

User Manual

ODYSSEUS/OOSQL

Version 5.0

Manual Release 2

Aug. 2016

Copyright © 2000-2016 by Kyu-Young Whang

Advanced Information Technology Research Center (AITrc)

KAIST

ODYSSEUS/OOSQL User Manual, AITrc, KAIST Copyright © 2000-2016 by Kyu-Young Whang

2

Contents

1. DIRECTORY STRUCTURE OF ODYSSEUS/OOSQL .. 3

2. COMPILING ODYSSEUS/OOSQL... 3

3. DATABASE SCHEMA CREATION .. 5

4. ODYSSEUS/OOSQL INSTALLATION ... 8

5. DATABASE VOLUME CONSTRUCTION .. 11

5.1. Database Creation .. 11

5.2. Schema Creation .. 13

5.3. Data Loading ... 14

5.4. Index Creation .. 16

5.5. Testing the DATABASE Volume ... 19

ODYSSEUS/OOSQL User Manual, AITrc, KAIST Copyright © 2000-2016 by Kyu-Young Whang

3

1. Directory Structure of ODYSSEUS/OOSQL

Directory/File Details

OOSQL Object file and header files for Linux

document Document

source Source code

example Example file

The source code is written in C and C++, and contains approximately 355,000 lines.

2. Compiling ODYSSEUS/OOSQL
The environment for source code compilation on the Linux OS is as follows:

 32bit

－ Platform: Linux 2.6

－ Compiler: gcc 4.1.2 Compiler

 64bit

－ Platform: Linux 2.6

－ Compiler: gcc 4.4.7 Compiler

Compilation is performed in the ODYSSEUS/OOSQL source code directory using the procedure outlined

below.

1) Install the ODYSSEUS/COSMOS binary and header files in a suitable directory. There are three

versions of ODYSSEUS/COSMOS (32bit, 64bit supporting large databases, 64bit without

supporting large databases1). Refer the ODYSSEUS/COSMOS User Manual for details.

(ODYSSEUS/COSMOS binary and header files for Linux are needed to compile

ODYSSEUS/OOSQL.)

2) Extract the compressed ODYSSEUS/OOSQL source code file to a suitable directory. After

extraction is complete, check to make sure that the three subdirectories (./LOM, ./GEOM, ./OOSQL),

the setup file, and the Make.sh file have been created.

1 As of August 2016, there are a few known bugs due to 32bit-64bit type mismatch in the
ODYSSEUS/COSMOS 64 bit version.

ODYSSEUS/OOSQL User Manual, AITrc, KAIST Copyright © 2000-2016 by Kyu-Young Whang

4

3) Modify the setup file, which stores the various settings for compiling the ODYSSEUS/OOSQL

source code. The types and definitions of the environment variables configured in the setup file are

listed in the table below. Since LOM, GEOM2, and OOSQL compile the source code file and create

the binary file in each subdirectory, the location of the source code is identical to the location of the

binary. Therefore, it is recommended that the O_ROOT and O_KAOSS environment variables be

configured with care, and the default settings be used for the remaining variables.

O_OOSQL_EXPORT designates the copy path of the binary file after ODYSSEUS/OOSQL has

been compiled. SWIG, BISON, and PYTHON designate the locations of the respective applications.

(SWIG 1.3.29, Bison 1.28, and Python 2.4 binary and header files for Linux are needed to compile

ODYSSEUS/OOSQL.)

Environment

Value
Default Value Definition

O_ROOT Configured manually Source code root directory

O_SERVER $O_ROOT
ODYSSEUS/OOSQL source code root

directory

O_KAOSS $O_ROOT/COSMOS Location of ODYSSEUS/COSMOS bianry

O_LOM_COMMON $O_ROOT/LOM Location of LOM source code

O_LOM_SERVER $O_ROOT/LOM Location of LOM binary

O_GEOM $O_ROOT/GEOM Location of GEOM source code/binary

O_OOSQL_COMMON $O_ROOT/OOSQL Location of OOSQL source code

O_OOSQL_SERVER $O_ROOT/OOSQL Location of OOSQL binary

O_COMMON $O_ROOT/OOSQL Location of OOSQL utilities

O_DLLBROKER $O_LOM_SERVER/RPCdll/dllbroker
Location of LOM communication

module(dllbroker)

O_DLLSERVER $O_LOM_SERVER/RPCdll/dllserver
Location of LOM communication

module(dllserveer)

O_OOSQL_EXPORT Configured manually

Location where binary and header will be

copied once OOSQL compilation is

complete

2 GEOM, the GIS module, has not been made thread-safe as of August 2016. It should not be used in a
multi-threaded execution.

ODYSSEUS/OOSQL User Manual, AITrc, KAIST Copyright © 2000-2016 by Kyu-Young Whang

5

SWIG Configured manually Location of SWIG binary

BISON Configured manually Location of Bison binary

PYTHON_HEADER Configured manually Location of Python header files

4) Open Makefiles in subdirectories of LOM and OOSQL, and modify SERVERFLAG depending on

the version of ODYSSEUS/COSMOS (32bit, 64bit supporting large databases, 64bit without

supporting large databases) to use. Disable the flag, DSUPPORT_LARGE_DATABASE2, for

ODYSSEUS/COSMOS 32bit and 64bit without supporting large databases, and enable the flag for

ODYSSEUS/COSMOS 64bit supporting large databases.

5) Execute the script file, Make,sh, to compile ODYSSEUS/OOSQL. Make.sh compiles LOM, GEOM,

and OOSQL, sequentially. After compilation is complete, check to make sure that the

ODYSSEUS/OOSQL object file (./OOSQL/liboosql.so) has been created in the OOSQL

subdirectory. If it has not, compilation has not been carried out properly. Check for compile errors,

resolve the issues, and perform the compilation again.

Information on how to compile and use ODYSSEUS/OOSQL form the main content of this document.

Details about the design, implementation, and functions in each module are explained in separate

documents. The following is a brief summary of the available documents and their contents.

 User Manual: Compilation and use

 Functional Specification: Detailed description of each function (not released as of August 2016)

 Reference Manual: Use of API functions

 External Document: Concept of ODYSSEUS/OOSQL (not released as of August 2016)

3. DATABASE Schema Creation
Especially, you should seek an expert advice when creating database schema because the schema is

an important element in the performance of the search system.

Objectives

Write a schema to describe the data to search in a database.

ODYSSEUS/OOSQL User Manual, AITrc, KAIST Copyright © 2000-2016 by Kyu-Young Whang

6

Contents

Using SQL, you write a database schema suitable for the designed user interface.

Core Contents

1) When designing the database schema for a search system, you should select proper field types

such as numeric, string, and text type. Among these, the text field always creates an index,

however, the numeric field and the string field can optionally create the index. You need to pay

attention to create the proper indexes.

2) Indexes for numeric and string field have to be created at the field with a low selectivity. A low

selectivity means that there are few data of the same value like ID number, registration number,

or name. A high selectivity refers to the cases such as publishing country, language, publishing

year, and so on. If an index is created at the field with a high selectivity, it takes long time in

searching due to lookup the index itself.

(Selectivity = the number of documents as the search result / the total number of documents in

the database)

3) For creating an index for the field with a high selectivity, you should use a text index. For

instance, when you implement a library information search system, the year of publication can

be used to search despite of its high selectivity. If a string index is used for the field, the search

speed is reduced radically due to a high selectivity. However, using a text index, the search can

be executed at a rapid pace. Even in case of constructing a text index for the numeric field, a

range search for the field is possible by using ‘BETWEEN in MATCH’ in SELECT statements.

For example, use the following query to search for the book whose year of publication is

between 2000 and 2010.

SELECT * FROM BOOK WHERE MATCH(YEAR, BETWEEN(“2000”, “2010”))>0

4) When you write a database schema, it is important to decide the type and the index for the

column. The reason is that those can have an influence upon the performance of the whole

search system. To decide the type and index for the column is also important when you move

the schema, which has been used for the existing database management system or IR search

system, into ODYSSEUS.

When you write the schema for a library search system, you have to decide a text attribute

with a text index or a VARCHAR or CHAR attribute with B-Tree index for the fields such as

ID number, the year of publication and so on.

ODYSSEUS/OOSQL User Manual, AITrc, KAIST Copyright © 2000-2016 by Kyu-Young Whang

7

When deciding on those matters, you can use rules of creating the database schema as

follows:

Rule 1) Create a B-Tree index for the column that has a low selectivity for the Equality(=)

operator. (eg. : Create a B-Tree index for the column like ID number that shows a low

selectivity for the Equality(=) operator as the same index used in the commercial database

management systems.)

Rule 2) Create a text index for the column that has a medium selectivity for the Equality(=)

operator. (eg. : Create a text index for the column such as the publishing year that shows a

medium selectivity for the Equality(=) operator.)

Rule 3) Separate database for the column that has a high selectivity for the Equality(=)

operator. (eg. : For the columns like field of majors(physics, chemistry, etc.), or type of

books(journal, separated volume, etc.), store the data after separating the database according

to the value of the field.)

Rule 4) Even though falling under Rule 1 and Rule 3, you should create a text index for the

column requiring partial match queries (the search for the document including the input

keyword). When the partial match queries are required, create the text index for the field

irrespective of the selectivity. (eg. : When you find a book written by many authors by

typing only one author name, the author field is defined a text type with a text index.)

5) It is desirable to make the schema used in a search system be only one table. If two more tables

are in the schema, there will be needed join between tables in searching. Because the join

operation spends much time, you should design the schema in a way all the searches will be

executed in one table as possible.

6) You cannot make the schema used for the search system be a single table in all cases. Though it

is good to make a single table for 1:1 mapping, you had better refrain from searching

documents without the join for 1:n and m:n mapping. For example, a book can have several

names such as the full name, auxiliary name, and so on. If you create the schema to be one

table, the field of table is to increase. That is, in case of 1:n mapping, you have to add n fields

to the schema, and need n times OR operations in searching. For this case, you should divide

the table into two, and it is needed the join to search tuples. Writing a schema to be in two

tables does not always means the degradation of performance. If the number of join results is

ODYSSEUS/OOSQL User Manual, AITrc, KAIST Copyright © 2000-2016 by Kyu-Young Whang

8

small in spite of having two tables, it is rather effective to process the join than n times OR

operations.

Referential Contents

1) After creating schema, you should assign the volume where each table will be stored. At this

time, you have to decide whether several tables will be stored in one volume or each single

table will be stored in one volume. Both methods have their advantages and disadvantages as

follows:

Method to store several tables in only one volume

- Advantages: Each table share one volume, so the disk space can be efficiently used, no

matter how the data increases.

- Disadvantages: When a new data is inserted in the already organized database, the

clustering may be not maintained, for the location where new data are stored can be away

from the location where the previous data are stored. Also, when a table in the volume is

update, every table in the same volume is locked unnecessarily because the whole volume

is locked.

Method to store each table in a single volume

- Advantages: Each table is stored in a single volume, so the clustering can be maintained

better than when all the tables are stored in a single volume. It makes the search faster.

- Disadvantages: The size of table is limited by the size of each volume, so it does not

utilize the disk space efficiently compared to the method of storing all tables in a single

volume. Also, join operation between relations in the different volume is not supported.

Therefore, you should consider disk space efficiency, clustering, locking, and relevancy

between tables, before you assign the volume where each table will be stored.

4. ODYSSEUS/OOSQL Installation
Many problems have so far risen due to the wrong installation. You can reduce trials and errors by

following the below instructions. It is desirable that an expert versed in Linux attends the installation.

Objectives

You install ODYSSEUS/OOSQL, the engine of ODYSSEUS database management system.

ODYSSEUS/OOSQL User Manual, AITrc, KAIST Copyright © 2000-2016 by Kyu-Young Whang

9

Contents

You install ODYSSEUS library, which is the engine of database management system, and copy the

related utilities in the assigned directory. To install the ODYSSEUS library, refer to the compilation

method explained in Section 2 or use the binary files provided. The installed files are OOSQL

library, Header file for programming, relevant utilities, keyword extractor to extract the keyword

from documents, and sample programs.

Core Contents

1) On installing ODYSSEUS, you can see library, include file, keyword extractor, utility, and

sample program. After the installation, you have to adjust authorization to enable a user to

access a directory or a file.

2) You can find the setup file created in the process of ODYSSEUS installation. The file contains

the environmental variables necessary for operating ODYSSEUS. You should modify these

environmental variables to be suitable for your system. For running ODYSSEUS successfully,

you are to correctly declare theses environmental variables, and modify them to be suitable for

the application program. The environmental variables are as follows:

ODYS_TEMP_PATH: Directory for the temporary file used in the process of executing

ODYSSEUS

ODYS_OODB: Directory appointing the location of ODYSSEUS database

IR_SYSTEM_PATH: Directory containing keyword extractor

COSMOS_LOG_VOLUME: Location of log volume for preventing the damage to database,

which is caused by a wrong operation.

COSMOS_COHERENCY_VOLUME: Location of coherency volume for multi-server

environment

After installing ODYSSEUS, you need to adjust these environmental variables.

Additionally, you should write an ODYSSEUS library directory path in

LD_LIBRARY_PATH so as to execute ODYSSEUS library.

3) Modifying the environmental variables in the setup file dose not complete fixing all the

environments for the system operation. For the Linux environment, you have to reflect the

contents of setup file in the system by executing “source setup” on the shell. The setup file is

based on the tcsh shell of the OS. Hence, if tcsh is the shell currently being used, no changes

need to be made. If not, the current shell must be changed to tcsh. In order to prevent the

ODYSSEUS/OOSQL User Manual, AITrc, KAIST Copyright © 2000-2016 by Kyu-Young Whang

10

trouble of carrying out this operation every time a user login, it is also recommendable to add

to the .login or .cshrc file making the operation automatically carried out.

If this operation is not carried out automatically, you should run “source setup” before

running utility programs or script, or declare the variable at the beginning part of the script to

operate the system successfully. Additionally, you should write each program with script, and

declare the necessary environmental variables to apply a different environmental variable for a

program.

The operation using scripts can prevent the typing errors, and help to execute all the

operations related to database of ODYSSEUS in correct. Therefore, you have to execute the

operations using scripts.

4) After installing ODYSSEUS, you have to format the log volume that will be used during

running ODYSSEUS. You can use OOSQL_FormatLogVolume command. As a parameter of

the command, type an appropriate file path and the size of a log volume to the name of device

that will store the log volume. You should specify the size of log volume more than the

maximum size of data updated in a transaction.

After creating a log volume, you register the device name of the created log volume on

COSMOS_LOG_VOLUME, an environmental variable enabling other ODYSSEUS programs

to use the log volume. Unless you create the log volume or specify the log volume location in

environmental variables, errors occur in running the programs.

5) The coherency volume must be used where there are updates, insertion or deletion of data in a

multi-server configuration. OOSQL_FormatCoherencyVolume is a utility to initialize a

coherency volume for a multi-server configuration. For a multi-server configuration, if a buffer

is updated in a process, the change is recorded in the coherency volume, and other processes

make the contents of the buffer consistent by looking up the changes recorded in the coherency

volume. For an OOSQL application program to use the coherency volume, the environment

variable $COSMOS_COHERENCY_VOLUME must be set the path where the coherency

volume resides.

6) After declaring an environmental variable, you need to check if it is operated in correct. First,

type “setenv” on the shell to see and check the declared environmental variables. Secondly,

check if the libraries are correctly linked. In case the directory defined in

LD_LIBRARY_PATH environmental variable is wrong, an unexpected directory may be

ODYSSEUS/OOSQL User Manual, AITrc, KAIST Copyright © 2000-2016 by Kyu-Young Whang

11

linked to a program. Therefore, you should run “ldd3 <name of .exe file>” to check if the

necessary libraries are correctly linked. This kind of error can especially occur when you run

programs using the script, so you need to make sure that the environmental variables have been

correctly declared in running the program.

Referential Contents

1) If necessary, you can install the library required for running ODYSSEUS not in a single

directory but in several directories. For example, you can install liboosql.so in both /usr/lib and

~/OOSQL/lib. Installation in multiple locations like this is followed by trouble that you have to

modify all the libraries when updating them. So you need to install the libraries relevant to

ODYSSEUS, and execute files in one location, if possible. In case of an inevitable multi-

installation, you have to make sure that the libraries and execute files are successfully linked

using ldd and which4.

5. DATABASE Volume Construction
Inserting the data to the database be supplied by a search system, this process is divided into

database creation, schema creation, data loading, index creation, and database test. Although being

automatically executed, this operation demands for much time. You should keep the below

instructions in mind to prevent mistakes. Before processing the operation, you need to carefully read

‘ODYSSEUS/OOSQL Reference Manual’ to know how to apply the utilities for database volume

construction.

5.1. Database Creation

Objectives

Allocate the space for database to store data.

Contents

Allocate the space for database with utilities supplied by ODYSSEUS.

3 Provided in the Linux environment, this utility displays the linked directory of dynamic library used by

execute file.
4 Provided in the Linux environment, this utility informs where the execute file is located.

ODYSSEUS/OOSQL User Manual, AITrc, KAIST Copyright © 2000-2016 by Kyu-Young Whang

12

Core Contents

1) Apply OOSQL_CreateDB utility supplied by ODYSSEUS to create database. The parameter

of the utility is supposed to give the device name and the number of pages to be allocated.

When you assign a non-existed device or the one without permission, an error will occur. So

you should assign a suitable device.

2) The correctness and performance of database operations depend on the types of devices

composing a volume. It is better to use Raw devices. If raw devices were not used, due to

unnecessary buffering in the O/S files, main memory is wasted, and consequently, the system

can slow down. In particular, the main memory that is used for O/S file buffering can grow as

large as the size of the device (say, a few hundred Mbytes ~ a few Gbytes), thrashing can occur

due to shortage of remaining main memory.

3) Disk pages are allocated for the database. When the allocated pages are too small, an error

occur during inserting data because the data size exceeds the number of allocated pages. So

you should allocate the data pages according to the size of the input. The size of allocated

pages should be 10 times (6 times when offset is not stored) of the size of the input data. This

is for securing a sufficient space for input data and its index.

4) Contrary to the above case, when you allocate the raw device pages exceeding the total number

of pages in the raw device to create a volume, the “invalid file format” error occur. Then you

should check the number_of_page that has been declared as a parameter of OOSQL_CreateDB.

Generally, the size of a page is 4Kbyte, so you can calculate the size of the volume with

multiplying 4KByte by number of pages. If the size of the allocated pages is larger than the

size of raw device, the error can occur. The size of raw device is determined at disk partition

time. The maximum size of raw device is 2GB in the 32bit version and 8EB in the 64bit

version.

5) When you want to create database again, you should run OOSQL_CreateDB after running

OOSQL_DestroyDB.

Referential Contents

1) Run OOSQL_InitDB to delete all the data and tables in the created database. In order to delete

the database already created and insert new data, you should run OOSQL_InitDB instead of

OOSQL_CreateDB that was used for creating database in the beginning. And you insert new

data.

ODYSSEUS/OOSQL User Manual, AITrc, KAIST Copyright © 2000-2016 by Kyu-Young Whang

13

2) When composing a volume, you can add 4,000 raw devices of 2GB at the maximum. So,

considering the extendibility, you need to use 2GB raw device from the beginning. In this way,

you can cover up to 8TB data. However, there is no necessity for adding all the available raw

devices from the beginning in consideration of the extendibility. When the storage space is

insufficient, you can add raw device to a volume using OOSQL_AddDevice, a utility of

OOSQL. Refer to OOSQL Reference Manual for the detailed information.

5.2. Schema Creation

Objectives

Create the designed schema in database.

Contents

Change the designed schema into SQL to create a schema in database. Register the keyword

extractor in database for the text search.

Core Contents

1) The schema creation that the process define the tables to be used in a search system has three

methods: i) to create a schema using isql interactively, ii) to write a schema in the file, and

create it using isql or ODYSSEUS/Web-PHP utilities, iii) to write C programs using OOSQL

API. Method ii) is recommendable for many implementations, Method iii) can be applied when

the schema is perfectly fixed. Method i) is not applied except creating a temporary schema for

tests.

2) You should pay attention to the data types of char(10) and varchar(10) when defining a schema.

For only 2 byte string, the char(10) data type is filled the latter 8 bytes with null characters

keeping up the size of a volume to be 10. However, the varchar(10) data type is filled the last 1

byte with a null character.

3) Register the information on a keyword extractor to find out keywords in a text field. In order to

insert the text data in ODYSSEUS, you should register a default keyword extractor to be used

for all text fields. However, another type of the keyword extractor may be at need, so you can

additionally register another keyword extractor for a specific attribute in a table.

ODYSSEUS/OOSQL User Manual, AITrc, KAIST Copyright © 2000-2016 by Kyu-Young Whang

14

For registering a keyword extractor for a specific attribute, you have to create the keyword

extractor first of all, and write interface to register the keyword extractor in the database.

Refer to OOSQL/example/null_keyword_extractor program for how to create a keyword

extractor. Link the created keyword extractor to the database using OOSQL utilities.

InstallDefaultKeywordExtractor, InstallKeywordExtractor, and SetKeywordExtractor are

supplied as utilities.

4) The keyword extractor that separates a word without any morpheme analysis is provided. The

source code is in OOSQL/example/null_keyword_extractoras. The binary code is in

OOSQL/bin/NullKeywordExtractor.so after compilation.

5) A keyword extractor is programmed to change all English letters into small letters before

extracting the keyword. Then, the query processor can search the documents containing the

given keyword regardless of a capital or small letter. This is why you do not need to care about

whether the input data is a capital letter or a small letter in case of your constructing a search

system.

Though, when you have to create a new keyword extractor, you need to consider this

problem. When you create a new keyword extractor, you have to add the process of changing

all the extracted keywords into small letters; otherwise you cannot find documents to want.

For example, when a keyword in a document is the form of the capital letter, you cannot

search the document by querying with a small letter keyword.

5.3. Data Loading

Objectives

Load the data into the database for the search system.

Contents

Load the data into the database storing the designed schema for the search system. The schema has

to be created in the database.

Core Contents

1) In order to load data, you should use OOSQL_LoadDB utility in OOSQL.

ODYSSEUS/OOSQL User Manual, AITrc, KAIST Copyright © 2000-2016 by Kyu-Young Whang

15

2) A data file loaded using OOSQL_LoadDB utility is specified the table and attributes names on

the top of the file, and is described actual data for each attribute. You should remember that ‘_

and “_ are used to indicate the char or varchar and the text fields. So you should replace these

with \’, and \”, if the data with ‘_ and “_ is inserted. For example, when you insert a document

having ‘The Weather of Korea and ‘World’’, ‘The Weather of Korea and ‘ is recognized as

one document and the rest makes an error. To fix the error, you have to modify the string into

‘The Weather of Korea and \‘World\’’. And ‘\n’ means the carriage return.

3) Another problem similar to the above one is that you may encounter \ \ ‘ in the document. At

this time, \ is processed to be \ \ producing the same results as inserting only ‘ because the next

letter to \ is construed as a special character. So it is regarded that there is ‘ in the middle of

document, and it makes an error. You have to change the string \ \ “ and \ \ ‘ into \ \ \ “ and \ \ \ ’.

4) You have to write a definition of the class in the loading file, which contains the documents to

be loaded. The beginning part of the loading file should have the definition of the class. The

form is the follows.

%class <class name> (<name of column1> <name of column2> …)

Unless the definition of the class exists in the beginning part, an error will occur while

loading the data. You should remember that the class has to be created in database before

loading and the name of column in the file is the same as one defined in the schema. You also

remember that the statement of the class defining has to be written in one line. That is, you

have to write the whole definition without changing lines.

5) You should check the input file of OOSQL_LoadDB utility using OOSQL_CheckDataSyntax

utility before loading. OOSQL_CheckDataSyntax utility verifies the grammar of the input file

of OOSQL_LoadDB utility, and show cause and solution of error, if any.

6) When the size of data to be loaded is large, it is effective to load the data at once after storing

them in the text file. You should place the class definition in the beginning part of the loading

file, and subsequently list the documents. You simply arrange the contents to be input to each

column irrespective of the tuple to create the data. Therefore, if any column is missed, an error

can be occurred in loading the data. For example, if you load the data on the class having the

fields of A, B, and C, an error will occur when no data for B field is.

ODYSSEUS/OOSQL User Manual, AITrc, KAIST Copyright © 2000-2016 by Kyu-Young Whang

16

 Problems such as the below can happen.

“a1”

“b1”

“c1”

“a2”

“c2” <- Miss a data for B column

“a3”

“b3”

“c3”

In case the field is stored as the above, the stored results are wrong as the follows.

A B C

a1 b1 c1

a2 c2 (no data originally) a3

b3 c3

Accordingly, when you create a loading file, you have to give the information for all fields

even to the field with no data. For example, you have to insert a black like “ ” when there is no

data to be input for text type column, and insert a number like 0 for the number column. In this

way, you have to make all the fields expressed in files to properly load data.

5.4. Index Creation

Objectives

Create the index for fast searching and keyword search.

Contents

You can apply the ‘create index’ of SQL statement to create an index for the string or numeric

attributes. You can create the text index for the text field immediately when loading, or create it by

batch processing after loading.

Core Contents

1) You can create an index for both the numeric/string field and the text field. You decide whether

indexes for the number/letter fields is created or not, while creating an index for the text field is

a prerequisite.

ODYSSEUS/OOSQL User Manual, AITrc, KAIST Copyright © 2000-2016 by Kyu-Young Whang

17

2) Create an index for the numeric or letter attribute using the ‘create index’ of SQL statement. In

the same way as schema creation, you can execute SQL statements using isql or

ODYSSEUS/Web-PHP utilities, or write a program with OOSQL API. Select one of them and

execute SQL statement in the form of ‘create [unique|cluster] index index_name on table_name

(attribute);’. If the index is improperly created, you should execute ‘drop index index_name;’

SQL statement to drop the index.

3) You should create the index for the numeric/letter field only in case making the index takes

effect. That is, you should create the index only in the field with few tuples having the same

values such as ID number or name. For a detailed explanation of this, refer to the Schema

Creation part in Sector 5.2.

4) A large amount of data is recorded in the database during the index creation. This process is

recorded in “log” to prevent system errors from destroying the database. However, when you

create a lot of indexes at once, then the log grows too much larger and can exceed the given

volume size. Therefore, you had better create one volume per one index, and then, execute

commit command to prevent the volume size from growing excessively.

5) To create the index for a text field, you first extract keywords, and then, build text index using

the extracted keywords. For further details, refer to ODYSSEUS educational materials,

educational videos, and an ‘ODYSSEUS/OOSQL Reference Manual.’ You should read

thoroughly the above materials and fully understand them before starting the operation.

6) When creating the database schema, you should consider the characteristics of keys to be used

for creating an index as well as which field to be used for creating an index. For example, in

case of a person’s name, the exact matching will occur more frequent than the partial matching.

In this case, the key used to construct an index should not be changed into a basic type. On the

other hand, in case of a book name, the partial matching will occur more frequent than the

exact matching, that is, only a part of whole title will be used for searching books. In this case,

you have to create an index with the key that can be changed into a basic type. Moreover, in

case of the year having the text type, it would be better to create an index with the key having

the decimal number type. Therefore, when you construct the database, you have to use

appropriate types for indexes or a keyword extractor by identifying the characteristics of keys

to be used for creating indexes. Refer to Section 5.2 for the detailed explanation.

ODYSSEUS/OOSQL User Manual, AITrc, KAIST Copyright © 2000-2016 by Kyu-Young Whang

18

7) There are two methods of using ‘deferred mode’ (the mode of creating the index after inputting

the data) for inputting the text data and constructing an index. One is to create it at once using

OOSQL_MakeTextIndex, and the other is to use OOSQL_ExtractKeyword,

OOSQL_MapPosting, OOSQL_SortPosting, OOSQL_BuildTextIndex, and

OOSQL_UpdateTextDescriptor for each stage. These two methods perform the same task. That

is, the first method is a script of putting all stages of the second method. For example, in the

third stage of OOSQL_SortPosting, if the storage space for temporary files is insufficient to

use Linux sorting, then an error will occur. With the latter method, you can preserve the more

storage space and execute this program again.

8) Sufficient disk space (sum of posting file size * 2) is needed for temporary files like keyword

extraction results in the text index creation process.

9) Text index creation process includes the keyword extraction process. The “/var/tmp” directory

of UNIX is used to transfer the data in the process of extracting keywords. The created files at

this directory are automatically deleted after extracting keywords for one text. In general, the

usable disk space is not large and becomes insufficient if other programs (especially the

programs that use the sorting function) use much space of “/var/tmp.” Especially, if the data

size of the field that you want to extract keywords is large, the available space is reduced very

rapidly. Therefore, you should check if there left a sufficient space in “/var/tmp” before

constructing an index.

Notes:
1) Extracting keywords spends one of the most part of time in the process of creating the text

index. In some cases, it is necessary to adjust the volume size of the database without

modifying the contents of the database, or to change the device that stores the volume of the

database. At this time, if you execute the keyword extraction process again, you may spend

much unnecessary time to construct the database. In this case, you can construct a new volume

without extracting keywords by using the file of which extension is SortedPosting and which

stores the results of extracting keyword. For further details, refer to the educational videos and

‘ODYSSEUS/OOSQL Reference Manual’.

ODYSSEUS/OOSQL User Manual, AITrc, KAIST Copyright © 2000-2016 by Kyu-Young Whang

19

5.5. Testing the DATABASE Volume
Objectives

Check if the database volume has been normally and correctly created.

Contents

To confirm the database volume is normal and correct, check if some queries are executed normally

and correctly.

Core contents

1) Using “isql,” an interactive SQL language provided by ODYSSEUS, check if the volume has

been correctly created. Basic testing can be done by using “isql”. If you want to confirm the

volume’s status in more detail, write programs using OOSQL API. To run isql, use the

following procedure:

isql <db name>

When ISQL has been invoked successfully, the ODYSSEUS database becomes usable and

awaits the user’s SQL query. It can create/update/delete tables and tuples, as well as carry out

queries for specific tables. All SQL queries must end with a semicolon (;). To end the program,

enter “quit” without a semicolon; this commits the currently updated contents to the database

and shuts down the ISQL program. Simple SQL sentences for testing can be found in the

example subdirectory of the ODYSSEUS directory. Test SQL sentences can be executed with

ISQL as follows:

 isql test < /odysseus_path/example/test.sql

If the result obtained is identical to the test result in the sample file test.result, this confirms

that the ODYSSEUS database is operating normally.

 test.sql contents

 CREATE TABLE test1 (a integer, b varchar(30));

 INSERT INTO test1 VALUES (10, 'abc');

 INSERT INTO test1 VALUES (20, 'def');

 INSERT INTO test1 VALUES (30, 'ghi');

ODYSSEUS/OOSQL User Manual, AITrc, KAIST Copyright © 2000-2016 by Kyu-Young Whang

20

 SELECT * FROM test1;

 UPDATE test1 SET b='aaa' WHERE a=30;

 SELECT b FROM test1 WHERE a>15;

 quit

 test.result contents

 First query results:

 ----------+----------+

 a| b|

 ----------+----------+

 10| abc|

 20| def|

 30| ghi|

 ----------+----------+

 Second query results:

 ----------+

 b|

 ----------+

 def|

 aaa|

 ----------+

2) It is very difficult to finish the volume construction at the first attempt without any designing

error. You may find the designing errors frequently in the volume test. In this case, you have to

reconstruct the volume for the whole data. Thus, if you make the only one process include

construction, test, modification, and reconstruction of the entire volume for large database, it

takes so much time to finish the volume construction.

You can solve this problem by the method of constructing a small test volume with a small

portion of the data (e.g., 100 objects). It would be better to construct the volume for the whole

data after you confirm the test volume construction is successfully finished. In this way, you

can avoid waste of time needed by repeating trial and error.

ODYSSEUS/OOSQL User Manual, AITrc, KAIST Copyright © 2000-2016 by Kyu-Young Whang

21

3) You have to set up a log volume before testing a data volume. In general, you spend much time

in constructing the volume. Accordingly, if the volume is damaged during the test, you will

suffer from much loss of time. The volume damage means that the database falls into the

malfunction status due to improper execution of queries, tester’s mistakes, and system errors in

the process of testing. You can avoid most of these problems by setting up the log volume.

Therefore, you’d better set up the log volume before testing in order to avoid the damage

caused by improper operations.

4) You should inspect the following matters in the process of testing the database volume.

- Does each column contain all the necessary data?

- Are the retrieved tuple data, which is randomly chosen and searched from the database,

identical to the input data?

- For each indexed column, is the search fast if you use the column as a key?

- Is the number of results from the query identical to the number of results to be actually

searched?

- Can you search with a keyword extracted from the text search?

- Is the integrated query, which contains various fields, properly executed?

- Is the insert command successfully executed for a new random data and correctly

reflected the execution result on the database?

- Is the delete command successfully executed for a new random data and correctly

reflected the execution result on the database?

- Is the update command successfully executed for a new random data and correctly

reflected the execution result on the database?

- Are the other functions necessary for a search system correctly executed?

If there is any doubt about the above questions, be sure to solve it before starting the volume

construction. Otherwise, you may fall into a critical situation that you have to create the

database volume again, and in case of a large-sized database, you will waste much time.

5) In the testing process, you had better execute all the possible queries to be used for the system

operation and record the results and the response times of them. That is, you should try to write

queries, which may be input by users, and to executing them to confirm that the results are

correct. It is also important to measure the time taken for searching. The time information can

attribute to improving the search speed if you find designing errors later. Therefore, you should

summarize the results systematically according to the types of queries.

ODYSSEUS/OOSQL User Manual, AITrc, KAIST Copyright © 2000-2016 by Kyu-Young Whang

22

Notes:
1) Even though you execute queries after setting up a log volume, the volume can be damaged if

hardware problems such as a disk error occur. In this case, you may fall into a crisis that all the

precious dada cannot be recovered not to mention of the waste of time. Therefore, a periodic

backup of volumes is essential for preventing this disgraceful event. You should execute this

backup process starting from the volume test process.

	1. Directory Structure of ODYSSEUS/OOSQL
	2. Compiling ODYSSEUS/OOSQL
	3. DATABASE Schema Creation
	4. ODYSSEUS/OOSQL Installation
	5. DATABASE Volume Construction
	5.1. Database Creation
	5.2. Schema Creation
	5.3. Data Loading
	5.4. Index Creation
	5.5. Testing the DATABASE Volume

