
Applications

NORTH- HOLLAND

Dynamically Ordered Semi-Naive Evaluation of Recursive Queries

KI-HYUNG HONG*
YOON-JOON LEE

and

K Y U - Y O U N G W H A N G

Department of Computer Science, Korea Advanced Institute of Science and Technology,
373-1, Kusong-Dong, Yusong-Gu, Taejon, 305-701, 807 South Korea

Communicated by Ahmed K. Elmagarmid

ABSTRACT

Conventional fixed point evaluation techniques evaluate recursions by applying all
rules repeatedly using an initial set of tuples (i.e., a given extensional database instance)
until no new tuples are generated, but there is no specific order in which rules are
applied. We can speed up the evaluation by applying rules in an appropriate order. In
this paper, we propose a new fixed point evaluation technique, called the dynamically
ordered semi-naive evaluation (or simply DYN), in which the next rule to be applied is
determined at run time dynamically. DYN consists of a semi-naive algorithm and a set
of selection strategies, The semi-naive algorithm allows dynamic ordering of rule
applications and makes tuples generated by a rule application immediately available in
the subsequent rule applications. After each rule application, the selection strategies
determine the next rule by considering the syntactic structure of recursion and some
information about the intermediate result up to the present. We develop these selection
strategies so that the total number of rule applications and joins can be reduced.
Through experimental comparisons, we shows that DYN outperforms the previous
evaluation techniques in terms of the total number of rule applications and joins.
© Elsevier Science lnc. 1997

*Current address: Database Section, Software Department, Computer Division,
Electronics and Telecommunications Research Institute, 161 Kajong-Dong, Yusong-Gu,
Taejon, 305-350, South Korea.

INFORMATION SCIENCES 96, 237-269 (1997)
© Elsevier Science Inc. 1997 0020-0255/97/$17.00
655 Avenue of the Americas, New York, NY 10010 PII S0020-0255(96)00160-0

238 K.-H. HONG ET AL.

1. INTRODUC~ON

Datalog is a logical language based on function-free Horn clause logic.
It can be used as a database language and a lot of research has been done
[25, 26, 8]. Its expressiveness is more powerful than that of conventional
relational database languages. It allows users to compose complex queries,
especially those involving recursions. The detailed syntax and semantics of
datalog can be found in [9, 25]. Efficient evaluation of recursions is an
important issue in processing datalog queries, since it may often require
many costly join operations.

The naive evaluation techniques based on Tarski's fixed point theorem
[23] evaluate a recursion by applying all the rules of the recursion repeat-
edly in a loop by using an initial set of tuples until no new tuples are
generated. However, the naive evaluation is inefficient because it does not
satisfy the following two properties, which are desirable for efficient
evaluation of recursions [27, 8, 25].

• Semi-naive property: A n efficient evaluation technique should not
repeat the same computation (or reasoning). The evaluation tech-
nique that satisfies this property, usually called the semi-naive evalua-
tion technique, involves a phase that rewrites recursive rules into the
equivalent ones that do not repeat the same computation by using the
differential notation proposed in [1, 2].

• Relevant-data-onlyproperty: A n efficient evaluation technique should
not generate tuples irrelevant to the answer for a given query. There
have been a lot of research results on this property, such as the magic
set and counting/reverse counting methods [3, 5], the marking algo-
rithm [10], the static filtering method [14], and the factoring tech-
nique [18]. By propagating the constants given in the query, such
techniques rewrite recursive rules in the recursion so as to minimize
processing irrelevant tuples to the answer.

Besides the above two properties, the efficient evaluation technique
should maximize the effect of each rule application in a loop. The effect of
a rule application can be defined as the number of inferences made by the
application. Here, an inference is the process that derives a tuple (fact)
from a given set of ground facts by applying a rule. Since semi-naive
evaluation techniques do not repeat the same inference, they are all
equivalent in the total number of inferences made during the evaluation of
a recursion for a given extensional database instance [13, 20]. Therefore,
making each rule application produce more tuples can reduce the total
number of rule applications required in the evaluation of recursions [20].

EVALUATION OF RECURSIVE QUERIES 239

The fact that more inferences are made by each rule application implies
that more inferences can be made using a set of tuples in a page fetched
from disk [20]. Thus, we can expect that the total number of I / O
operations is reduced. The number of rule applications is closely related to
the number of joins, i.e., the reduction of the number of rule applications
leads to the reduction of the number of joins. (This is not always true.
More details will be given in Section 5.) Furthermore, the reduction of the
number of joins (or rule applications) can also reduce the cost due to some
fixed overheads associated with each join (or each rule application) [20].

There are two classes of studies to maximize the effect.

• Immediate utilization of tuples: In the basic naive/semi-naive evalua-
tion, the tuples produced by a rule application in an iteration can
only be used in the next iteration. Making new tuples produced by a
rule application immediately available in the subsequent rule applica-
tions can speed up the evaluation [17, 7, 16].

• Selection of an appropriate ordering: The order of rule applications in
the loop is not specified in the basic naive/semi-naive evaluation.
However, the order of rule applications may affect the performance
of evaluation significantly. There have been some results [20, 16] for
finding a good order of rule applications. In this paper, we concen-
trate on this subject.

Since all the previous techniques set the order of rule applications at
compile time, we call them static ordering techniques. When they choose
an order of rule applications for a given recursion, they consider only the
syntactic structure of the recursion which is a set of dependency relation-
ships between recursive rules and recursive predicates in the recursion.
However, the optimal ordering that minimizes the total number of rule
applications also depends on the content of the extensional database
instance given at evaluation time. There is no guarantee that an ordering
that is optimal on one extensional database instance is also optimal for
another extensional database instance.

In this paper, we propose a new fixed point evaluation technique, called
the dynamically ordered semi-naive evaluation (or simply DYN), in which
the next rule to be applied is determined at run time dynamically. DYN
consists of a semi-naive algorithm and a set of selection strategies. The
semi-naive algorithm allows dynamic ordering of rule applications and
makes tuples generated by a rule application immediately available in the
subsequent rule applications. After each rule application, we classify
recursive rules into two groups: active rules, if there are some tuples that
have not been used in their previous applications, and inactive rules,
otherwise. The selection strategies determine the next rule by considering

240 K.-H. H O N G ET AL.

the syntactic structure of recursion and some information from the inter-
mediate result up to the present. The information from the intermediate
result at a given time is as follows: for each recursive rule, whether it is
active or inactive, and for each active rule, the number of rule applications
that have been made after its most recent application. Even after the same
sequence of rule applications, such information varies according to the
content of the extensional database instance used in the evaluation. We
develop the selection strategies so that the total number of rule applica-
tions and joins can be reduced. Through experimental comparisons, we
show that DYN outperforms the previous evaluation techniques in terms
of the total number of rule applications and joins.

We do not deal with the relevant-data-only property in this paper. One
can achieve this property by applying some rewriting techniques that deal
with this property such as the magic set method [3] to a given recursion
before using the technique proposed in this paper.

This paper is organized as follows. In the next section, we explain our
motivation and summarize the related work. In Section 3, we introduce the
terminology used in this paper. In Section 4, we present an algorithm that
allows the dynamic ordering of rule applications. In Section 5, we present
the selection strategies. In Section 6, we compare performances between
our technique and the previous techniques through experiments. Finally,
we conclude the paper in Section 7.

2. R E L A T E D W O R K AND MOTIVATION

2.1. RELATED WORK

Let us consider the datalog program ~1, shown in Figure 1. ~1 is a
version of a nonlinear same generation program rewritten using the
supplementary magic set technique [5]. Here, up, down, and flat are
extensional predicates.

Consider the basic naive/semi-naive evaluation [4] that does not satisfy
the immediate utilization of tuples. The evaluation of ~ a begins with the
application of ra which is the exit rule of the recursion having the seven
recursive rules, r2, r 3 r 8. After applying the exit rule, the seven recur-
sive rules should be applied repeatedly in a loop. We assume that, in the
loop, the order of rule applications for ~a is O1, (rz,r3,r4,rs, r6,ry, rs).
Before starting the loop, the relations for all the recursive predicates
except msg are empty. The application of the exit rule r I produces a new
tuple (1) for msg. In the first iteration, only two applications of r 2 and r 5
are meaningful, i.e., only the application of r2 and r 5 may generate some

EVALUATION OF RECURSIVE QUERIES

(~1) r l : m~g(1).

r2 : s u p m 2 (X , Y) +- m s g (X) , u p (X , Y) .

ra : s u p m 3 (X , Y) +- s u p m 2 (X , Z) , s g (Z , Y) .

r4 : s u p m 4 (X , Y) ¢- s u p m 3 (X , Z) , f l a t (Z , Y) .

r5 : s g (X , Y) +- m s g (X) , f l a t (X , Y) .

r6 : s a (X , Y) +- supra4(X,Z) , s g (Z , W) , d o w n (Z , Y) .

r7 : m s g (X) +-- supm2(Z ,X) .

rs: m s g (X) +- supm4(Z ,X) .

to: query(Y) +- sg(1,Y) .

Fig. 1. ~1-

241

tuples since msg is not empty. The applications of other rules in the first
iteration are meaningless since they include joins (or projections) with
empty relations. The application of r 7 becomes meaningful in the second
iteration if the application of r 2 in the first iteration generates some new
tuples for supra2. Furthermore, the application of r 8 remains meaningless
at least until the fourth iteration.

The evaluation techniques satisfying immediate utilization of tuples
were independently developed by Ceri et al. [7], Kildall [15], Cai and Paige
[6], and Lu [17]. The technique proposed by Ceri et al. [7] is the naive
evaluation technique based on immediate utilization of tuples and is
identical to the basic naive/semi-naive evaluation in that an iteration
consists of applying all the recursive rules in a given recursion. However, in
this technique, each rule application in an iteration uses the results of
previous rule applications in the same iteration. For example, under the
order O1, the application of rule r 7 in the first iteration is meaningful if
the application of r 2 generates some tuples for sump2. If all the meaning-
ful applications produce some tuples, then the application of r 8 becomes
meaningful in the second iteration.

Kildall [15] and Cai and Paige [6] proposed iterative algorithms to
evaluate systems of fixed point equations. Their algorithms iterate each
equation individually. That is, each iteration computes only one fixed point
equation. Therefore, the result from the computation of an equation is

242 K.-H. H O N G ET AL.

used immediately in the subsequent computation (or iteration). However,
they do not address the ordering of rule applications. In the context of
transitive closure, Lu [17] proposed a technique that could utilize tuples
immediately in the same iteration in which they were generated. Even
though the transitive closure for a given relation is a simple recursion with
only one recursive rule, Lu's technique applies the rule multiple times in
an iteration. Each rule application in an iteration uses a subset of the
relation, and the other rule applications in the same iteration use the
resulting tuples with the remaining part of the relation.

According to the order defined above, only applications of r e, r 5, and r 7
are meaningful in the first iteration, even if we use the technique based on
immediate utilization of tuples and assume that all the meaningful applica-
tions produce some new tuples. Consider a different order 02,
(r2, r7, rs, r 6, r 3, r4, rs). In this order, the applications of all the recursive
rules except r 6 are meaningful in the first iteration under the same
assumption. The application of r 6 in the first iteration includes a join with
empty relation because r 6 is applied before r 4 that is the only rule with
supra4 as its head. This indicates that ordering rule applications may
significantly affect the performance of evaluation. There have been a few
research results [20, 16] on finding a good order of rule applications.

Ramakrishnan et al. [20] presented a theoretical analysis of rule appli-
cation orderings for recursions. They divided the orderings into two
classes: fair orderings, in which no rule is applied more often than others,
and nonfair orderings, in which some rules are applied more frequently
than others. They concluded that, in the absence of information about the
contents of extensional database relations, one type of fair orderings,
called cycle-preserving fair orderings, is preferable. For example, the new
order 02 is a cycle-preserving fair ordering for ~ . They also proposed the
generalized semi-naive evaluation (GSN) algorithm that is based on imme-
diate utilization of tuples and that can handle a large class of orderings
including cycle-preserving fair orderings. Note that, however, there are
recursions that have no cycle-preserving fair ordering [20]. Furthermore,
efficient checking of the existence of a cycle-preserving fair ordering and
finding such an ordering are open problems [20].

Kuittinen et al. [16] proposed an algorithm to determine an order of
rule applications, which was implemented by a nested loop structure. For a
recursion, the algorithm splits it into subcomponents repeatedly and se-
lects a topological order between subcomponents. Each subcomponent is
implemented by its own loop. Their evaluation technique also satisfies the
immediate utilization of tuples, but it does not satisfy the semi-naive
property. Their technique performs well only on the extensional database
instances having some specific structures [20].

EVALUATION OF RECURSIVE QUERIES 243

There have been a number of research results [21, 19, 22] in finding
other types of ordering to optimize the evaluation of recursions. Schmidt
et al. [21] proposed a technique for ordering tuples of the given extensional
database instance or the intermediate results. Srivastava et al. [22] devel-
oped a framework to optimize storage space by ordering tuples produced
in the evaluation of reeursions. Ramakrishnan et al. [19] proposed a hybrid
technique between breadth-first search based bottom-up evaluation and
depth-first search based top-down evaluation. According to the depth-first
search order, the technique uses recursive subgoals generated in a bottom-
up manner, but computes answers in a tuple-at-a-time manner.

ZZ OUR APPROACH

We refer to all the previous evaluation techniques that set the order of
rule applications at compile time as static ordering techniques. We observe
the following drawbacks of static ordering techniques.

• Static ordering techniques cannot totally avoid the meaningless rule
applications during the evaluation. As we described before, the evalu-
ation of 9 a by GSN based on the cycle-preserving fair ordering may
include a lot of meaningless rule applications, even under the assump-
tion that all the meaningful applications produce some new tuples.
Furthermore, the assumption does not hold in general. For example,
in the evaluation of 91 by the cycle-preserving fair ordering, let us
assume that the application of r s in the first iteration does not
produce any tuple. Then all the remaining four applications of r 6, r3,
r4, and r 8 are meaningless.

• As Ramakrishnan et al. [20] pointed out, since static ordering tech-
niques consider only the syntactic relationships between recursive
rules involved in the recursion, they may have extremely bad perfor-
mance on some specific extensional database instances. In order to
find an optimal order of applying rules in evaluating a recursion, we
should consider the structure of the extensional database instance
given at evaluation time as well as the syntactic relationships between
recursive rules involved in the recursion. Finding the optimal order
for a given extensional database instance requires examining the
extensional database instance thoroughly, which usually is not practi-
cal due to excessive cost.

A major contribution of this paper is to completely avoid meaningless
rule applications by determining the order of rule applications at run time
dynamically. The dynamically ordered semi-naive evaluation technique (or

244 K.-H. H O N G ET AL.

simply DYN) proposed in this paper maintains the set of active rules
during the evaluation. At a given time, a rule is active if its application at
that t ime is meaningful and inactive, otherwise. We will redefine the terms
active and inactive more formally in Section 4. D Y N selects a rule f rom
the set of active rules as the next rule to be applied. Note that the set of
active rules is changed each time after a rule application.

Now, we introduce our technique briefly using ~1. After applying the
exit rule in ~ , we have two active rules, r 2 and r 5. We assume that r 2 is
selected. I f the application of r 2 produces some new tuples for supm2,

then r 7 becomes newly active. In such a case, we say that the application
of r 2 activates r 7. Rule r 2 becomes inactive since this application of r 2
consumes all the tuples that the application of the exit rule r l produced.
However, r 5 remains active because the tuples generated by the exit rule
are not used yet. Next, we assume that r 7 is selected and that its
application produces some new tuples for msg. Then the application of r 7
activates r 2 and r 5. Rule r 2 becomes active again, r 7 becomes inactive, and
r 5 still remains active. At this time, the set of msg tuples for r 5 may not be
equal to the set of msg tuples for r z. The former still contains the result of
the exit rule, but the latter does not since the evaluation result of the exit
rule already was used in the previous application of r 2. Note that, so far,
there have been two rule applications (the exit rule and r 7) that activate rs,
but only one rule application (r 7) that activates r2. D Y N continues such
selection and application until there is no active rule.

Another major contribution of this work is the development of three
selection strategies that determine the next rule f rom the current set of
active rules. The selection strategies are designed such that the total
number of rule applications can be reduced. The selection strategies use
the activation state of each recursive rule and the dependency relation-
ships between active rules as the basic information. For each recursive
rule, the activation state represents whether it is active or inactive and, if it
is active, how many rule applications that activated it have been made.
Even after the same sequence of rule applications, the set of active rules
varies according to the content of the extensional database instance used
in the evaluation. The activation states and the dependency relationships
can easily be obtained by maintaining only two in-memory arrays. Since
the selection strategies determine the next rule by considering information
about the intermediate results together with the syntactic relationships
between recursive rules, D Y N performs well compared with the static
ordering techniques and has no extremely bad performance depending on
some specific extensional database instances.

D Y N also satisfies the immediate utilization of tuples and the semi-naive
property. D Y N iterates each recursive rule individually in the same man-

E V A L U A T I O N OF R E C U R S I V E QUERIES 245

ner as the algorithms proposed by Kildall [15] and Cai and Paige [6]. For
the semi-naive property, we transform recursive rules into equivalent ones
that satisfy the semi-naive property by using the differential notation
proposed by Balbin and Ramamohanarao [1], There is another differential
notation proposed by Bancilhon [2], but it requires more joins than the
former.

3. PRELIMINARIES

Datalog is a language based on function-free Horn clause logic. We
assume that the reader is familiar with the standard logic terminology [11]
and the notation of datalog [25].

A datalog program consists of an extensional database (EDB) and an
intensional database (IDB). The EDB is the set of tuples (facts) that are
assumed to be stored explicitly in the storage. The IDB is the set of rules,
each of which is of the form

Po ~--Pl,P2,... ,Pn"

For the sake of simplicity, we have omitted arguments of each predicate.
We call P0, the left-hand side of ~ , the head of the rule, and call
Pl,P2,...,Pn, the right-hand side of ~ , the body of the rule.

Given two predicates p and q, we say that p derives q (p ~ q) if q is the
head of a rule and p occurs in the body of the rule. We say that p derives
q transitively (p ~ + q) if p ~ q or there is a predicate s such that p ~ s
and s ~ + q. A predicate p is recursive if p ~ + p. Two predicates p and q
are mutually recursive to each other if p ~ + q and q ~ + p . A rule is
recursive if there is a predicate in its body that is mutually recursive to its
head.

We refer to predicates appearing in EDB facts as extensionalpredicates
and predicates appearing in the heads of rules as intensionalpredicates. As
most researchers do, we assume that the set of extensional predicates and
the set of intensional predicates are disjoint, i.e., no extensional predicate
appears in the heads of rules in IDB. The program that has predicates
appearing in both EDB facts and the heads of rules can be normalized to
make two predicate sets disjoint [25]. We also assume that there is no rule
whose head has constants or repeated variables. Rules that have constants
and repeated variables in their heads can easily be transformed into
equivalent generalized ones [12] which have neither constants nor repeated
variables in their heads [25, 27]. For example, the rule r 1 in ~1 has a
constant in its head. It can be transformed into the following rule that has

246 K.-H. HONG ET AL.

no constant in its head:

msg(X) + X = 1.

The evaluation result of the transformed rule is a unary relation having a
single tuple whose value is 1 [24]. In this paper, we consider only bottom-up
evaluable rules [4] in order to guarantee the safety of evaluation. The
safety means that the final and intermediate results are finite [25, 27].

In this paper, we represent a datalog program as a graph, called the
unified rule/goal graph, which is a simplification of the rule/goal graph
proposed in [24]. The rule/goal graph for a datalog program consists of
rule nodes, goal nodes, and arcs. There is a goal node p~ for each
predicate p and a rule node r/3 for each rule r. a and /3 are adornments
that represent the binding status of variables in a rule or arguments in a
predicate. There is an arc from a rule node r t~ to a goal node p~ if p is
the head of rule r, and there is an arc from a goal node p~ to a rule node
r t~ if p appears in the body of rule r. The binding information represented
by adornments is very important for the optimization focused on the
relevant-data-only property. Since we do not deal with this optimization,
we need not specify any adornment. The rule/goal graph without specify-
ing any adornment is referred to as the unadorned rule/goal graph [4].
The unified rule/goal graph is equivalent to the unadorned rule/goal
graph except that, instead of drawing the arcs from rule nodes to goal
nodes, all nodes for the rule with the same head predicate are grouped
together into the goal node for the head predicate. Thus, in the unified
rule/goal graph, every rule node has only incoming arcs and every goal
node has only outgoing arcs. We denote each goal node by a rectangle
labeled with the predicate name and each rule node by a circle labeled
with the rule number. We denote an arc from a goal (or predicate) Pi to a
rule rj by (Pi,J). We call the goal Pi the tail of the arc and the rule rj its
head. For example, the unified rule/goal graph for the program ~1 is
given in Figure 2. Note that there is no rule node in the goal nodes of
extensional predicates.

We can easily identify the data flow during the evaluation of a datalog
program by using the unified rule/goal graph. A goal node collects the
tuples produced by the rule nodes in it and sends them along its outgoing
arcs. A rule node produces all the tuples that can be derived using the
corresponding rule and the set of tuples that are received through its
incoming arcs. We call the process for producing tuples by a rule node rj
the application of the rule rj. An arc (Pi,J) represents that the tuples

E V A L U A T I O N OF R E C U R S I V E QUERIES 247

G~

query

- - - r a g

L l L J

Fig. 2. The unified rule/goal graph of'~,~l.

produced by applications of the rules that define the predicate Pi are used
in the application of the rule rj.

We now define strongly connected components (SCC) in the unified
ru le /goa l graph. Let the unified ru le /goa l graph for a datalog program be
G = (R, P, A), where R is a set of rule nodes, P is a set of goal nodes, and
A is a set of arcs. A strongly connected component (SCC) of G is a
subgraph G ' = (R ' , P ' , A ') t h a t satisfies the following properties:

• P ' is a maximum subset of P such that, when we regard each arc
(Pi,J) as an arc from Pi to the goal node of the rj's head predicate,
there is a path between any pair of two goal nodes in P ' .

• R ' is the set of rule nodes that belong to a goal node of P ' .
• A' is the set of arcs that connect goal nodes in P ' with rule nodes

in R' .

248 K.-H. H O N G ET AL.

Note that there are two types of SCCs: one is the trivial SCC whose set of
arcs is empty; the other is the nontrivial SCC whose set of arcs is not
empty. A trivial SCC has only one goal node. In Figure 2, there is only one
nontrivial SCC, G 2. The arcs that are in a nontrivial SCC are referred to as
recursive arcs, and the arcs that connect between two SCCs are referred to
as nonrecursive arcs. For example, there are five nonrecursive arcs-- (up, 2),
(down, 6), (flat, 4), (flat, 5), and (sg, 9) - - in Figure 2. All the other arcs are
recursive. We define a recursion as a nontrivial SCC. Trivial SCCs corre-
spond to nonrecursive predicates (or nonrecursive rules) in the datalog
program. The nodes for recursive rules have at least one incoming recur-
sive arc in the unified ru le /goa l graph. Note that, according to our
definition of the recursion, the set of rule nodes in a recursion includes the
nodes for the exit rules of the recursion. An exit rule is a nonrecursive rule
whose head predicate is recursive. Rule nodes without any recursive arc in
a recursion correspond to the exit rules of the recursion. In Figure 2, for
example, there is only one recursion, G 2. q is the exit rule of G2.

4. T H E DYNAMICALLY O R D E R E D
SEMI-NAIVE E V A L U A T I O N

Now, we formally describe the dynamically ordered semi-naive (DYN)
evaluation algorithm. Let G s = (Rs, Is, As) be a recursion to be evaluated.
DYN maintains a differential relation A(pi, j) for each recursive arc (Pi, J)
in A s as well as a relation Pi for each recursive predicate Pi in Ps. The
relation Pi for each intensional predicate has the complete result for the
predicate up to the present. At a given point, A(pi, j) keeps a set of tuples
that were produced by applications of some rules defining Pi, but haven't
yet been used in any previous applications of rj. For the semi-naive
property, A(p i , j) is set to empty after every application of the rule r/,
except when rj defines Pi. Note that if rj defines Pi (in the unified
ru le /goa l graph, the rule node for r/ belongs to the goal node for Pi and
there is an arc from Pi to rj), then the application result of r1 should be
added to A(pi , j) .

We now redefine the terms active and inactive for the recursive rules
on the unified ru le /goa l graph. We say that a recursive arc is active if its
differential relation is not empty, and is inactive, otherwise. At a given
point, a recursive rule is active if the corresponding rule node has at least
one active incoming arc, and is inactive, otherwise. DYN maintains a set V
of active rules, and V is initially set to empty.

DYN begins with applying all exit rules. Let rek be an exit rule defining
p~, i.e., the rule node rek belongs to the goal node p~. The application of

E V A L U A T I O N OF R E C U R S I V E QUERIES 249

re~ includes the transformation of the rule to a relational algebra expres-
sion of the form ~L(E) [25], where L is the list of arguments of p~ and E
is the relational algebra expression corresponding to the body of rek. We
refer to the transformed relational algebra expressions for rek as RAE(re).
Note that, for the exit rules, we do not necessarily need to use the
differential notation for the semi-naive property. Let 3rek be the applica-
tion result of the rule rek. 6rek is added to the relation for Pk and the
differential relations for all the outgoing arcs of pe,

After applying all the exit rules, we have some active arcs and some
active rules. Among these active rules, DYN selects a rule using some
selection strategies and applies it through Algorithm EvalRNode. We will
describe the details of Algorithm EvalRNode later. The application of an
active rule may produce some new tuples for its head predicate. These new
tuples are also added into the differential relations for all outgoing arcs of
the goal node, and then the set of active rules may be changed. DYN
continues this selection and application until there is no active rule, i.e.,
V = ~ . In the next section, we describe the selection strategies developed
so that the total number of rule applications can be reduced. The dynami-
cally ordered semi-naive evaluation algorithm for G s is given in Figure 3.

In order to explain Algorithm EvalRNode for the application of an
active rule, we use the following rule r 6 in 91:

r6: sg(X , Y) ~supm4(X , Z) , s g (Z ,W),down(Z , Y) .

Here, sg and supra4 are mutually recursive to the head, and down is an
EDB predicate. Figure 4 shows the part of the unified ru le /goa l graph
around the rule r 6. If r 6 is active, then A(supm4, 6), A(msg, 6), or both are
not empty. The following expression is the version of r 6 resulting from the
semi-naive rewriting based on the differential notation proposed in [1] (for
the sake of simplicity, we have omitted the join conditions and the
projection list):

~- (A(supra4, 6) t~ sg • down U supm 4 °la t~ A(sg, 6) t~ down) - sg.

Here, supra4 TM =supm4- A(sump4,6). For an arbitrary recursive rule rj,
we refer to a semi-naive rewritten version of rj as semiRAE(r) and the
application result of rj at a time as 6r~. Then, we have 6r 6 =semiRAE(r6).
Note that 6rj is the application result of rj, i.e., the set of new tuples that
are generated by an application of rj, while the differential relation
A(pi, j) maintains all the Pi tuples that have not yet been used in any
previous application of rj.

250 K.-H. H O N G ET AL.

Algorithm DYN(G~)

{

(1) for every pi E Ps, Pi = 0;

(2) for every recursive arc, (Pi , j) • As, A(pi , j) = 0;

(3) y = O;

(4) for every exit rule rek, do begin

/* Let Pk (E Ps) be the head predicate of re~. */

(5) 6re~ = RAE(re~) ;

(6) for every pk's outgoing arc (pa , j) , do begin

if) ZX(pk, j) = ~(pk, J) u aro~;

(8) y = v u {r~};

(9) endfor;

(i0) p~ = Pk U 6re~;

(11) endfor;

(12) while (V ¢ 0) do begin

(13) select a rule, r i, from V using some selection strategies

(14) EvalRNode(rj);

(15) endwhile;

Fig. 3. Algor i thm DYN.

After computing the above equation, to ensure the semi-naive property,
we set the differential relations for all the incoming arcs of r 6 to be empty;
i.e., A(supm4, 6) = A(sg, 6) = •. Then we add 6r 6 into sg and the differen-
tial relations for all outgoing arcs of sg, A(sg, 6) and A(sg, 3).

The general description of Algorithm EvalRNode is given in Figure 5.
Note that by lines (4) and (8) of Algorithm EvalRNode, the set V of active
rules may vary after each application of an active rule.

D Y N can also be used with a static order by modifying the loop
contents. Instead of line (13) and (14), we call Algori thm EvalRNode for

E V A L U A T I O N OF R E C U R S I V E Q U E R I E S 251

G2

msg sg

,6)

~~(sg,
Fig. 4. The part of the unified rule/goal graph in Figure 2.

each recursive rule in the static order. The resulting algorithm from this
modification of D Y N is similar to GSN [20]. However, for each recursive
arc (Pi,J) while GSN maintains the old version of the relation Pi with
respect to the rule rj, D Y N maintains the differential relation A(pi,j). In
general, the differential relation is much smaller than the old version of
the relation. Therefore, D Y N requires a relatively small amount of space
for the intermediate data.

5. S E L E C T I O N S T R A T E G I E S

In general, we may have more than one active rule at a t ime during the
evaluation of a recursion. In this section, we describe three selection
strategies for determining the next rule to be applied among these active
rules. The goal of these strategies is to minimize the total number of rule
applications by maximizing the effect of each rule application in the
evaluation.

First, we define some notat ion useful for explaining selection strategies.
If there is a recursive arc (p,j) in a recursion, then we say that the rule rj
is directly dependent on each rule defining the predicate p. The d i rec t
dependencies between rules represent the direction of data flow. For
example, in the recursion shown in Figure 6, the rule r 6 is directly
dependent on the rule r4, but the rule r 4 is not directly dependent on the
rule r 6. The fact that the rule r 6 is directly dependent on the rule r 4 means

252 K.-H. H O N G E T AI_

Algori thm EvalRNode(vj)

/ * Let r j be P0 ~- Pl ,p2, - .- ,P, , ,q1,. . . ,qm,

where pi's, I < i < n, are mutual ly recursive to Po and qk's, I < k < m, are not. * /

(1) if n > 1, then

for each i, 2 < i < n , p °ta = Pi - A(pi , j) ;

(2) 6rj =semiRAE(r j) ;

(3) for each i, 1 < i <_ n , A (p i , j) = 0;

(4) v = v - (~j};

(5) if Jr j ~ 0 then begin

(6) for every outgoing arc (/90, l) of/90, do begin

(7) zXO,o,O = ~X(po,O u ~ ;

(s) v = v u (~ d ;

(g) endfor;

(lO) po = ~ u(~r~;

(11) endif;

Fig. 5. Algor i thm EvalRNode .

p

U

Fig. 6. A n example recursion.

E V A L U A T I O N OF R E C U R S I V E Q U E R I E S 253

that if an application of rule r 4 produces some new tuples, then we must
apply the rule r 6 subsequently by using these new tuples. A(p, j)i denotes
A (p , j) after the ith rule application. Note that A (p , j) i and A (p , j) k may
be different when i v~ k.

The first selection strategy is as follows.

SELECTION STRATEGY 1 ($1). I f we have more than one active rule, then
we select the one that is not directly dependent on other active rules
including itself.

This selection strategy is based on the following observation. Let us
assume that after i rule applications, there are only two active arcs A(s, 4) i
and A(s, 6) i in the recursion shown in Figure 6. Then, we have two active
rules, r 4 and r 6. This means that each of them should be applied at least
once before the end of the evaluation. I f we apply r 6 with A(s, 6) i first,
then we may need another application of r 6 after the application of r 4 with
A(s,4) i. The reason is that, if the later application of r 4 using A(s,4) i
produces some new tuples, then r 6 becomes active again. However, if we
apply r 4 with A(s,4) i first, then the new tuples produced by this applica-
tion will be used with A(s, 6Y in the future application of r 6. Thus, if we
apply an active rule that is directly dependent on other active rules, we
may need additional applications of it after the applications of those other
active rules.

Consecutive applications of a particular rule may have an adverse effect
on maximizing the effect of each rule application while there are some
other active rules. The rule that is dependent on itself may be applied
consecutively until its application does not produce any new tuple, if we do
not consider the self-dependency in the strategy $1. In Figure 6, let us
assume that only two rules, r 5 and r 6, are active after a number of rule
applications. Rule r 5 is not directly dependent on the other active rule r6,
but is directly dependent on itself. I f we do not consider the self-depend-
ency, then r 5 is selected for the next application. Since r 5 remains active as
long as its application produces some new tuples, the other active rule r 6
cannot be selected while the application of r 5 produces some new tuples.

Before we describe the second selection strategy, we define the activa-
tion rate ARrj of an active rule ry as

ARr, =Acz.A,.,.

Here, Irj is the number of incoming recursive arcs of rj, i.e., the number of
recursive predicates in its body. ACTrj is the number of rule applications
that activated ry. ACT~j is set to zero each t ime after applying ry, and is

254 K.-H. H O N G ET AL.

incremented by 1 if some new tuples are produced by applying a rule on
which rj is directly dependent. Consider the following sequence s l of rule
applications for the recursion in Figure 6:

$1." i i+1 i+2 i+3 /.~+4 i+5 i+6 . . . , r~ , rg , r 2 , r 3 , r~ ,rg

In this notation of the rule application sequence, r~ means the ith rule is
r 4. If all the applications in the sequence produce some new tuples, then
the activation r a t e ARr6 after the (i + 5)th application is 1 (= 3 /3) , i.e.,
Ir6 = 3 and ACTr6 = 3. At the point after the (i + 5)th application, there
have been four applications including the (i + 5)th application since the
recent [(i+ 1)th] application of r 6. However, since r 6 is not directly
dependent on r 2, there have been three applications that activated r 6. If
the (i + 4)th application does not produce any tuple, then ARr6 is 2 / 3 at
that point.

When we consider each rule individually, it is better to delay its
application as late as possible. The delayed application makes more
inferences than the early application. For example, consider another
sequence s2 of rule applications for the recursion in Figure 6:

s2: r~, F~ +1,/'~+ 2 r~+3, F~+4

Let us assume that s l and s2 have the same subsequence until the
(i + 1)th application. After the (i + 1)th application, s2 applies r 6 faster
than sl . Let us assume that all the rule applications in both s l and s2
produce some new tuples. The (i + 6)th application of r 6 in s l uses all the
results of three rule applications that activated r6, while the (i + 4) t h
application of r 6 in s2 uses only the result of the (i + 3)th application. It is
obvious that the delayed application of r 6 in s l makes more (at least the
same) inferences than the early application in s2, because the former uses
larger (at least the same) number of tuples than the latter. When we
consider all the active rules together, we expect that the one having the
maximum activation rate may make relatively more inferences than others.

SELECTION STRATEGY 2 ($2). We choose the rule having the maximum
activation rate as the next rule.

The main objective of selection strategy 2 is to avoid repeated applica-
tions of only those rules that form a particular cycle, even if there are
some other active rules in other cycles. The following example shows the
possibility of repeated application of rules in a particular cycle of a
recursion.

E V A L U A T I O N O F R E C U R S I V E Q U E R I E S

Fig. 7. A recursion with two cycles.

255

E X A M P L E 1. C o n s i d e r a r ecu r s ion shown in F igu re 7, which consists o f
two cycles C 1 and C 2. E a c h arc in F igu re 7 r ep re sen t s tha t the ru le o f its
h e a d is d i rec t ly d e p e n d e n t on the ru le o f its tail. F o r t he sake o f simplici ty,
we a s sume tha t each ru le def ines a d is t inct p red ica te . A cycle C 1 consists
of fou r rules , r l , r2, r3, and r 4, and the o t h e r cycle, C2, consists o f r 1, r 5, r 6,
and r 4. A s s u m e tha t the ru le r~ is the only act ive rule a f te r the i th
app l ica t ion . I f the (i + 1)th app l i ca t ion of r I p r o d u c e s some new tuples ,
t hen two rules, r 2 and r 5, b e c o m e active. Since these two ru les a re no t
d i rec t ly d e p e n d e n t on each o ther , we canno t select one for the next
app l i ca t ion by S1. I f we choose one arbi t rar i ly , t hen we may have the
sequence o f ru le app l i ca t ions shown in t he second co lumn (Only S1) of
T a b l e 1. Thus , only the four rules tha t a re involved in C 1 a re a pp l i e d
r e p e a t e d l y unt i l an app l i ca t ion o f one o f t h e m p r o d u c e s no new tuple , even
if t h e r e is an act ive ru le r 5 in the o t h e r cycle, C 2.

F o r each cycle C in a recurs ion , we re fe r to the rule n o d e s tha t a re
d i rec t ly d e p e n d e n t on some nodes in C bu t be long to o t h e r cycles as t he

TABLE 1

Two Possible Sequences of Rule Applications

Only S1 $1 and $2

Rule Active rules Active rules
application Selected after applying Selected after applying

no. rule the selected rule rule the selected rule

i + 1 r 1 {rz, r 5}
i + 2 r 2 {r3, r5}
i + 3 r 3 {r4, r5}
i + 4 r 4 {rl, rs}
i + 5 r a {rE, rs}
i + 6

rl {r2(1.0), rs(1.0)}
r 2 {r3(1.0), rs(1.0)}
r 3 {r4(0.5), rs(1.0)}
r 5 {r4(0.5) , r6(1.0)}
r6 {r40.0)}
r4 {r1(1.0)}

256 K.-H. H O N G ET AL.

neighbor nodes of C. Since a recursion is a strongly connected component,
C has at least one neighbor node, and at least one rule node in C is a
neighbor node of another cycle if the recursion has two or more cycles and
at least one cycle includes two or more rule nodes. Among all the neighbor
nodes of C, we call the one having minimum incoming arcs the next-turn
neighbor node of C. Let k be the number of incoming arcs of the next-turn
neighbor node of C. The activation rate of the next-tum neighbor node is
incremented by at least 1 / k each time after applying all the rules in C.
Therefore, after k consecutive repetitions of C, the activation rate of the
next-turn neighbor node becomes larger than or equal to 1. In the
meanwhile, the nodes in C that are neighbor nodes of other cycles have
two or more incoming arcs: one from another node in C and all the others
from nodes in other cycles. This means that the activation rates of those
nodes in C are less than 1 as long as only C is repeated consecutively.
Therefore, by $2, C cannot be repeated more than k times consecutively.
As the result of the discussion so far, we conclude that, using $2, the
maximum number of consecutive repetitions of a particular cycle is limited
to the number of incoming arcs of its next-turn neighbor node.

For example, the next-turn neighbor node of the cycle C 1 in Figure 1 is
r 5. Using $2, there is no consecutive repetition C1, since the number of
incoming arcs of r 5 is 1. The last column (S1 and $2) of Table 1 gives the
sequence of rule applications for the recursion of Example 1 by $2. We
also show the activation rate for each active rule. After the (i + 3)th rule
application, we have two active rules, r 4 and r 5. The activation rate of r 4
(0.5) is less than that of r 5 (1.0). Then, by $2, r 5 is selected as the rule for
the (i + 4)th application.

Unfortunately, using $2 with S1, we do not completely avoid repetitive
rule applications along a particular cycle for every possible recursion. The
recursion shown in Figure 8 is an example whose evaluation has such
repetitive rule applications even if we use $2 in the rule selection. Two
rules, r i and rj, are directly dependent on each other, and both of the two
rules are not directly dependent on themselves. Besides, there is another
rule rk, which is directly dependent on both of these two rules. Suppose an
application of r i produces some new tuples. Then, we have two active
rules, rj and r k. By S1, we select rj as the next rule to be applied. If the
application of rj also produces some new tuples, then r i becomes active
again. At that time, even if the activation rate of r k is larger than that of
ri, we select r~ again since S1 has a higher priority over $2. For such a
recursion, we prevent the repetition of rule applications along a particular
cycle by assigning a threshold value for the activation rate. Thus, if the
activation rate of an active rule is greater than the threshold value, then
we select it without considering S1.

E V A L U A T I O N OF R E C U R S I V E Q U E R I E S

" ' ~ ~ # ' " "

Fig. 8. An exceptional case of $1 and $2.

257

We can view the selection of the next rule by S1 and $2 as a priority-
based scheduling process. S1 and $2 define the priority of a rule r i in a
recursion as

S(r,) X (T(r ,) Xc

Here, S (r i) is a function whose value is 1, if r i is active, and 0, otherwise.
T (r i) is also a function whose value is 1, if r i is not directly dependent on
some other active rules, and 0, otherwise, c is a threshold value for the
activation rate. For a recursion with n recursive rules and s cycles, we use
n x s as the threshold value in this paper, n x s is a simple estimation of
the maximum number of rule applications after all the s cycles are
evaluated, since each cycle may have maximum n rules and a rule may
belong to every cycle. We select the rule with the highest priority as the
next rule to be applied. Note that the priority of each rule is changed
dynamically after a rule application, and the priority of an inactive rule is
z e r o .

When more than one active rule remains after applying the above two
selection strategies, we select one among them by the following selection
strategy.

SELECTION STRATEGY 3 ($3). Select the active rule with the smallest
number of joins expected in its application.

It is ideal to select the active rule with the lowest cost expected in its
application. However, how to estimate the cost of a rule application is
beyond the scope of this paper. In order to estimate the cost, we may have
to consider various factors such as the size of EDB relations, the size of
each differential relation at the application time, the join selectivities
between body predicates of the rule, the method of joins, and so on. In this

258 K.-H. H O N G E T AL.

paper, we use the number of joins required in a rule application as a
simple estimation of its cost.

The previous studies [20, 16] assumed that the number of joins was
proport ional to the number of rule applications. However, it is not always
true. Consider a recursion with two recursive rules, r 1 and r 2. The rules r~
and r 2 require one and three joins per application, respectively. Suppose
there are two different evaluation techniques, called A and B. For a given
EDB instance, suppose that A applies rl seven times and r 2 five times.
Then A performs a total of 12 rule applications and a total of 22 joins.
Suppose that B applies r~ three times and r 2 seven times for the same
EDB. Then B performs a total of 10 rule applications and a total of 24
joins. In total, A performs two rule applications more than B does, but A
performs two joins less than B does. Thus, even if a technique is bet ter
than the other technique in terms of the total number of rule applications,
the former may be worse than the latter in terms of the number of joins
when the former applies the rules that require a large number of joins
more than the latter does.

The number of joins required in a rule application is calculated as
follows. Consider an active rule r 1 of the form

rj: po ~ - - p l , . . . , p n , q l qm"

Here, Pi' s, 1 < i < n, are mutually recursive with P0, and qi' s, 1 <~ i <~ m, are
not. The semi-naive version of rj,

3 5 = (A (p l , j) M p2 M p3M ... M p , ,N q ~ ... ~4qm

U p~ld~ A (p z , j) t~ p3t~ ... M p,,~4 q l ~ ... Mqm

U " ' °

U p~Jd ~ p~ld M ... ~4 p °~ a M A (p n , j) N ql t~ ... Nqm)

- - P o '

involves the union of n join terms. There is one join te rm for each
occurrence of reeursive body predicates.

We assume that each pair of adjacent body predicates needs only one
join operation. Then there are n + rn - 1 join operations in each join term.
We have to calculate all the join terms with the nonempty differential
relations. Therefore, if there are k (1 ~< k ~< n) active arcs, then the number
of join operations required in an application of r] is k x (n + m - 1).

E V A L U A T I O N OF R E C U R S I V E Q U E R I E S 259

6. E X P E R I M E N T A L RESULTS

In this section, we present a performance study on the effect of dynamic
ordering of rule applications. We compare our technique (DYN) with the
following three different techniques through the similar way used in the
performance study of [20].

• BSN: The basic semi-naive evaluation technique in which the order of
rule applications is not specified. 1

• GSN: The generalized semi-naive evaluation technique proposed by
[20] in which the order of rule applications is a c~¢de-preserving fair
ordering of a given recursion.

• NESTED: The evaluation technique proposed by [16] in which rules
are applied in a nested loop.

We use the same two datalog programs, ~1 and g 2 , as used in [20]. ~1
has already been given in Figure 1. ~2 (see Appendix) is a version of
another nonlinear same generation program rewritten by using the count-
ing technique [5]. For each evaluation technique, we measure the total
number of rule applications and the total number of joins.

In order to show the benefit of D Y N , we first compare our technique
with BSN and GSN by using ~1. For GSN, we use the c3zcle-preserving fair
ordering (r2, r7, rs, r6, r3, r4, rs). The EDB instances we use for ~1 are A n,
Bn, Cn, Fn, Tn,,,,, and Un,m. A n and B n a r e the same data sets as used in
[16], and C n and F n are the same data sets as used in [20]. Tn, m and Un, m
are from [4]. The graphical description of these data sets is presented in
the Appendix. A n has a unique path from a node to its same generation,
i.e., there is a unique sequence of inferences to get the answer, but it
requires a large number of rule applications. B n and C n have a moderate
number of different paths between two nodes in the same generation and
takes a moderate number of rule applications. C n takes less rule applica-
tions than Bn, but has more paths than B n. Fn, Tn,,n, and Un, m have a large
number of different paths between two nodes in the same generation, but
require a small number of rule applications.

Then we compare our technique with GSN and N ES TED by using ~2-
The EDB instances we use for ~ 2 are C n and Sn, which were used in [20].
C n is designed in such a way that NESTED performs well, and S n is
designed in such a way that N E S T E D performs very badly compared to
GSN [20]. The graphical description of these two data sets and the static

1In the implementation, we use the order given by the user, i.e., the user written
order.

260 K.-H. H O N G ET AL.

TABLE 2
Total Number of Rule Applications: g l

Data sets BSN GSN DYN GSN-m

A 4 357 105 67 70
A10 25,053 7,161 4,647 4,984
B 4 203 63 39 48
B64 1,029 476 189 466
C 4 161 49 36 42
C16 329 126 66 115
F 5 91 35 20 26
/710 161 49 40 39
F15 231 140 147 127
7"3, 3 112 42 29 31
Ts. 3 161 70 48 59
U3, 3 77 35 22 25
U5,10 154 56 36 43

orderings for GSN and N E S T E D are also presented in the Appendix.
Through this performance comparison, we try to show that, while the
performance of static ordering techniques may vary depending on EDB
instances, our technique performs steadily well on every possible EDB
instance.

Table 2 shows the total number of rule applications per formed by each
evaluation technique on ~1. The column GSN-m gives the total number of
only the meaningful rule applications taken by GSN. D Y N is bet ter than
two other evaluation techniques for every data set we considered. D Y N
performs about 70% (Ts, 3) to 81% (F 5) bet ter than BSN, and performs
about 18% (F10) to 60% (B64) bet ter than GSN.

The great reduction in the total number of rule applications resulted
from the fact that the rule applications taken by D Y N are all meaningful.
As we ment ioned in Section 2, the static ordering techniques may take a
lot of meaningless rule applications. We can get the number of meaning-
less rule applications in GSN by subtracting the value of column GSN-m
from the value of column GSN.

D Y N is also bet ter than GSN-m in most cases. 2 This means that the
sequence of rule applications done by D Y N is bet ter than that by GSN.
Thus, the dynamic ordering determined by the selection strategies is bet ter
than the cycle-preserving fair ordering that was proved as the best among
the static orderings in [20]. Note that for data sets on which GSN performs

2For the exceptional cases Flo and F15, we will give an analysis later.

E V A L U A T I O N OF R E C U R S I V E Q U E R I E S 261

relatively less number of meaningless rule applications, D Y N is much
bet ter than GSN (for example, see B64 and C16).

Table 3 shows the total number of joins taken by each evaluation
technique on ~1- There are two columns for each technique. N o R J gives
the number of real (nonnull) joins and NoNJ gives the number of null
joins. The null join is a join in which one of its operand relations is empty,
and the result of such a join is empty. In the meaningful rule application,
we may have null joins if the rule has more than one recursive predicate in
its body. Consider a rule having two recursive body predicates. As we
ment ioned in the previous section, the semi-naive relational algebra equa-
tion has two join terms: one includes the differential relation for one of
the recursive body predicates, and the other includes that for the remain-
ing recursive body predicate. The rule becomes active even when either of
these two differential relations is not empty.

Table 3 shows that D Y N need fewer joins than the other two evaluation
techniques on all the data sets we consider. For the nonnull joins, D Y N is
about 52% (U3, 3) to 88% (B64) bet ter than BSN and is about 3% (A 4) to
75% (B64) bet ter than GSN. For a data set F10, D Y N requires one more
nonnull join than GSN does. However, on the total number of joins
(NoRJ + NoNJ), D Y N is also bet ter than GSN for that data set.

The reduction in t h e total number of real joins and rule applications
shown in Tables 2 and 3 is the strong evidence of that our selection
strategies are good in maximizing the effect of a rule application (or a

TABLE 3
Total Number of Joins: ~1

BSN GSN DYN

Data sets NoRJ NoNJ NoRJ NoNJ NoRJ NoNJ

A 4 192 216 70 50 68 16
Aa0 15,307 13 ,325 5,612 2,572 4,901 773
B 4 143 89 52 20 40 7
B64 1,104 72 530 14 130 7
C 4 122 62 44 12 36 6
C16 299 77 129 15 54 6
F 5 46 58 24 16 17 4
F10 104 80 42 14 43 4
F15 167 97 160 16 149 5
T3, 3 71 57 33 15 29 4
Ts, 3 138 46 65 15 48 4
U3, 3 44 44 26 14 21 4
U5,10 126 50 47 17 34 3

262 K.-H. H O N G ET AL.

TABLE 4
Total Number of Rule Applications: ~2

Data sets GSN NESTED DYN GSN-m

C16 204 174 124 148
S64 580 2,533 573 573

join). Remember that three techniques are all equivalent in the total
number of inferences made for a given data set, since they all satisfy the
semi-naive property, and any semi-naive evaluation techniques do not
repeat the same inference [13]. Therefore, DYN makes more inferences
per rule application (or join) than the other techniques on average. The
number of null joins is also reduced by DYN significantly because DYN
applies only active rules.

F10 and Fls are actual examples of our argument that the number of
joins is not always proportional to the number of rule applications. For
those data sets, GSN performs less rule applications than DYN does, but
GSN requires more joins than DYN.

Table 4 gives the total number of rule applications performed by each
evaluation technique on ~2 . We can see that NESTED is bet ter than
GSN on C16 , but, for $64, it is much worse than the other two techniques.
For C16, DYN needs about 30% less rule applications than N ES TED and
about 40% less rule applications than GSN. Even without considering
meaningless rule applications in GSN, DYN is about 16% better than
GSN on C16 in terms of the total number of rule applications. For $64, the
total number of rule applications taken by DYN is equal to that of
GSN-m. In fact, both of these techniques perform the same sequence of
meaningful rule applications for this data set.

Table 5 shows the total number of joins taken by each evaluation
technique on ~2 . For C16, DYN takes less number of nonnull joins than
both DSN and NESTED. The comparison results in Tables 4 and 5
indicate the appropriateness of the information (the activation state and

TABLE 5
Total number of joins: ~2

GSN NESTED DYN

Data sets NoRJ NoNJ NoRJ NoNJ NoRJ NoNJ

C16 392 168 307 126 255 52
S64 1,391 88 5,297 2,041 1,391 77

EVALUATION OF RECURSIVE QUERIES 263

the dependency relationships between active rules) for excluding the
extremely bad performance depending on the content of some specific
extensional database instances. Therefore, DYN based on the selection
strategies using this information shows steadily good performance.

7. CONCLUSION

In general, bottom-up fixed point evaluation techniques evaluate a
recursion by applying recursive rules of the recursion repeatedly until no
new tuples are generated, using a given extensional database instance. The
order in which the rules are applied is not specified in conventional fixed
point evaluation techniques. However, we can speed up the evaluation by
applying rules in an appropriate order [20, 16].

We have proposed a new fixed point evaluation technique, called the
dynamically ordered semi-naive evaluation (or simply DYN). DYN consists
of a semi-naive algorithm and a set of selection strategies. The semi-naive
algorithm allows dynamic ordering of rule applications and makes tuples
generated by a rule application immediately available in the subsequent
rule applications. After each rule application, the selection strategies
determine the next rule by considering the syntactic structure of recursion
and some information about the intermediate result up to the present. We
have developed the selection strategies so that the total number of rule
applications can be minimized by maximizing the effect of each rule
application. The effect of a rule application is defined as the number of
inferences made by the rule application. Since any fixed point evaluation
algorithms that satisfy the semi-naive property do not repeat the same
inference, they are equivalent in the total number of inferences made
during the evaluation of a recursion for a given extensional database
instance. Therefore, making each rule application produce more infer-
ences can reduce the total number of rule applications. The fact that more
inferences are made by each rule application implies that more inferences
can be made using a set of tuples in a page fetched from disk. Thus, we
can expect that the total number of I / O operations is reduced [20].

There have been some research results [20, 16] for finding a good order
for rule applications. Since all the previous results fix the order of rule
applications at compile time, we call them static ordering techniques. To
find an order of a given recursion, these static ordering techniques
consider only the syntactic structure of the recursion. The performance of
static ordering techniques may vary according to the extensional database
instance given at evaluation time, because the optimal order for the
recursion also depends on the content of the extensional database in-

264 K.-H. H O N G ET AL.

stance. Since the selection strategies also consider some information on
the intermediate result, which varies according to the extensional database
instance, when determining the next rule to by applied, DYN performs
well compared with the static ordering techniques, not depending on the
content structures of some specific extensional database instances. Through
experimental comparisons, we have shown that DYN outperforms the
static ordering techniques in terms of the total number of rule applications
and joins.

A PPENDIX

~ 2 is given in Figure 9. In ~ 2 , there are two recursions: one consists of
four recursive rules--r1, r2, r 7 and r8 - -and the other five recursive rules
- - r 3 , r4, r6, r9, and rio. The cycle-preserving fair ordering for the former
recursion used in GSN is (r T , r l , r 2 , r s) , and that for the latter is
(r9 , r lo, r3 , r4 , r6). The nested ordering for the former recursions is

(7~) rl : ane(X, Y~ 1)

r2 : ane(X,Y ,N)

ra : dese(X,Y, 1)

r4 : dese(X, Y, N)

r5 : sg (X ,Y)

r6 : sg (X ,Y)

r7 : mane(X)

r8 : rosa(X2)

r9 : mdese(Y1, N)

rio : m d e s c (X , N - 1)

rll : msg(1).

r12 : query(Y)

+- manc(X) ,up(X,Y) .

+- N > 1, mane(X), anc(X, Z, N - 1), up(Z, Y).

+- mdesc(X, 1),down(X,Y).

+- N > 1, m d e s e (X , N) , d e s e (X , Z , N - 1),down(Z,Y).

+- msg(X) , f la t (X ,Y) .

• ~- msg(X), anc(X, X1, N), flat(X1,X2),

sg(X2, Y2), flat(Y2, Y1), dese(Y1, Y, N).

+- msg(X).

~-- rosa(X), ~nc(X, Xl, Y), f~Qt(Xl, X2).

~- msg(X), anc(X, X1, N), flat(X1, X2), sg(X2, Y2), flat(Y2, YI).

+- mdese(X, N), N > 1.

sg(1, Y).

Fig. 9. ~2.

E V A L U A T I O N OF R E C U R S I V E QUERIES 265

A1 : 0 0

A n :

An-1 An-1

I up down up ow

f i a t ~

i
I

1

(a) A~

i t

2 3 4 5

v f ,

. ()

6 7 8

(b) Bn

Fig. 10. Data sets A n and B, .

(rv, rl,(r2),r8), 3 and that for the latter is (r9,(rlo),r3,(r4),r6). All the
orderings used in this paper are the same as those used in [20].

In Figure 10, we depict data sets A , and B. which are the same as
those used in [16]. The left and right arrow-headed arcs represent flat
tuples, and the up and down arrow-headed arcs represent up and down
tuples, respectively. We also give the graphical descriptions of three data
sets C,, F=, and S, in Figure 11. They are the same as those used in [20].
We take two other data sets T,, m and U~, m depicted in Figure 12. Tn, m is a
tree-structured data set, where n is the height of a tree and m is the
fan-out of each node in the tree. Un, m is a cylindric data set, where n is the
base of a cylinder and m is the height of the cylinder. T,,m and U,, m are
used in [4] for comparing the performances of the well-known evaluation

3In this representation of orderings, each pair of parentheses is implemented by a
loop. In this case, we have two loops: one is the inner loop that applies r 2 repeatedly,
and the other is the outer loop that applies three rules and the inner loop repeatedly by
the given order.

.
0

~

=
0

=0
--:

:"'
~

=0

oo
 t

"'"'
".-,

...,
,...

...
,--'~

 0
~'O

-~

0
~0

--
-:

~.
,

O
<

O
<

O
~

0<
- ...

.,"

...
.--

.,.

,,,
,"

~
'~'

~
C

~-
--

O
~

0
'~

o<
C

~
"-'

~
c

0-
-

O
<-

--
O

c
0

i

j
J

-4

m
 0 C~

E V A L U A T I O N O F R E C U R S I V E Q U E R I E S 267

(a) Tn,m n : height
m: fan out

~O-->O-->O->Q->~
down

~.t) ~ ~ t - - ~ - - ~)

m

(b) Un,m n : height
m : base

Fig. 12. Data sets Tn, m a n d Un,m.

t echniques in the middle of the last decade. More deta i led descript ions of
those data sets can be found in the cor responding references.

R E F E R E N C E S

1. L. Balbin and K. Ramamohanarao, A generalization of the differential approach to
recursive query evaluation, J. Logic Programming 4(3):259-262 (1987).

2. F. Bancilhon, Naive evaluation of recursively defined relations, in: J. Mylopoulos
and M. L Brodie (Eds.), On Knowledge Base Management Systems--Integrating
Artificial Intelligence and Database Technologies. Springer-Verlag, New York, 1985,
pp. 165-178.

3. F. Bancilhon, D. Maier, Y. Sagiv, and J. D. Ullman, Magic sets and other strange
ways to implement logic programs, in: Proceedings of the Fifth ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems, Boston, MA,
March 1986, pp. 1-15.

268 K.-H. H O N G E T AL.

4. F. Bancilhon and R. Ramakrishnan, An amateur's introduction to recursive query
processing strategies, in: Proceedings of the 1986 ACM SIGMOD International
Conference of Management of Data, Washington, DC, May 1986, pp. 16-52.

5. C. Beeri and R. Ramakrishnan, On the power of magic, J. Logic Programming
10(3):255-300 (1991).

6. J. Cai and R. Paige, Program derivation by fixed point computation, Research
Report RC13947, IBM Research Division, T. J. Watson Research Center, Yorktown
Height, NY, 1988.

7. S. Ceri, G. Gottlob, and L. Lavazza, Translation and optimization of logic queries:
The algebraic approach, in: Proceedings of the Twelfth International Conference on
Very Large Data Bases, Aug. 1986, pp. 395-402.

8. S. Ceri, G. Gottlob, and L. Tanca, What you always wanted to know about datalog
(and never dared to ask), IEEE Trans. Knowledge Data Engrg. 1(1):146-166 (1989).

9. S. Ceri, G. Gottlob, and L. Tanca, Logic Programming and Databases, Springer-
Verlag, New York, 1990.

10. S. Ceri and L. Tanca, Optimization of systems of algebraic equations for evaluating
datalog queries, in: Proceedings of the Thirteenth International Conference on Very
Large Data Bases, Sept. 1987, pp. 31-41.

11. C.-L. Chang and R. C. Lee, Symbolic Logic and Mechanical Theorem Proving,
Academic Press, New York, 1973.

12. K. L. Clark, Negation as failure, in: H. Gallaire and J. Minker (Eds.), Logic and
Data Bases, Plenum Press, New York, 1978, pp. 293-322.

13. S. Ganguly, R. Krishnamurthy, and A. Silberschatz, An analysis technique for
transitive closure algorithms: A statistical approach, in: Proceedings of the Seventh
International Conference on Data Engineering, 1991, pp. 728-735.

14. M. Kifer and E. L. Lozinskii, On compile-time query optimization on deductive
databases by means of static filtering, ACM Trans. Database Syst. 15(3):385-426
(1990).

15. G. Kildall, A unified approach to global program optimization, in: Proceedings of the
ACM Symposium on Principles of Programming Languages, Oct. 1973.

16. J. Kuittinen, O. Nurmi, S. Sippu, and E. Soisalon-Soininen, Efficient implementa-
tion of loops in bottom-up evaluation of logic queries, in: Proceedings of the
Sixteenth International Conference on Very Large Data Bases, Brisbane, Australia,
Aug. 1990, pp. 372-379.

17. H. Lu, New strategies for computing the transitive closure of a database relation, in:
Proceedings of the Thirteenth International Conference on Very Large Data Bases, 1987,
pp. 267-274.

18. J. F. Nanghton, R. Ramakrishnan, Y. Sagiv, and J. D. Ullman, Argument reduction
by factoring, in: Proceedings of the Fifteenth International Conference on Very Large
Data Bases, 1989, pp. 173-182.

19. R. Ramakrishnan, D. Srivastava, and S. Sudarshan, Controlling the search in
bottom-up evaluation, in: Proceedings of the Joint International Conference and
Symposium on Logic Programming, 1992, pp. 273-287.

20. R. Ramakrishnan, D. Srivastava, and S. Sudarshan, Rule ordering in bottom-up
fixpoint evaluation of logic programs, IEEE Trans. Knowledge Data Engrg.
6(4):501-517 (1994).

21. H. Schmidt, W. Kiessling, U. Guntzer, and R. Bayer, Compiling exploratory and
goal-directed deduction into sloppy delta iteration, IEEE International Symposium
on Logic Programming, 1987, pp. 234-243.

E V A L U A T I O N O F R E C U R S I V E Q U E R I E S 269

22. D. Srivastava, S. Sudarshan, R. Ramakrishnan, and J. F. Naughton, Space optimiza-
tion in deductive databases, ACM Trans. Database Syst. 20(4):472-516 (1995).

23. A. Tarski, A lattice-theoretical fixpoint theorem and its applications, Pacific J.
Math. 5:285-309 (1955).

24. J. D. Ullman, Implementation of logical query languages for databases, ACM Trans.
Database Syst. 10(3):289-321 (1985).

25. J. D. Ullman, Principles of Database and Knowledge-Base Systems, Vol. 1, Computer
Science Press, Rockville, MD, 1988.

26. J. D. Ullman, Principles of Database and Knowledge-Base Systems, Vol. 2, Computer
Science Press, Rockville, MD, 1989.

27. K. Y. Whang and S. B. Navathe, An extended disjunctive normal form approach for
optimizing recursive logic queries in loosely coupled environments, in: Proceedings
of the Thirteenth International Conference on Very Large Data Bases, Brighton, Sept.
1987, pp. 275-287.

Received 1 March 1996; revised 22 May 1996

