deallocated, and unset other bits.
– Deallocate the corresponding page.

» Allocate a new dealloc list element from the dlPool given as a parameter
• Dealloc list: A linked list of pages to be deallocated

» Store the information about the page to be deallocated into the element
allocated.

» Insert an element containing the information about the page to be
deallocated into the first element of the dealloc list.

51
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

• Parameters
– PhysicalFileID *pFid

(IN) File ID of the index file containing the page to be deallocated (= page ID of
the first page of the index file)

– PageID *curPid
(IN) Page ID of the page to be deallocated

– Pool *dlPool
(INOUT) Pool from which to allocate a new dealloc list element

– DeallocListElem *dlHead
(INOUT) Header pointing to the first element of the dealloc list

• Return value
– Four error code

• Related functions
BfM_GetNewTrain(), BfM_FreeTrain(), BfM_SetDirty(),
Util_getElementFromPool()

52
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

edubtm_Insert()

• File: edubtm_Insert.c

• Description
– Insert an <object’s key, object ID> pair for a new

object into the B+ tree whose root page is given as
a parameter, and if split occurs in the root page,
return the internal index entry pointing to the new
page created by the split.

• If the root page given as a parameter is an internal page,
– Determine the next child page to visit to find the leaf page to

insert the <object’s key, object ID> pair.
– Call edubtm_Insert() recursively to insert the <object’s key, object

ID> pair into the B+ subtree having the child page as the root.

53
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

– If split occurs in the child page determined, insert the internal
index entry pointing to the new page created by the split into
the root page given as a parameter.

» Determine the position (slot number) to insert the index
entry.

• Offsets of the index entries must be stored in the slot
array in a sorted order of the keys of the index entries.

» Call edubtm_InsertInternal() to insert the index entry with
the slot number determined.

– If split occurs in the root page given as a parameter, return the
internal index entry pointing to the new page created by the
split.

• If the root page given as a parameter is a leaf page,
– Call edubtm_InsertLeaf() to insert the <object’s key, object ID>

pair into the page.
– If split occurs, return the internal index entry pointing to the

new page created by the split.

54
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

• Parameters
– ObjectID *catObjForFile

(IN) OID of the object that contains information (sm_CatOverlayForSysTables) about the index file containing the B+ tree index and about the data file
indexed

– PageID *root
(IN) Page ID of the root page of the B+ tree index. (Since edubtm_Insert() is called recursively, the type of this page may not be the root page.)

– KeyDesc *kdesc
(IN) Information for separating individual attribute values of the key

– KeyValue *kval
(IN) Key value of the object to be inserted

– ObjectID *oid
(IN) OID of the object to be inserted

– Boolean *f
(OUT) Flag indicating that the root page has been merged. This is not used in EduBtM. (You may ignore it when implementing the EduBtM function.)

– Boolean *h
(OUT) Flag indicating that the root page has been split

– InternalItem *item
(OUT) Internal index entry pointing to the new page created by the split of the root page

– Pool *dlPool
(INOUT) Pool from which to allocate a new dealloc list element. This is not used in EduBtM. (You may ignore it when implementing the EduBtM
function.)

– DeallocListElem *dlHead
(INOUT) Header pointing to the first element of the dealloc list. This is not used in EduBtM. (You may ignore it when implementing the EduBtM
function.)

• Return value
– Four error code

• Related functions
edubtm_InsertLeaf(), edubtm_InsertInternal(), edubtm_BinarySearchInternal(), BfM_GetTrain(), BfM_FreeTrain(), BfM_SetDirty()

55
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

edubtm_InsertLeaf()
• File: edubtm_Insert.c

• Description
– Insert a new index entry into a leaf page, and if split occurs, return the internal

index entry pointing to the new leaf page created by the split.
• Determine the position (slot number) to insert the index entry.

– Offsets of the index entries must be stored in the slot array in a sorted order of the keys of the
index entries.

– If an index entry whose key value is the same as that of the index entry to be inserted exists, return
error eDUPLICATEDKEY_BTM.

• Calculate the size of free area required for inserting the new index entry.
– Size of the new index entry considering the key area aligned + size of the slot

• If there is available free area in the page,
– Compact the page if necessary.
– Insert the new index entry with the slot number determined.

» Copy the new index entry into the contiguous free area of the page.
» Rearrange the slot array to use the slot with the slot number determined.
» Store the offset of the new index entry into the slot with the slot number determined.
» Update the page’s header.

• If there is no available free area in the page (page overflow),
– Call edubtm_SplitLeaf() to split the page.
– Return the internal index entry pointing to the new leaf page created by the split.

56
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

• Parameters
– ObjectID *catObjForFile

(IN) OID of the object that contains information (sm_CatOverlayForSysTables) about the index file containing the B+ tree
index and about the data file indexed

– PageID *pid
(IN) Page ID of the leaf page to insert the index entry into

– BtreeLeaf *page
(INOUT) Pointer to the buffer element containing the leaf page to insert the index entry into

– KeyDesc *kdesc
(IN) Information for separating individual attribute values of the key

– KeyValue *kval
(IN) Key value of the index entry to be inserted

– ObjectID *oid
(IN) Object ID (OID) stored in the index entry to be inserted

– Boolean *f
(OUT) Flag indicating that the page has been merged. This is not used in EduBtM. (You may ignore it when
implementing the EduBtM function.)

– Boolean *h
(OUT) Flag indicating that the page has been split

– InternalItem *item
(OUT) Internal index entry pointing to the new leaf page created by the split

• Return value
– Four error code

• Related functions
edubtm_SplitLeaf(), edubtm_CompactLeafPage(), edubtm_BinarySearchLeaf()

57
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

edubtm_InsertInternal()
• File: edubtm_Insert.c

• Description
– Insert a new index entry into an internal page, and if split occurs, return the

internal index entry pointing to the new internal page created by the split.
• Calculate the size of free area required for inserting the new index entry.

– Size of the new index entry considering the key area aligned + size of the slot
• If there is available free area in the page,

– Compact the page if necessary.
– Insert the new index entry with the slot number next to the slot number given as a parameter.

» Copy the new index entry into the contiguous free area of the page.
» Rearrange the slot array to use the slot with the slot number determined.
» Store the offset of the new index entry into the slot with the slot number determined.
» Update the page’s header.

• If there is no available free area in the page (page overflow),
– Call edubtm_SplitInternal() to split the page.
– Return the internal index entry pointing to the new internal page created by the split.

58
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

• Parameters
– ObjectID *catObjForFile

(IN) OID of the object that contains information (sm_CatOverlayForSysTables) about the index file containing
the B+ tree index and about the data file indexed

– BtreeInternal *page
(INOUT) Pointer to the buffer element containing the internal page to insert the index entry into

– InternalItem *item
(IN) Index entry to be inserted (not aligned)

– Two high
(IN) Slot number of the index entry with the largest key value among the index entries with a key value smaller
than that of the index entry to be inserted

– Boolean *h
(OUT) Flag indicating that the page has been split

– InternalItem *ritem
(OUT) Internal index entry pointing to the new internal page created by the split

• Return value
– Four error code

• Related functions
edubtm_SplitInternal(), edubtm_CompactInternalPage()

59
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

edubtm_SplitLeaf()

• File: edubtm_Split.c

• Description
– Split a leaf page, in which overflow has

occurred, to insert the index entry given as
a parameter, and return the internal index
entry pointing to the new leaf page created
by the split.

• Allocate a new page.
• Initialize the allocated page as a leaf page.

60
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

• After sorting the existing index entries and the given index entry in
the order of the keys, divide them into the overflowed page and the
allocated page to store them.

– First, store as many index entries as to occupy 50% of the total space for all
the index entries.

– Store the remaining index entries in the allocated page.
– Update each page’s header.

• Add the allocated page into the doubly linked list of the leaf pages.
– Add the allocated page as the next page of the overflowed page.

• Create an internal index entry pointing to the allocated page.
– Discriminator key value := key value of the first index entry (slot number = 0)

of the allocated page
» In a B+ tree index, a key value (discriminator key value) of an internal

index entry is duplicated from the key value of a leaf index entry.
– Page number of the child page := page number of the allocated page

• Return the index entry created.

61
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

• Parameters
– ObjectID *catObjForFile

(IN) OID of the object that contains information (sm_CatOverlayForSysTables) about the index file containing
the B+ tree index and about the data file indexed

– PageID *root
(IN) Page ID of the page that overflowed

– BtreeLeaf *fpage
(INOUT) Pointer to the buffer element containing the page that overflowed

– Two high
(IN) Slot number of the index entry with the largest key value among the index entries with a key value smaller
than that of the index entry to be inserted

– LeafItem *item
(IN) Index entry to be inserted (not aligned)

– InternalItem *ritem
(OUT) Internal index entry pointing to the new leaf page created by the split

• Return value
– Four error code

• Related functions
edubtm_InitLeaf(), edubtm_CompactLeafPage(), btm_AllocPage(), BfM_GetTrain(), BfM_GetNewTrain(),
BfM_FreeTrain(), BfM_SetDirty()

62
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

edubtm_SplitInternal()
• File: edubtm_Split.c

• Description
– Split an internal page, in which overflow has occurred, to insert the

index entry given as a parameter, and return the internal index entry
pointing to the new internal page created by the split.

• Allocate a new page.
• Initialize the allocated page as an internal page.
• After sorting the existing index entries and the given index entry in the order

of the keys, divide them into the overflowed page and the allocated page to
store them.

– First, store as many index entries as to occupy 50% of the total space for all the
index entries.

– Store the page number of the child page pointed to by the first index entry (1st

entry) among those that have not been stored yet in the variable p0 of the allocated
page’s header.

– Set 1st entry as an internal index entry pointing to the allocated page, and return it.
» Page number of the child page := page number of the allocated page

– Store the remaining index entries in the allocated page.
– Update each page’s header.

63
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

• Parameters
– ObjectID *catObjForFile

(IN) OID of the object that contains information (sm_CatOverlayForSysTables) about the index
file containing the B+ tree index and about the data file indexed

– BtreeLeaf *fpage
(INOUT) Pointer to the buffer element containing the page that overflowed

– Two high
(IN) Slot number of the index entry with the largest key value among the index entries with a
key value smaller than that of the index entry to be inserted

– LeafItem *item
(IN) Index entry to be inserted (not aligned)

– InternalItem *ritem
(OUT) Internal index entry pointing to the new internal page created by the split

• Return value
– Four error code

• Related functions
edubtm_InitInternal(), edubtm_CompactInternalPage(), btm_AllocPage(),
BfM_GetNewTrain(), BfM_FreeTrain(), BfM_SetDirty()

64
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

edubtm_root_insert()
• File: edubtm_root.c

• Description
– Create a new root page for the B+ tree index whose root page has

been split.
• Allocate a new page.
• Copy the old root page into the page allocated.
• Initialize the old root page as the new root page.

– To keep the page ID of the root page of the B+ tree index consistently.
• Make the page allocated and the page created by the split of the root page to

be children pages of the new root page.
– Insert the internal index entry pointing to the page created by the split into the new

root page.
– Store the page number of the allocated page in the variable p0 of the new root

page’s header.
– If the children pages of the new root page are leaf pages, set the doubly linked list

between two children pages.
» Set the page created by the split to be the next page of the page allocated.

65
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

• Parameters
– ObjectID *catObjForFile

(IN) OID of the object that contains information (sm_CatOverlayForSysTables)
about the index file containing the B+ tree index and about the data file indexed

– PageID *root
(IN) Page ID of the root page split

– InternalItem *ritem
(IN) Internal index entry pointing to the new page created by the split of the root
page

• Return value
– Four error code

• Related functions
edubtm_InitInternal(), btm_AllocPage(), BfM_GetTrain(),
BfM_GetNewTrain(), BfM_FreeTrain(), BfM_SetDirty()

66
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

edubtm_Delete()
• File: edubtm_Delete.c

• Description
– Delete an <object’s key, object ID> pair from the B+ tree whose root page is given

as a parameter.
• If the root page given as a parameter is an internal page,

– Determine the next child page to visit to find the leaf page containing the <object’s key, object ID>
pair to be deleted.

– Call edubtm_Delete() recursively to delete the <object’s key, object ID> pair from the B+ subtree
having the child page as the root.

– If underflow has occurred in the child page determined, call btm_Underflow() to handle it.
» If overflow occurred in the parent page (the root page given as a parameter) of the child

page that underflowed, call edubtm_InsertInternal() to insert the internal index entry that was
not inserted by the overflow into the parent page

• Since the parent page will be split as a result of calling edubtm_InsertInternal(), set
the out parameter h to TRUE and return the internal index entry pointing to the new
page created by the split

» Since contents of the root page will be changed as a result of calling btm_Underflow(), you
should set the DIRTY bit of the root page to 1 after calling btm_Underflow().

• If the root page given as a parameter is a leaf page,
– Call edubtm_DeleteLeaf() to delete the <object’s key, object ID> pair from the page.
– If underflow has occurred in the page (size of the free area of the data area of the page > (size of

the total data area of the page / 2)), set the out parameter f to TRUE.

67
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

• Parameters
– ObjectID *catObjForFile

(IN) OID of the object that contains information (sm_CatOverlayForSysTables) about the index file containing the B+ tree index and about the data file
indexed

– PageID *root
(IN) Page ID of the root page of the B+ tree index

– KeyDesc *kdesc
(IN) Information for separating individual attribute values of the key

– KeyValue *kval
(IN) Key value of the object to be deleted

– ObjectID *oid
(IN) OID of the object to be deleted

– Boolean *f
(OUT) Flag indicating that underflow has occurred in the root page

– Boolean *h
(OUT) Flag indicating that the root page has been split

– InternalItem *item
(OUT) Internal index entry pointing to the new page created by the root page split

– Pool *dlPool
(INOUT) Pool from which to allocate a new dealloc list element

– DeallocListElem *dlHead
(INOUT) Header pointing to the first element of the dealloc list

• Return value
– Four error code

• Related functions
edubtm_InsertInternal(), edubtm_DeleteLeaf(), edubtm_BinarySearchInternal(), btm_Underflow(), BfM_GetTrain(), BfM_FreeTrain(), BfM_SetDirty()

68
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

edubtm_DeleteLeaf()

• File: edubtm_Delete.c

• Description
– Delete an <object’s key, object ID> pair from the

leaf page.
• Delete the slot containing the offset of the index entry

containing the <object’s key, object ID> pair to be deleted.
– Compact the slot array so that there is no empty slot deleted in

the middle of the slot array.

• Update the leaf page’s header.
• If underflow has occurred in the leaf page (size of the free

area of the data area of the page > (size of the total data
area of the page / 2)), set the out parameter f to TRUE.

69
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

• Parameters
– PhysicalFileID *pFid

(IN) File ID of the index file containing the B+ tree index (= page ID of the first page of the index file)
– PageID *pid

(IN) Page ID of the leaf page from which to delete an object
– BtreeLeaf *apage

(INOUT) Pointer to the buffer element containing the leaf page from which to delete an object
– KeyDesc *kdesc

(IN) Information for separating individual attribute values of the key
– KeyValue *kval

(IN) Key value of the index entry to be deleted
– ObjectID *oid

(IN) Object ID (OID) stored in the index entry to be deleted
– Boolean *f

(OUT) Flag indicating that underflow has occurred in the leaf page
– Boolean *h

(OUT) Flag indicating that the leaf page has been split. This is not used in EduBtM. (You may ignore it when implementing the EduBtM function.)
– InternalItem *item

(OUT) Internal index entry pointing to the new page created by the split of the leaf page. This is not used in EduBtM. (You may ignore it when
implementing the EduBtM function.)

– Pool *dlPool
(INOUT) Pool from which to allocate a new dealloc list element. This is not used in EduBtM. (You may ignore it when implementing the EduBtM
function.)

– DeallocListElem *dlHead
(INOUT) Header pointing to the first element of the dealloc list. This is not used in EduBtM. (You may ignore it when implementing the EduBtM
function.)

• Return value
– Four error code

• Related functions
edubtm_BinarySearchLeaf(), btm_ObjectIdComp(), BfM_SetDirty()

70
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

edubtm_CompactLeafPage()
• File: edubtm_Compact.c

• Description
– Adjust offsets of index entries so that every free area in the leaf

page’s data area forms an uninterrupted contiguous free area.
• If slotNo given as a parameter is not NIL,

– Contiguously store all the index entries in the page except for the index entry
corresponding to slotNo from the very front of the data area.

» Order of storing index entries: order of the corresponding slot numbers
– Store the index entry corresponding to slotNo as the last one in the data area.

• If slotNo given as a parameter is NIL,
– Store every index entry in the page contiguously from the very front of the

data area.
» Order of storing index entries: order of the corresponding slot numbers

• Update the page header.

71
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

• Parameters
– BtreeLeaf *apage

(INOUT) Pointer to the buffer element containing the leaf
page to be compacted

– Two slotNo
(IN) Slot number of the index entry that is to be stored as
the last one in the data area of the page

• Return value
– Four error code

• No related functions

72
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

edubtm_CompactInternalPage()
• File: edubtm_Compact.c

• Description
– Adjust offsets of index entries so that every free area in the

internal page’s data area forms an uninterrupted contiguous
free area.

• If slotNo given as a parameter is not NIL,
– Contiguously store all the index entries in the page except for the index entry

corresponding to slotNo from the very front of the data area.
» Order of storing index entries: order of the corresponding slot numbers

– Store the index entry corresponding to slotNo as the last one in the data area.
• If slotNo given as a parameter is NIL,

– Store every index entry in the page contiguously from the very front of the
data area.

» Order of storing index entries: order of the corresponding slot numbers
• Update the page header.

73
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

• Parameters
– BtreeInternal *apage

(INOUT) Pointer to the buffer element containing the internal
page to be compacted

– Two slotNo
(IN) Slot number of the index entry that is to be stored as
the last one in the data area of the page

• Return value
– Four error code

• No related functions

74
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

edubtm_Fetch()
• File: EduBtM_Fetch.c

• Description
– Search for a leaf index entry containing the first

<object’s key, object ID> pair satisfying the search
condition in the B+ tree index whose root page is given
as a parameter; return the cursor pointing to the leaf
index entry found.

• If the root page given as a parameter is an internal page,
– Determine the next child page to visit to find a leaf page containing

the first <object’s key, object ID> pair satisfying the search condition.
– Call edubtm_Fetch() recursively to search for a leaf index entry

containing the first <object’s key, object ID> pair satisfying the
search condition in the B+ subtree having the child page as the root.

– Return the cursor pointing to the leaf index entry found.

75
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

• If the root page given as a parameter is a leaf page,
– Search for an index entry containing the first <object’s key,

object ID> pair satisfying the search condition.
» The search condition is specified by the start/end key values

and the comparison operator given as parameters.
• SM_EQ: satisfied when the key value of the object is

equal to the start/end key value
• SM_LT: satisfied when the key value of the object is

smaller than the start/end key value
• SM_LE: satisfied when the key value of the object is

equal to or smaller than the start/end key value
• SM_GT: satisfied when the key value of the object is

greater than the start/end key value
• SM_GE: satisfied when the key value of the object is

equal to or greater than the start/end key value
– Return the cursor pointing to the index entry found.

76
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

• Parameters
– PageID *root

(IN) Page ID of the root page of the B+ tree index
– KeyDesc *kdesc

(IN) Information for separating individual attribute values of the key
– KeyValue *startKval

(IN) Start key value
– Four startCompOp

(IN) Comparison operator to apply to the start key value
– KeyValue *stopKval

(IN) Stop key value
– Four stopCompOp

(IN) Comparison operator to apply to the stop key value
– BtreeCursor *cursor

(OUT) Cursor pointing to the leaf index entry containing the first <object’s key, object ID> pair satisfying the
search condition

• Return value
– Four error code

• Related functions
edubtm_BinarySearchLeaf(), edubtm_BinarySearchInternal(), edubtm_KeyCompare(), BfM_GetTrain(),
BfM_FreeTrain()

77
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

edubtm_FetchNext()
• File: EduBtM_FetchNext.c

• Description
– Search for the leaf index entry satisfying the search condition next to

the current leaf index entry in the B+ tree index; return the cursor
pointing to the leaf index entry found.

• Search for the next leaf index entry satisfying the search condition.
– The search condition is specified by the end key values and the comparison operator

given as parameters.
» SM_EQ: satisfied when the key value of the object is equal to the end key

value
» SM_LT: satisfied when the key value of the object is smaller than the end key

value
» SM_LE: satisfied when the key value of the object is equal to or smaller than

the end key value
» SM_GT: satisfied when the key value of the object is greater than the end key

value
» SM_GE: satisfied when the key value of the object is equal to or greater than

the end key value
• Return the cursor pointing to the leaf index entry found.

78
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

• Parameters
– KeyDesc *kdesc

(IN) Information for separating individual attribute values of the key
– KeyValue *kval

(IN) Stop key value
– Four compOp

(IN) Comparison operator to apply to the stop key value
– BtreeCursor *current

(IN) Cursor pointing to the current leaf index entry satisfying the search condition
– BtreeCursor *next

(OUT) Cursor pointing to the next leaf index entry satisfying the search condition

• Return value
– Four error code

• Related functions
edubtm_KeyCompare(), BfM_GetTrain(), BfM_FreeTrain()

79
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

edubtm_FirstObject()

• File: edubtm_FirstObject.c

• Description
– Search for the first object (the leaf index

entry with the smallest key value) in the B+
tree index.

• Return the cursor pointing to the first leaf index
entry of the first leaf page in the B+ tree index.

80
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

• Parameters
– PageID *root

(IN) Page ID of the root page in the B+ tree index
– KeyDesc *kdesc

(IN) Information for separating individual attribute values of the key
– KeyValue *stopKval

(IN) Stop key value
– Four stopCompOp

(IN) Comparison operator to apply to the stop key value
– BtreeCursor *cursor

(OUT) Cursor pointing to the leaf index entry corresponding to the first object in the B+ tree
index

• Return value
– Four error code

• Related functions
edubtm_KeyCompare(), BfM_GetTrain(), BfM_FreeTrain()

81
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

edubtm_LastObject()

• File: edubtm_LastObject.c

• Description
– Search for the last object (the leaf index

entry with the greatest key) in the B+ tree
index.

• Return the cursor pointing to the last index entry
(slot number = nSlots - 1) of the last leaf page
in the B+ tree index.

82
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

• Parameters
– PageID *root

(IN) Page ID of the root page in the B+ tree index
– KeyDesc *kdesc

(IN) Information for separating individual attribute values of the key
– KeyValue *stopKval

(IN) Stop key value
– Four stopCompOp

(IN) Comparison operator to apply to the stop key value
– BtreeCursor *cursor

(OUT) Cursor pointing to the leaf index entry corresponding to the last object in the B+ tree
index

• Return value
– Four error code

• Related functions
edubtm_KeyCompare(), BfM_GetTrain(), BfM_FreeTrain()

83
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

edubtm_BinarySearchLeaf()
• File: edubtm_BinarySearch.c

• Description
– Search for an index entry in the leaf page with a key value

equal to or smaller than that given by a parameter, and return
the position (slot number) of the index entry found.

• If there is an index entry with the same key value as that given by
the parameter,

– Return the index entry’s slot number and TRUE.
• If there is no index entry with the same key value as that given by

the parameter,
– Return the slot number of the index entry with the largest key value among

the index entries with a key value smaller than that given by the parameter
and FALSE.

• If the key value given by the parameter is smaller than that of any
index entry in the page,

– Set the OUT parameter idx to -1, and return FALSE.

84
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

• Parameters
– BtreeLeaf *lpage

(IN) Page ID of the root page of the B+ tree index
– KeyDesc *kdesc

(IN) Information for separating individual attribute values of the key
– KeyValue *kval

(IN) Key value used for searching
– Two *idx

(OUT) Slot number of the index entry found

• Return value
– Four TRUE or FALSE

• Related function
edubtm_KeyCompare()

85
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

edubtm_BinarySearchInternal()

• File: edubtm_BinarySearch.c

• Description
– Search for an index entry in the internal page with

a key value equal to or smaller than that given by a
parameter, and return the position (slot number) of
the index entry found.

• If there is an index entry with the same key value as that
given by the parameter,

– Return the index entry’s slot number and TRUE.
• If there is no index entry with the same key value as that

given by the parameter,
– Return the slot number of the index entry with the largest key

value among the index entries with a key value smaller than that
given by the parameter and FALSE.

86
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

• Parameters
– BtreeLeaf *lpage

(IN) Page ID of the root page of the B+ tree index
– KeyDesc *kdesc

(IN) Information for separating individual attribute values of the key
– KeyValue *kval

(IN) Key value used for searching
– Two *idx

(OUT) Slot number of the index entry found

• Return value
– Four TRUE or FALSE

• Related function
edubtm_KeyCompare()

87
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

edubtm_KeyCompare()

• File: edubtm_Compare.c

• Description
– Compare two key values given by parameters, and

return the comparison result.
• If the two key values are the same, return EQUAL.
• If the first key value is greater, return GREATER.
• If the first key value is smaller, return LESS.

88
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

• Parameters
– KeyDesc *kdesc

(IN) Information for separating individual attribute values of the
key

– KeyValue *key1
(IN) First key value to be compared

– KeyValue *key2
(IN) Second key value to be compared

• Return value
– Four EQUAL, GREATER, or LESS

• No related functions

89
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

Given API Functions
• BfM_GetTrain()

– Fix a page/train in the buffer element, and return the pointer to the
buffer element.

• Every transaction should fix the page/train to the buffer before accessing it.
• To fix the page/train that is newly allocated on the disk to the buffer, call

BfM_GetNewTrain() rather than BfM_GetTrain() for performance reasons.
– BfM_GetNewTrain() fixes the empty page/train to a buffer without accessing the disk

since it is not necessary to access the disk to read the contents of that page/train,
which is empty.

– Parameters
• TrainID *trainId

(IN) Page ID of the page or the first page of the train to be fixed
• char **retBuf

(OUT) Pointer to the buffer element containing the page fixed
• Four type

(IN) Type of the buffer

– Return value
• Four error code

90
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

– Example

Four edubtm_Fetch(
PageID *root, /* IN: ID of the current root page of the subtree */
…)

{
BtreePage *apage; /* pointer to a buffer */
…
/* Fix the page to the buffer */
e = BfM_GetTrain(root, (char **)&apage, PAGE_BUF);
if (e < 0) ERR(e);
…

}

91
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

• BfM_GetNewTrain()
– Fix a page/train that has been newly allocated on

the disk to the buffer element, and return the
pointer to the buffer element.

– Parameters
• TrainID *trainId

(IN) Page ID of the page or the first page of the train to be fixed

• char **retBuf
(OUT) Pointer to the buffer element containing the page fixed

• Four type
(IN) Type of the buffer

– Return value
• Four error code

92
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

– Example

Four edubtm_InitInternal(
PageID *internal, /* IN: ID of the page to be initialized */
…)

{
BtreeInternal *page; /* pointer to a buffer */
…
/* Fix the page that has been newly allocated on the disk to the buffer */
e = BfM_GetNewTrain(internal, (char **)&page, PAGE_BUF);
if (e < 0) ERR(e);
…

}

93
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

• BfM_FreeTrain()
– Unfix a page/train from the buffer element.
– Parameters

• TrainID *trainId
(IN) Page ID of the page or the first page of the train to
be unfixed

• Four type
(IN) Type of the buffer

– Return value
• Four error code

94
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

– Example

Four edubtm_Fetch(
PageID *root, /* IN: ID of the current root page of the subtree */
…)

{
…
/* Unfix the page from the buffer */
e = BfM_FreeTrain(root, PAGE_BUF);
if (e < 0) ERR(e);
…

}

95
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

• BfM_SetDirty()
– Set the DIRTY bit to indicate that the page/train

stored in the buffer element has been modified.
– Parameters

• TrainID *trainId
(IN) Page ID of the page or the first page of the train whose
DIRTY bit is to be set

• Four type
(IN) Type of the buffer

– Return value
• Four error code

96
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

– Example

Four edubtm_InitInternal(
PageID *internal, /* IN: ID of the page to be initialized */
…)

{
…
/* Set the DIRTY bit */
e = BfM_SetDirty(internal, PAGE_BUF);
if (e < 0) ERRB1(e, internal, PAGE_BUF);
…

}

97
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

• Util_getElementFromPool()
– Allocate a new dealloc list element from the

pool, and return the allocated element.
– Parameters

• Pool *aPool
(IN) Element pool to be used for allocation

• void *elem
(OUT) Dealloc list element allocated

– Return value
• Four error code

98
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

– Example

Four edubtm_FreePages(…
PageID *curPid, /* IN: ID of the page to be freed */
Pool *dlPool, /* INOUT: pool of the elements of the dealloc list */
DeallocListElem *dlHead) /* INOUT: head of the dealloc list */

{
DeallocListElem *dlElem; /* pointer to the element of the dealloc list */
…
/* Insert the deallocated page into the dealloc list */
e = Util_getElementFromPool(dlPool, &dlElem);
if (e < 0) ERR(e);

dlElem->type = DL_PAGE;
dlElem->elem.pid = *curPid; /* ID of the deallocated page */
dlElem->next = dlHead->next;
dlHead->next = dlElem;
…

}

99
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

Given Functions
• btm_AllocPage()

– Allocate a new page to be used as a B+ tree index page,
and return the page ID of the allocated page.

– Parameters
• ObjectID *catObjForFile

(IN) OID of the object that contains information
(sm_CatOverlayForSysTables) about the index file containing the B+
tree index and about the data file indexed

• PageID *nearPid
(IN) Page ID of the page to be allocated or page ID of the page to
which the page to be allocated should be physically close on the disk

• PageID *newPid
(OUT) Page ID of the page allocated

– Return value
• Four error code

100
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

– Example

Four EduBtM_CreateIndex(
ObjectID *catObjForFile, /* IN: ID of the object that contains the catalog

information */
PageID *rootPid) /* OUT: ID of the root page of the newly created B+tree */

{
sm_CatOverlayForBtree *catEntry; /* pointer to the B+tree file catalog

information */
PhysicalFileID pFid; /* ID of the first page in the file */
…
MAKE_PHYSICALFILEID(pFid, catEntry->fid.volNo, catEntry->firstPage);

/* Allocate a new page to be used as a B+ tree index page */
e = btm_AllocPage(catObjForFile, (PageID *)&pFid, rootPid);
if (e < 0) ERR(e);
…

}

101
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

• btm_ObjectIdComp()
– Compare two object IDs (OIDs) given by

parameters, and return the comparison result.
– Parameters

• ObjectID *firstOid
(IN) First object ID to be compared

• ObjectID *secondOid
(IN) Second object ID to be compared

– Return value
• Four EQUAL, GREATER, or LESS

102
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

– Example

Four edubtm_DeleteLeaf(…
ObjectID *oid, /* IN: ID of the object to be deleted */
…)

{
ObjectID tOid; /* ID of an object */
…
/* Compare two object IDs */
if(edubtm_ObjectIdComp(oid, &tOid) == EQUAL) {…}
…

}

103
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

• btm_root_delete()
– Handle underflow that has occurred in the root page of

a B+ tree index.
– Parameters

• PhysicalFileID *pFid
(IN) File ID of the index file containing the B+ tree index (= page ID of
the first page of the index file)

• PageID *rootPid
(IN) Page ID of the root page of the B+ tree index

• Pool *dlPool
(INOUT) Pool from which to allocate a new dealloc list element

• DeallocListElem *dlHead
(INOUT) Header pointing to the first element of the dealloc list

– Return value
• Four error code

104
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

– Example

Four EduBtM_DeleteObject(…
PageID *root, /* IN: ID of the root page */
...
Pool *dlPool, /* INOUT: pool of the elements of the dealloc list */
DeallocListElem *dlHead) /* INOUT: head of the dealloc list */

{
Boolean lf; /* TRUE if a page is not half full */
PhysicalFileID pFid; /* ID of the index file containing the B+ tree index */
…
/* Handle underflow that has occurred in the root page of a B+ tree index */
if(lf) { // if underflow has occurred in the root page

e = btm_root_delete(&pFid, root, dlPool, dlHead);
if (e < 0) ERR(e);

}
…

}

105
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

• btm_Underflow()
– For the page of a B+ tree index that underflowed, merge or redistribute the page with the sibling page.

• If two pages are merged, underflow of parent page can occur as the related index entry is deleted from the parent
page.

• If two pages are redistributed, overflow of parent page can occur as the related index entry is changed (existing index
entry is deleted and new entry is inserted) in the parent page.

– Parameters
• PhysicalFileID *pFid

(IN) File ID of the index file containing the B+ tree index (= page ID of the first page of the index file)
• BtreePage *rpage

(IN) Pointer to the buffer element containing parent page of the page that underflowed
• PageID *child

(IN) Page ID of the page that underflowed
• Two slotNo

(IN) Slot number of the slot containing the offset of the index entry pointing to the page that underflowed
• Boolean *f

(OUT) Flag indicating that underflow has occurred in the parent page
• Boolean *h

(OUT) Flag indicating that overflow has occurred in the parent page
• InternalItem *item

(OUT) Internal index entry that could not be inserted by the overflow of the parent page
• Pool *dlPool

(INOUT) Pool from which to allocate a new dealloc list element
• DeallocListElem *dlHead

(INOUT) Header pointing to the first element of the dealloc list

– Return value
• Four error code

106
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

– Example

Four edubtm_Delete(…
PageID *root, /* IN: ID of the root page */
…
Boolean *f, /* OUT: whether the root page is half full */
…
Pool *dlPool, /* INOUT: pool of the elements of the dealloc list */
DeallocListElem *dlHead) /* INOUT: head of the dealloc list */

{
Boolean lf; /* TRUE if a page is not half full */
Boolean lh; /* TRUE if a page is splitted */
Two idx; /* slot number */
PageID child; /* ID of the child page */
BtreePage *rpage; /* pointer to the root page */
InternalItem litem; /* Internal index entry */
PhysicalFileID pFid; /* ID of the index file containing the B+ tree index */
…
/* Merge or redistribute the page with the sibling page */
else if (lf) { // if underflow occurs

e = btm_Underflow(&pFid, rpage, &child, idx, f, &lh, &litem, dlPool, dlHead);
if (e < 0) ERRB1(e, root, PAGE_BUF);

}
…

}

107
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

Error Handling
• Error handling macro

– ERR(e)
• Write the error code e given as a parameter, the file name, and the

position where the error occurred into the error log file
(odysseus_error.log); return the error code.

• Usage example
if(root == NULL) ERR(eBADPARAMETER_BTM)

– ERRB1(e, pid, t)
• The same as ERR(e) except that it unfixes the page having the page

ID, pid, given as the parameter before returning the error code e.
• Usage example

if(e < 0) ERRB1(e, &newPid, PAGE_BUF)

• Error code
See the $(EduBtM_HOME_DIR)/Header/EduBtM_errorcodes.h File.

108
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

How to Do the Project
• Files used in the project

– Files that students are to implement
• Skeleton file (.c file)

Files containing the functions whose implementation part is omitted

– Files given to students
• Object file (.o file)

File that ODYSSEUS/COSMOS, which is the underlying system, is compiled as an
object file. It contains all the functions in ODYSSEUS/COSMOS storage system
including the given lower-level functions that are called in the modules to be
implemented.

• Header file (.h file)
Files containing the definition of data structures and function prototypes used in
the modules to be implemented and the test module

• Source code file of the test module
Source code file of the test module to test the functions in the implemented
module

• Executable solution file
Executable file showing a correct test result

109
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

• How to perform the project
– Implement the functions in the skeleton files.

• For the implementation, a variety of macros are available in the header files in the
$(EduBtM_HOME_DIR)/Header directory.

– Use the command make clean (deleting the object files and DB volumes) and make
(compiling) to compile the skeleton files implemented and link them with the given
object file.

• As a result of compiling and linking, an executable file is created to test functions of the
modules implemented.

– Compare the execution results of your executable file with those of the given executable
solution file.

 How to test a function without implementing other functions
 In the file $(EduBtM_HOME_DIR)/Header/EduBtM_TestModule.h,

 For the API function that you have implemented, define the value of the corresponding
macro to TRUE.

 For the API function that you have not implemented, define the value of the corresponding
macro to FALSE.

 Enter the Make command to recompile the project.

 How to implement an API function without implementing some of its internal functions
 Use the default solution function (internal function name with the prefix “edu” omitted).

 e.g., the default solution function of the internal function edubtm_InitLeaf() is btm_InitLeaf().

Appendix
Function Call Graph

ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

EduBtM_CreateIndex EduBtM_DropIndex

edubtm_FreePagesedubtm_InitLeaf

btm_AllocPage BfM_GetTrain

BfM_FreeTrain

BfM_GetNewTrain BfM_FreeTrain

BfM_SetDirty

BfM_GetNewTrain BfM_FreeTrain

BfM_SetDirty Util_getElement
FromPool

EduBtM_CreateIndex

ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

EduBtM_CreateIndex EduBtM_DropIndex

edubtm_FreePagesedubtm_InitLeaf

btm_AllocPage BfM_GetTrain

BfM_FreeTrain

BfM_GetNewTrain BfM_FreeTrain

BfM_SetDirty

BfM_GetNewTrain BfM_FreeTrain

BfM_SetDirty Util_getElement
FromPool

EduBtM_DropIndex

ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

EduBtM_InsertObject
EduBtM_InsertObject edubtm_root_insert

btm_AllocPage BfM_GetTrain

BfM_GetNewTrain BfM_FreeTrain

BfM_SetDirty

BfM_GetTrain BfM_FreeTrain

edubtm_InitInternal

BfM_GetNewTrain BfM_GetNewTrain

BfM_FreeTrain

edubtm_InsertLeaf

edubtm_SplitLeaf

edubtm_SplitInternal

edubtm_InsertInternal

edubtm_CompactLeafPage
edubtm_CompactInternalPage

edubtm_KeyCompare

edubtm_BinarySearchLeaf

edubtm_BinarySearchInternal

edubtm_Insert

BfM_GetTrain BfM_FreeTrain

BfM_SetDirty

btm_AllocPage BfM_GetNewTrain

BfM_FreeTrain BfM_SetDirty

btm_AllocPage BfM_GetTrain

BfM_GetNewTrain BfM_FreeTrain

BfM_SetDirty

edubtm_InitLeaf

BfM_GetNewTrain BfM_FreeTrain

BfM_SetDirty

edubtm_InitInternal

BfM_GetNewTrain BfM_GetNewTrain

BfM_FreeTrain

ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

EduBtM_DeleteObject
edubtm_root_insert

btm_AllocPage BfM_GetTrain

BfM_GetNewTrain BfM_FreeTrain

BfM_SetDirty

BfM_GetTrain BfM_FreeTrain

edubtm_root_del
ete

edubtm_InitInternal

BfM_GetNewTrain BfM_GetNewTrain

BfM_FreeTrain

edubtm_Delete

btm_Underflow BfM_GetTrain

BfM_FreeTrain BfM_SetDirty

edubtm_BinarySearchInternal

edubtm_DeleteLeaf
edubtm_BinarySearchLeaf

edubtm_KeyCompare

btm_ObjectIdComp BfM_SetDirty

edubtm_SplitInternaledubtm_InsertInternal

edubtm_CompactInternalPage

btm_AllocPage BfM_GetNewTrain

BfM_FreeTrain BfM_SetDirty
edubtm_InitInternal

BfM_GetNewTrain BfM_GetNewTrain

BfM_FreeTrain

EduBtM_DeleteObject

115
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

EduBtM_Fetch

edubtm_Fetch

EduBtM_FetchNext

edubtm_FetchNext

edubtm_FirstObject

edubtm_LastObject

BfM_GetTrain BfM_FreeTrain

BfM_GetTrain BfM_FreeTrain

BfM_GetTrain BfM_FreeTrain

BfM_GetTrain BfM_FreeTrain

edubtm_BinarySearchInternal

edubtm_BinarySearchLeaf

edubtm_KeyCompare

BfM_GetTrain BfM_FreeTrain

EduBtM_Fetch

116
ODYSSEUS/EduCOSMOS Project Manual, KAIST Copyright © 2013-2015 by Kyu-Young Whang

EduBtM_Fetch

edubtm_Fetch

EduBtM_FetchNext

edubtm_FetchNext

edubtm_FirstObject

edubtm_LastObject

BfM_GetTrain BfM_FreeTrain

BfM_GetTrain BfM_FreeTrain

BfM_GetTrain BfM_FreeTrain

BfM_GetTrain BfM_FreeTrain

edubtm_BinarySearchInternal

edubtm_BinarySearchLeaf

edubtm_KeyCompare

BfM_GetTrain BfM_FreeTrain

EduBtM_FetchNext

	ODYSSEUS/EduCOSMOS Project #3:�EduBtM Project Manual
	슬라이드 번호 2
	Contents
	ODYSSEUS/COSMOS
	슬라이드 번호 5
	ODYSSEUS/EduCOSMOS Project
	EduBtM Project
	Data Structures
	슬라이드 번호 9
	슬라이드 번호 10
	sm_CatOverlayForSysTables
	sm_CatOverlayForBtree
	BtreeLeaf
	슬라이드 번호 14
	BtreeLeafHdr
	슬라이드 번호 16
	Btm_LeafEntry
	슬라이드 번호 18
	BtreeInternal
	슬라이드 번호 20
	BtreeInternalHdr
	슬라이드 번호 22
	Btm_InternalEntry
	슬라이드 번호 24
	KeyValue
	슬라이드 번호 26
	KeyDesc
	슬라이드 번호 28
	BtreeCursor
	슬라이드 번호 30
	Related Operations
	API Functions to Implement
	EduBtM_CreateIndex()
	슬라이드 번호 34
	EduBtM_DropIndex()
	슬라이드 번호 36
	EduBtM_InsertObject()
	슬라이드 번호 38
	EduBtM_DeleteObject()
	슬라이드 번호 40
	EduBtM_Fetch()
	슬라이드 번호 42
	EduBtM_FetchNext()
	슬라이드 번호 44
	Internal Functions to Implement
	edubtm_InitLeaf()
	슬라이드 번호 47
	edubtm_InitInternal()
	슬라이드 번호 49
	edubtm_FreePages()
	슬라이드 번호 51
	edubtm_Insert()
	슬라이드 번호 53
	슬라이드 번호 54
	edubtm_InsertLeaf()
	슬라이드 번호 56
	edubtm_InsertInternal()
	슬라이드 번호 58
	edubtm_SplitLeaf()
	슬라이드 번호 60
	슬라이드 번호 61
	edubtm_SplitInternal()
	슬라이드 번호 63
	edubtm_root_insert()
	슬라이드 번호 65
	edubtm_Delete()
	슬라이드 번호 67
	edubtm_DeleteLeaf()
	슬라이드 번호 69
	edubtm_CompactLeafPage()
	슬라이드 번호 71
	edubtm_CompactInternalPage()
	슬라이드 번호 73
	edubtm_Fetch()
	슬라이드 번호 75
	슬라이드 번호 76
	edubtm_FetchNext()
	슬라이드 번호 78
	edubtm_FirstObject()
	슬라이드 번호 80
	edubtm_LastObject()
	슬라이드 번호 82
	edubtm_BinarySearchLeaf()
	슬라이드 번호 84
	edubtm_BinarySearchInternal()
	슬라이드 번호 86
	edubtm_KeyCompare()
	슬라이드 번호 88
	Given API Functions
	슬라이드 번호 90
	슬라이드 번호 91
	슬라이드 번호 92
	슬라이드 번호 93
	슬라이드 번호 94
	슬라이드 번호 95
	슬라이드 번호 96
	슬라이드 번호 97
	슬라이드 번호 98
	Given Functions
	슬라이드 번호 100
	슬라이드 번호 101
	슬라이드 번호 102
	슬라이드 번호 103
	슬라이드 번호 104
	슬라이드 번호 105
	슬라이드 번호 106
	Error Handling
	How to Do the Project
	슬라이드 번호 109
	슬라이드 번호 110
	슬라이드 번호 111
	슬라이드 번호 112
	슬라이드 번호 113
	슬라이드 번호 114
	슬라이드 번호 115
	슬라이드 번호 116

