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Abstract—Dimensionality reduction is essential in text mining
since the dimensionality of text documents could easily reach
several tens of thousands. Most recent efforts on dimensionality
reduction, however, are not adequate to large document databases
due to lack of scalability. We hence propose a new type of
simple but effective dimensionality reduction, called horizontal
(dimensionality) reduction, for large document databases. Hori-
zontal reduction converts each text document to a few bitmap
vectors and provides tight lower bounds of inter-document
distances using those bitmap vectors. Bitmap representation is
very simple and extremely fast, and its instance-based nature
makes it suitable for large and dynamic document databases.
Using the proposed horizontal reduction, we develop an efficient
k-nearest neighbor (k-NN) search algorithm for text mining
such as classification and clustering, and we formally prove its
correctness. The proposed algorithm decreases I/O and CPU
overheads simultaneously since horizontal reduction (1) reduces
the number of accesses to documents significantly by exploiting
the bitmap-based lower bounds in filtering dissimilar documents
at an early stage, and accordingly, (2) decreases the number of
CPU-intensive computations for obtaining a real distance between
high-dimensional document vectors. Extensive experimental re-
sults show that horizontal reduction improves the performance
of the reduction (preprocessing) process by one to two orders
of magnitude compared with existing reduction techniques, and
our k-NN search algorithm significantly outperforms the existing
ones by one to three orders of magnitude.

I. INTRODUCTION

Rapid advances in computer and network technologies have
lead to explosive growth of unstructured or semi-structured
text documents such as Web pages, e-mails, news articles,
and research papers. Such a vast amount of text documents
has drawn much attention to text mining on large text
databases [1]. Text mining refers to the process of discovering
new and meaningful knowledge or information from large
document sets [2], and its representative methods are text
classification [3], [4] and text clustering [5], [6]. Text docu-
ments are usually represented as vectors, and their similarity
measures are frequently computed in the text mining process.
Computing the similarity measures, however, is very inefficient

because document vectors∗ are of very high dimensionality
that could range from several thousands to several tens of
thousands [7].

To overcome the high dimensionality problem of text
documents, there have been many efforts on dimensionality
reduction that projects high-dimensional vectors onto lower-
dimensional subspaces [5]. For example, Latent Semantic In-
dexing (LSI) [8], a representative reduction technique, con-
siders the semantics among terms in the document set and
provides high quality similarity search results. Document Fre-
quency (DF) [9], a simpler reduction technique, simply selects
only a few most frequent terms from the document set. These
existing techniques, however, have various disadvantages: for
example, LSI is too complex to be used for large document
sets [10]; and DF has a difficulty in controlling the quality of
dimensionality reduction.

In this paper we propose a new dimensionality reduction
technique that efficiently works for large document sets. Using
the reduction technique, we also present an efficient algorithm
for similar document search. To this end, we first present
a novel concept of vertical and horizontal (dimensionality)
reductions that is a new point of view in classifying dimen-
sionality reduction techniques. The former is the schema-
level reduction; the latter is the instance-level reduction. We
then classify existing reduction techniques into the horizontal
and vertical reductions. We here note that most existing
techniques are classified as vertical reductions, and none
of them can be seen as a complete horizontal reduction.
As an implementation technique of horizontal reduction, we
first propose Upper/Lower-Reduction (UL-Reduction in short),
which represents each document as two bitmap vectors. UL-
Reduction determines two thresholds, lower and upper, and
constructs two bitmap vectors for each document by compar-
ing the weight of each term with upper and lower. Using the
bitmap vectors we can obtain the UL-distance, an approximate

∗ Each component of a document vector corresponds to a term in the
text document, and its value corresponds to the term frequency in the text
document.
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distance between document vectors. We formally prove the
lower bound property of the UL-distance.

We next propose a novel horizontal reduction technique,
Quantization-Reduction (Q-Reduction in short), as a general-
ized version of UL-Reduction. UL-Reduction uses only two
bitmap vectors to approximate a document vector, and thus
the difference between the UL-distance and the real distance
can be large. To reduce this difference, Q-Reduction represents
a text document as multiple bitmap vectors using multiple
thresholds. Similar to the UL-distance, we can obtain the Q-
distance using the multiple bitmap vectors of Q-Reduction. We
formally prove that the Q-distance is also a lower bound of the
actual distance. By exploiting the Q-distance, we then propose
an efficient k-nearest neighbor (k-NN) search algorithm as a
solution for efficient similar document search.

The intuition behind UL-Reduction and Q-Reduction is as
follows: only a few components of a document vector have
notable values while most of them are zero or close to zero.
Thus, by representing those notable values using a few bitmap
vectors, we can efficiently obtain tight lower bounds of actual
distances. Due to its simplicity, the proposed technique can
easily be applied to large document sets. In addition, our
reduction technique is very suitable for a frequently changing
document set since it handles updated document vectors only
without a need to reconstruct the entire document set. In other
words, the proposed technique processes a document vector
without considering the rest of the document vectors (at the
instance-level) while the traditional techniques such as LSI or
DF consider the entire set of document vectors as a group (at
the schema-level) in the reduction process.

The contribution of the paper can be summarized as follows.
First, we present a novel notion of vertical and horizontal
reductions as a new classification criterion of dimensionality
reduction techniques. Second, as the horizontal reduction
techniques, we propose UL-Reduction and Q-Reduction and
formally prove the lower bound property of the UL-distance
and the Q-distance. Third, using Q-Reduction we propose an
efficient k-NN search algorithm for similar document search
and formally prove its correctness. Finally, through extensive
experiments, we show that Q-Reduction is superior to existing
reduction techniques.

The rest of the paper is organized as follows. In Section II,
we explain the related work on similar document search and
dimensionality reduction. In Section III, we present a new
point of view on dimensionality reduction. In Section IV,
we describe the concept of horizontal reduction and propose
UL-Reduction. In Section V, we propose Q-Reduction as a
generalization of UL-Reduction and present the k-NN search
algorithm using Q-Reduction. In Section VI, we empirically
show the superiority of UL-Reduction and Q-Reduction. Fi-
nally, we conclude the paper in Section VII.

II. RELATED WORK

A. Similarity Search in Text Classification and Clustering

Text classification organizes text documents into pre-defined
classes (or categories) [3], [4]. The k-NN classification is one

of the most popular text classification methods [4]. Given a
query document, the k-NN classifier first retrieves k text docu-
ments most similar to the query from the training set, and then,
uses their classes to determine the class to which the query
belongs [11], [4]. The k-NN classification, while known as an
effective classification method [4], is known inefficient due to
excessive computation of similarity [3]. The detailed reasons
of inefficiency are (1) that the k-NN classifier computes the
similarity measure for all training documents [3], and (2) that
computing the similarity measure incurs high cost due to
their high dimensionality [7]. Although there have been many
attempts to improve the efficiency of k-NN classification, most
of them improves it by sacrificing classification effectiveness
(i.e., accuracy). This is because they reduce the size of the
training set [12] or compute the similarity measure using only
a few selected terms [13].

Text clustering groups text documents into meaningful clus-
ters using the traditional clustering techniques such as k-means
and k-medoids algorithms [5]. In the k-means algorithm, for
example, similarities of all text documents are repeatedly
computed against k representative documents until there is no
change in all clusters [7]. Hence, as in text classification, the
high dimensionality is a major cause of performance degrada-
tion in text clustering as well. Although many dimensionality
reduction techiques [5], [6] have been proposed to improve
the efficiency of text clustering, most of them suffer from the
disparity of clustering results before and after reduction.

In this paper we propose a novel reduction technique for
text classification and text clustering. For text classification,
our technique improves the the performance without any
sacrifice on classification accuracy and without any reduction
of the training set. For text clustering, our technique provides
the same and consistent clustering results before and after
reduction.

B. Dimensionality Reduction for Text Documents

There have been many efforts on dimensionality reduction
for text documents. Examples include Latent Semantic In-
dexing (LSI) [8], [3], [6], Random Projection (RP) [14], [6],
Locality Preserving Indexing (LPI) [5], Linear Discriminant
Analysis (LDA) [15], and Document Frequency (DF) [6], [9].

LSI represents the entire set of documents using a few
synthetic terms derived from a large number of original ones
after analyzing patterns of their co-occurrence. It considers the
semantics such as synonyms and hyponyms and effectively
removes noise and redundancy within the document set [6].
However, it is not applicable to a large document set, which
has a huge number of terms resulting in high dimensionality,
since it uses the singular valued decomposition (SVD) whose
time and space complexities are very high (O(d2n) and
O(dn), respectively, where d is the dimensionality and n the
number of documents) [10], [6]. Besides, it is not appropri-
ate for dynamic document sets with frequent insertions and
deletions because every update basically leads to a whole
recomputation of SVD over the entire set of documents. LPI
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and LDA are variants of LSI and have similar characteristics
to LSI. Readers are referred to [5], [15] for their details.

RP projects all the text documents onto one lower-
dimensional space or onto multiple lower-dimensional spaces,
which may differ for each class. RP is much simpler than
LSI and does not distort text documents significantly [14].
However, mining results of RP are not as accurate as those
of LSI because it ignores the semantic information of the
document set [14]. DF is a variant of RP and has similar
characteristics to RP. Readers are referred to [6], [9] for its
details.

Another area where there have been many efforts on dimen-
sionality reduction is time-series mining. Here, dimensionality
reduction is used to resolve the high dimensionality problem of
time-series data [16], [17], [18], [19], [20], [21]. A time-series
is a sequence of real numbers representing values at specific
time points. Since a text document can be modeled as a high
dimensional vector of term occurrence, if we consider these
high-dimensional vectors as time-series data [17], [22], we
may use the time-series reduction techniques such as Discrete
Fourier Transform (DFT) [16], [17], [20], Piecewise Aggregate
Approximation (PAA) [18], [21], and Symbolic Aggregate
Approximation (SAX) [19] for text documents. However, they
are not suitable for text documents due to lack of correlation
among adjacent components. That is, adjacent components of a
time-series are strongly correlated with one another; thus, most
of its energy can be concentrated into a few coefficients by the
time-series reductions [16]. In contrast, adjacent components
of a document vector are not related to one another; thus, its
energy cannot be summarized as a few coefficients.

In summary, existing reduction techniques have many prob-
lems as follows: (1) some (LSI, LPI, and LDA) are too
complex to be applied to large document sets, (2) some (RP
and DF) produce low accuracy being too simple, and (3) some
(DFT, PAA, and SAX) are not applicable to text documents
due to the characteristics of text documents. To resolve these
problems, we propose a new approach to dimensionality
reduction, called horizontal dimensionality reduction and show
that it makes similar document search very efficient while
providing the same mining results before and after reductions.

III. A NEW VIEW OF DIMENSIONALITY REDUCTION:
VERTICAL AND HORIZONTAL REDUCTIONS

Existing reduction techniques can be classified into feature
extraction and feature selection [3], [6]. Feature extraction rep-
resents data objects using a few number of components newly
derived from a large number of original ones [3], [6]. LSI, LPI,
LDA, RP, DFT, PAA, and SAX reviewed in Section II belong
to this category. Feature selection represents data objects using
a few number of the most relevant (or useful) components
selected from a large number of original ones [3], [6]. DF and
LDA belong to this category. Regardless of the categories,
however, all these techniques basically transform the entire
set of data objects to a fixed lower-dimensional space. Thus,
we can say that they perform the reduction at the schema-
level. Schema-level reduction projects all data objects onto

the same lower-dimensional space by exploiting the relation-
ships among components of the data set. As explained in
Section II, however, most existing schema-level reductions are
not appropriate for large document sets due to their complex
reduction processes. This observation motivates us to devise a
new reduction approach that is simple yet effective.

We now propose a new concept of instance-level dimension-
ality reduction. In contrast to schema-level reduction, instance-
level reduction projects each data object onto its own lower-
dimensional subspace by using its component values. Since
instance-level reduction transforms data objects one by one
independently, it is very simple, and thus, appropriate for large
data sets. It is also well-suited for dynamic document sets
where frequent updates occur. We formally define instance-
level reduction as horizontal (dimensionality) reduction and
schema-level reduction as vertical (dimensionality) reduction.

Definition 1: Suppose that a function f transforms a d-
dimensional vector A = (a1, . . . , ad) to an d′(< d)-
dimensional vector A′ = (a′1, . . . , a

′
d′) such that A′ = f(A). If

f projects all the vectors (i.e., instances) onto the same lower-
dimensional space, we call f a vertical reduction function,
and we say that A is vertically reduced to A′. In contrast, if f

projects each vector onto its own lower-dimensional subspace
possibly different from others, we call f a horizontal reduction
function, and we say that A is horizontally reduced to A′.

Fig. 1 shows the concept of vertical and horizontal reduc-
tions. As shown in the lower part of the figure, all the vectors
reduced by the vertical reduction function fver are in the
same lower-dimensional space. In contrast, as shown in the
upper-right part of the figure, the individual vectors reduced by
the horizontal reduction function fhor are in different lower-
dimensional subspaces.

Schema S 1s 2s 3s 4s 5s is ds
��� ���

Instance A 1a 2a 3a 4a 5a ia da
��� ���

Instance B 1b 2b 3b 4b 5b ib db
��� ���

( )horf ⋅

������

1a′ 2a′ 3a′ ′ma���

1b′ 2b′ 3b′ ′mb���

( )verA f A′ =

( )verB f B′ =

���

( )verf ⋅

1a′ 2a′ 3a′
���

1b′ 2b′ 3b′
���

( )horA f A′ =

( )horB f B′ =
Dimensionally reduced vectors by  are

in different subspaces ( , dimensions).
horf

g- h -

ga'

Dimensionally reduced vectors by 

are in the same lower-dimensional space 

( dimension).

verf

m -

hb'

Horizontal reduction

Vertical reduction

Fig. 1. The concept of vertical and horizontal reductions.

Existing reduction techniques in Section II can be classified
into vertical and horizontal reductions as shown in Fig. 2.
LSI, LPI, and LDA belong to vertical reduction since they
represent all the document vectors using a few number of
the same synthetic terms. RP and DF also belong to vertical
reduction, however, they also have characteristics of horizontal
reduction as described in Section II-B. PAA, SAX, and DFT
also belong to vertical reduction because they project all
the time-series to the same lower-dimensional space that is
composed of a fixed number of features (such as arithmetic
means or Fourier coefficients) for all time-series. In summary,
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Vertical reduction Horizontal reduction

low

high

PAA,SAX

DFT

LSI, LPI, 
LDA

DF

RP

A new 
approach

Type
Complexity

Fig. 2. Classification of existing techniques by vertical and horizontal
reductions.

we observe that most existing reduction techniques belong to
schema-level vertical reduction, and there are few attempts to
exploit instance-level horizontal reduction.

Fig. 2 also shows the complexities of the dimensionality
reduction techniques. Complexity is a crucial issue in eval-
uating reduction techniques because high complexity leads to
the excessively long reduction time that is not applicable to
large and/or dynamic document sets. For example, LSI is not
appropriate for such document sets since it has the complexity
of O(d2n) for computing SVD. From Fig. 2, therefore, we can
finally conclude that there have been few efforts on simple but
effective horizontal reduction techniques for a huge number of
text documents. In the following two sections, we propose new
horizontal reduction techniques that are efficient but yet 100%
effective.

IV. HORIZONTAL REDUCTION FOR TEXT DOCUMENTS

A. UL-Reduction: An Implementation of Horizontal Reduction

UL-Reduction, a basic implementation of the horizontal
reduction for text documents, is derived from the highly sparse
nature of document vectors. UL-Reduction is formally defined
in Definition 2.

Definition 2: Given an d-dimensional document vector
A = (a1, · · · , ad) of size 1.0 (i.e., unit length) and its
two thresholds, lower and upper, UL-Reduction creates two
d-dimensional bitmap vectors, named lower, upper vectors,
respectively, Al = (al

1, · · · , al
d) and Au = (au

1 , · · · , au
d) by

Eq. (1).

al
i =

{
1 if 0 ≤ ai ≤ lower
0 otherwise

(1)

au
i =

{
1 if upper ≤ ai ≤ 1
0 otherwise,

where 0 ≤ lower < upper.

In other words, UL-Reduction divides the range of [0, 1] into
three sub-ranges, [0, lower], (lower, upper), and [upper, 1]. It
then makes two bitmap vectors for the sub-ranges [0, lower ]
and [upper , 1]. Here, we note that UL-Reduction performs the
reduction of each document vector independently of other doc-
ument vectors. Example 1 shows how UL-Reduction works.

Example 1: Fig. 3 shows the bitmap vectors Al, Au and
Bl, Bu constructed from the 12-dimensional document vectors
A and B by UL-Reduction. The lower thresholds of A and B

are set to be 0.32 and 0.22, respectively; the upper thresholds
are set to be 0.68 and 0.58, respectively.

A

Document vectors (12 dimensions)

B

0/1 Bitmaps (12 dimensions)

UL-Reduction

uA
lA

0 0 0.8 0.2 0 0 0 0 0.4 0 0 0.4

0.2 0 0 0 0.6 0 0.3 0 0.1 0.7 0.1 0

1 2 3 4 5 6 7 8 9 10 11 12

� � � � � � � � 	 �
 �� ��

uB
lB

� � � � � � � � � � � �
� � � � � � � � � � � �

� � � � � � � � � � � �
� � � � � � � � � � � �

(0.68,0.32)
( , )

(0.58,0.22)

forA
upper lower

forB


= ��

Fig. 3. An example of UL-Reduction .

Using the bitmap vectors of UL-Reduction we compute
an approximate similarity between two document vectors.
Although the cosine similarity is a widely-used measure in
text mining and information retrieval areas [7], [1], [23], we
use the Euclidean distance as the similarity measure unless
otherwise specified. If document vectors are normalized to
the unit length (i.e., 1.0), the cosine similarity has a direct
relationship with the Euclidean distance, i.e., cos θ =

∑n

i=1 ai·

bi = 1 −
∑n

i=1
(ai−bi)

2 = 1 − D2(A,B)
2 , where θ is the angle

between two vectors A = (a1, · · · , an) and B = (b1, · · · , bn),
and D is the Euclidean distance between them. Thus, cosine
similarity decreases as the Euclidean distance increases, and
vice versa. We use the Euclidean distance since it is more
intuitive than cosine similarity in similar document search on
high dimensional spaces. We now propose a lower bound of
the Euclidean distance between two document vectors and call
it UL-distance.

Definition 3: Given d-dimensional document vectors A =
(a1, · · · , ad) and B = (b1, · · · , bd) of size 1.0, let UL-
Reduction produce Al, Au from A using lowerA, upperA and
Bl, Bu from B using lowerB, upperB, respectively. Then,
the UL-distance between A and B, denoted by Dul(A, B), is
computed by Eq. (2).

Dul(A,B) =
√

nAB · (upperA − lowerB)2

+nBA · (upperB − lowerA)2 , (2)

where nAB = |{i|au
i ∧ bl

i = 1, upperA > lowerB}|

and nBA = |{i|bu
i ∧ al

i = 1, upperB > lowerA}|

The primary advantage of the UL-distance is fast compu-
tation. The UL-distance can be computed by simple bitwise
AND and count operations according to Definition 3. Here,
(upperA−lowerB)2 and (upperB−lowerA)2 are computed
only once. Thus, we compute it much faster than the Euclidean
distance, which requires relatively complex operations. Ex-
ample 2 compares the Euclidean distance D(A, B) with UL-
distance Dul(A, B) for A and B of Fig. 3.

Example 2: For the document vectors A and B of Fig. 3,
the Euclidean distance D(A, B) is 1.39 and the UL-distances
Dul(A, B) is 0.59, as follows.

D(A, B) =
√

(0− 0.2)2 + (0− 0)2 + (0.8− 0)2 + · · ·

+(0− 0.7)2 + (0− 0.1)2 + (0.4− 0)2 = 1.39

Dul(A, B) =
√

1 · (0.68− 0.22)2 + 2 · (0.58− 0.32)2 = 0.59

Faloutsos et al. [17] showed the necessary condition in
similarity search for time-series data that the real distance
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(Dreal(·)) between two time-series in the original space
should be equal to or greater than the approximate dis-
tance (Dapprox (·)) in the transformed space (i.e., Dreal(·) ≥
Dapprox (·)). In other words, the approximate distance should
be a lower bound of the real distance to guarantee no false
dismissal. Thus, the UL-distance should also be equal to or
less than the real (Euclidean) distance if we use UL-Reduction
in similar document search.

Lemma 1: For d-dimensional document vectors A and B

of size 1.0, their UL-distance Dul(A, B) is a lower bound of
the Euclidean distance D(A, B), i.e., Dul(A, B) ≤ D(A, B)
holds.

PROOF: Suppose that A and B are reduced to Al, Au

and Bl, Bu by using lowerA, upperA and lowerB, upperB,
respectively, by UL-Reduction. Then, the i-th component of
UL-distance in Definition 3 is used only when one of the
following two conditions holds.

• Condition 1: au
i ∧ bl

i = 1 and upperA > lowerB .

• Condition 2: bu
i ∧ al

i = 1 and upperB > lowerA.

Let us consider Condition 1 first. In order to satisfy au
i ∧

bl
i = 1, ai ∈ [upperA, 1] and bi ∈ [0, lowerB ] should also be

satisfied. In this case, if upperA > lowerB holds, (upperA−
lowerB) ≤ (ai−bi) also trivially holds (see Fig. 4). Similarly,
by Condition 2, if bu

i ∧ al
i = 1 and upperB > lowerA hold,

(upperB − lowerA) ≤ (bi−ai) also holds. Here, we note that
both conditions cannot hold at the same time because au

i of
Au and al

i of Al cannot be set to 1 at the same time according
to Definition 2. Thus, nAB + nBA ≤ n. Therefore, Lemma 1
holds by the following equations.

Dul(A,B) =
√

nAB · (upperA − lowerB)2

+nBA · (upperB − lowerA)2

≤
√∑

i∈{i|au
i
∧bl

i
=1,upperA>lowerB}(ai − bi)2

+
∑

i∈{i|bu
i
∧al

i
=1,upperB>lowerA}(bi − ai)2

≤
√∑n

i=1
(ai − bi)2 = D(A, B)

11

00

��� 1 ���

lB

uA ia

( ) ( )i iupperA lowerB a b− ≤ −

��� 1 ���
ib

u
ia

l
ib

upperA

lowerA

lowerB

upperB

1u l
i ia b∧ =

Fig. 4. Lower-bounding property of the UL-distance for the Euclidean
distance.

B. Threshold Selection in UL-Reduction

In this section, we discuss how to determine the thresholds,
lower and upper. We need to carefully select the thresholds
since they highly influence the tightness of the bound of the
UL-distance, and thus, the search performance. More specifi-
cally, a loose bound, i.e., a large difference between the UL-
and Euclidean distances causes a lot of false alarms requiring
that many real distance computations in similarity search [21].

Thus, a loose bound degrades the search performance. To
show our selection method, we first define a base range of
a document vector. Suppose that, for a document vector A,
minA is the smallest non-zero component value, and maxA

is the largest one, then we call [minA, maxA] the base range
of A. We then determine the thresholds by multiplying the
predefined ratios to the base range.

Example 3: Given document vectors A and B of Fig. 3,
we obtain the bitmap vectors of Figs. 5(a) and 5(b), where we
set the predefined ratios to 10% and 20%, respectively. From
Fig. 3, we obtain minA = 0.2, maxA = 0.8, minB = 0.1,
and maxB = 0.7. We then compute the thresholds of Fig. 5(a)
by multiplying the ratio of 10% to the base range as follows.

lowerA = minA + 0.1 · |maxA −minA| = 0.26,

upperA = maxA − 0.1 · |maxA −minA| = 0.74;

lowerB = minB + 0.1 · |maxB −minB | = 0.16,

upperB = maxB − 0.1 · |maxB −minB | = 0.64;

Similarly, we can also derive the thresholds of Fig. 5(b) by
using the ratio of 20%.

0/1 bitmaps (12 dimensions)

uA
lA

1 2 3 4 5 6 7 8 9 10 11 12

uB
lB

� � � � � � � � � � � �

� � � � � � � � � � � �

� � � � � � � � � � � �

� � � � � � � � � � � �

0/1 bitmaps (12 dimensions)

uA
lA

1 2 3 4 5 6 7 8 9 10 11 12

uB
lB

� � � � �
0

� � � � � �

� � � � �
1

� � � � � �

0 0 0 0 0 0 0 0 0 1 0 0

0 1 1 1 0 1 0 1 1 0 1 1

(a) Thresholds determined by using the ratio of 10%.
(lowerA=0.26, upperA=0.74, lowerB=0.16, upperB=0.64)

(b) Tresholds determined by using the ratio of 20%.
(lowerA=0.32, upperA=0.68, lowerB=0.22, upperB=0.58)

Fig. 5. Examples of determining lower and upper by the ratio-based method.

Example 4 compares different UL-distances on different
bitmap vectors of Figs. 5(a) and 5(b).

Example 4: If the predefined ratio is 10%
as in Fig. 5(a), nAB = nBA = 1, Dul(A,B) is√

1 · (0.74 − 0.16)2 + 1 · (0.64 − 0.26)2 = 0.69; if it is
20% as in Fig. 5(b), nAB = 1, nBA = 2, Dul(A,B) is√

1 · (0.68 − 0.22)2 + 2 · (0.58 − 0.32)2 = 0.59. The components
marked by dotted squares contribute to nAB or nBA.

Advantages of the proposed ratio-based method are that (1)
it makes the bitmap construction very fast, and (2) it is easy
to understand since it applies the same ratio to all document
vectors. However, it fails to obtain a tight enough bound of the
UL-distance to improve the k-NN search performance as we
demonstrate in Section VI. We may find better thresholds by a
more elaborate method, but the bounds of the UL-distance will
still be far from optimal because many components that are
within the range (lower, upper) are not included in computing
the UL-distance. In addition, if the improved method were very
complex, we would not fully exploit advantages of horizontal
reduction — fast reduction and fast similarity computation.
Therefore, for performance improvement, we derive a new
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technique that generalizes UL-Reduction instead of finding the
optimal thresholds in UL-Reduction.

V. Q-REDUCTION: A GENERALIZATION OF

UL-REDUCTION

A. The Concept of Q-Reduction

In this section, we propose Quantization Reduction (Q-
Reduction in short), an advanced implementation of horizontal
reduction. Q-Reduction increases the lower bound distance
using multiple bitmap vectors. UL-Reduction uses only two
bitmap vectors, and its UL-distance can be much smaller than
the real distance. To solve this problem, Q-Reduction divides
the base range into multiple sub-ranges through the quantiza-
tion process and constructs multiple bitmap vectors, one for
each sub-range. By using these multiple bitmap vectors, the
lower bound of Q-Reduction can be much more close to the
real distance than UL-distance is.

To use multiple bitmap vectors in Q-Reduction, we need
to determine how to divide the base range into multiple sub-
ranges. We note the following two observations.

• Observation 1: Only a few components (i.e., terms) of a
document vector have large values, which are relatively
close to 1.0. Fig. 6 shows the term distribution in a
document of RCV1 [24]. We note that only 0.1 ∼ 0.2%
of 47, 219 components have relatively large values.

• Observation 2: Most components in a document vector
have values of zero. After examining 23, 149 documents
of RCV1, we note that 99.84% of 47, 219 components
have values of zero in one document.

Term IDs
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Fig. 6. Distribution of term occurrences in one specific document of RCV1.

Based on these observations, we select a few large com-
ponent values as thresholds. Q-Reduction constructs several
upper bitmap vectors and one lower bitmap vector. That
is, only a few components that significantly affect the real
distance are recorded in upper bitmap vectors, and more than
99% components whose values are zeros are recorded in the
lower bitmap vector. We now formally define Q-Reduction as
follows.

Definition 4: Let A = (a1, . . . , ad) be an d-dimensional
document vector of size 1.0 and maxA be maxd

i=1 ai. Given
the number of sub-ranges m and a set of thresholds Q =
{q0, · · · , qm−1} (q0 = 0, qm−1 = maxA, qk < qk+1, k =
0, 1, . . . , m− 2), Q-Reduction creates an d-dimensional lower

bitmap vector A0 = (a0
1, . . . , a

0
d) and (m − 1) d-dimensional

upper bitmap vectors Aj = (aj
1, . . . , a

j
d) (j = 1, 2, · · · , m−1)

by Eq. (3).

a0
i =

{
1 if ai = 0 (= q0)
0 otherwise

a
j
i =

⎧⎨
⎩

1 if (1 ≤ j < m− 1) ∧ (qj ≤ ai < qj+1)
1 if (j = m− 1) ∧ (ai = qj)
0 otherwise

(3)

Bitmap vector A0 reflects Observation 2, and each bit is
set to 1 if the corresponding component is zero. Bitmap
vectors Aj reflects Observation 1, and each bit is set to
1 by the following two conditions. The first condition of
(1 ≤ j < m− 1)∧ (qj ≤ ai < qj+1) is for selecting the com-
ponents whose values are in [qj , qj+1). The second condition
of (j = m−1)∧(ai = qj) is for constructing a special bitmap
vector for the largest component value that contributes most
to the distance between document vectors. In other words, Q-
Reduction divides [0, maxA] into the following m sub-ranges
and then constructs the bitmap vectors corresponding to those
sub-ranges.

[q0 = 0], [q1, q2), · · · , [qm−3, qm−2), [qm−2, qm−1), [qm−1 = maxA]

Fig. 7 shows an example where each document vector A

or B in Example 1 is represented as four bitmap vectors by
Q-Reduction.

0/1 bitmaps (12 dimensions)

0.8A
0.4A
0.2A
0A
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 � � � �� ��

� � � � � � � � � � � �

� � � � � � � � � � � �

� � � � � � � � � � � �

� � � � � � � � � � � �

0.7B
0.6B
0.2B
0B

Fig. 7. Example upper and lower bitmap vectors of Q-Reduction.

Now, we need to determine a set of thresholds for each
document vector. We determine the thresholds of a document
vector based on its real component values. If an ordered set of
non-zero component values of a document vector is given by
V = {v1, v2, v3, · · · } (vi ≥ vi+1), we determine the ordered
set Q = {q0, · · · , qm−1} as follows. First, q0 is determined as
0. Second, qk (k = 1, · · · , m− 1) is determined by v2m−1−k

so as to make the higher thresholds reflect the real component
values more closely and, at the same time, to decrease the
number of sub-ranges†. As the number of documents increases,
so does the number of non-zero components, and this may
require more bitmap vectors. However, since the number of
bitmap vectors logarithmically increase in the number of non-
zero components N (N = 2m−1−k, thus m = log2 N +1+k),
this increase is not significant. Despite its simplicity, this
component- value-based threshold determination makes the
bounds quite tight as we present in Section V-B. Thus, we
believe it is a practically applicable method for Q-Reduction.

† If the number of non-zero components in a document vector is less than
2m−2, we use Q = {q0, qk′ , qk′+1, · · · , qm−1}, where qk′ is the minimum
available, i.e., v

2m−1−k′ ∈ V and v
2m−k′ /∈ V .
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We note that other methods that make the bound tighter can
be devised, and we leave it as a future work.

B. Q-Distance: A Lower Bound Distance of Q-Reduction

1) BQ-distance: In Definition 5, we define the Basic Q-
distance (BQ-distance). For a tighter bound, we define the
Tight Q-distance (TQ-distance) in Section V-B2. We define
the BQ-distance using the UL-distance in Definition 3.

Definition 5: Let d-dimensional document vectors A =
(a1, . . . , ad) and B = (b1, . . . , bd) of size 1.0 be reduced to
A0, · · · , Am−1 and B0, · · · , Bm−1 by the sets of thresholds
QA = {qA

0 , · · · , qA
m−1} and QB = {qB

0 , · · · , qB
m−1}, respec-

tively. We then define the BQ-distance, denoted by Dbq(A, B),
as the distance computed by Eq. (4) using the lower and upper
bitmaps of A and B.

Dbq(A, B) =
√∑m−1

j=1
D2

j (A,B) ,
where Dj(A,B) = Dul(A,B).

In Dul(A, B), lowerA = qA
0 , upperA = qA

j ,
lowerB = qB

0 , upperB = qB
j , Al = A0, Au = Aj ,

Bl = B0, Bu = Bj , and1 ≤ j ≤ m− 1.

(4)

The BQ-distance will be much larger than UL-distance due
to the following two reasons. First, multiple upper bitmap
vectors of Q-Reduction reflect more components than a single
upper bitmap vector of UL-Reduction does. That is, from
the viewpoint of UL-Reduction, Q-Reduction increases nAB

and nBA. Second, the difference between some upper and
the lower thresholds in Q-Reduction are likely to be larger
than that of UL-Reduction. This is because Q-Reduction has
multiple upper thresholds that are likely to be larger than
the upper threshold of UL-Reduction, and those larger upper

thresholds of Q-Reduction produce larger differences. That is,
from the viewpoint of UL-Reduction, Q-Reduction is likely
to increase (upperA − lowerB) and (upperB − lowerA).
Example 5 shows BQ-distance Dbq(A, B) between A and B

of Fig. 7.

Example 5: Dbq(A, B), the BQ-distance between A and
B of Fig. 7, can be computed as Eq. (5).

Dbq(A, B) =
√
{1 · (0.8− 0)2 + 1 · (0.4− 0)2 + 1 · (0.2 − 0)2}

+{1 · (0 − 0.7)2 + 1 · (0− 6.1)2 + 2 · (0.2− 0)2} (5)

= 1.39

As shown in Eq. (5), the BQ-distance of 1.33 is much closer
to the real distance of 1.39 than the UL-distance of 0.69 or
0.59 in Example 4 is.

The following lemma shows the lower bound property of
the BQ-distance.

Lemma 2: For d-dimensional document vectors A and B

of size 1.0, their BQ-distance Dbq(A, B) is a lower bound of
the Euclidean distance D(A, B), i.e., Dbq(A, B) ≤ D(A, B)
holds.

PROOF: According to Definition 4, m bitmap vectors are
generated from m disjoint sub-ranges, and thus, for every
i (= 1, · · · , d), the case of a

j
i = ak

i = 1 never holds if
j �= k (0 ≤ j, k ≤ m − 1). Hence, the i-th component used

for Dul(A
j , Bj) cannot be used for Dul(A

k, Bk) if j �= k.
Therefore, the following Eq. (6) holds, and the BQ-distance
is a lower bound of the Euclidean distance (see Fig. 8).

(6)
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Fig. 8. Lower-bounding property of the Q-distance for the Euclidean distance.

2) TQ-distance: In this section, we propose the Tight Q-
distance (TQ-distance), a lower bound distance tighter than
the BQ-distance. The TQ-distance uses real component values
in computing the lower bound while the BQ-distance uses the
thresholds, and thus, the TQ-distance becomes larger than the
BQ-distance.

The BQ-distance of Definition 5 can be simplified as
follows. First, upperA > lowerB and upperB > lowerA

always hold since upperA = qA
j and upperB = qB

j , and
lowerA = qA

0 = 0 and lowerB = qB
0 = 0 by Definition 4.

Second, since Dj(A, B) = Dul(A, B), the UL-distance in
Definition 3 and the BQ-distance in Definition 5 are simplified
as in Eqs. (7) and (8), respectively.

Dul(A, B) =
√

nABj · (q
A
j )2 + nBAj · (q

B
j )2 ,

where nABj = |{i|aj
i ∧ b0

i = 1}|, nBAj = |{i|bj
i ∧ a0

i = 1}|,
and 1 ≤ j ≤ m− 1.

(7)

Dbq(A,B) =
√∑m−1

j=1
D2

j (A,B)

=
√∑m−1

j=1
D2

ul(A,B)

=
√∑m−1

j=1

(
nABj · (q

A
j )2 + nBAj · (q

B
j )2

)
.

(8)

According to Eq. (8), the BQ-distance is determined by
nAB , nBA, and threshold qj . Threshold qj , however, rep-
resents all component values that are within the sub-range
[qj , qj+1). Thus, we can increase BQ-distance if we use their
real values rather than the thresholds.
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To use real component values, we employ the following two
ordered lists. First, the k-th component list Bk that includes a
threshold qk (∈ Q, a set of thresholds defined in Section V-A)
is described in Eq. (9). Second, a list of cumulative squared
sums Sk is defined in Eq. (10).

Bk = (v|qk ≤ v < qk+1, v ∈ V )
= (vk,1(= qk), vk,2, · · · , vk,l) ,
where l = |Bk| and V is an ordered set of
non-zero component values of a document vector.

(9)

Sk = {s1 = v
2
k,1, s2 = s1 + v

2
k,2, · · · , sl = sl−1 + v

2
k,l} (10)

Sk is precalculated and stored together with the bitmaps.
Definition 6 defines the TQ-distance using the ordered lists

Bk and Sk.

Definition 6: Two d-dimensional document vectors A =
(a1, . . . , ad) and B = (b1, . . . , bd) of size 1.0 are reduced to
A0, · · · , Am−1 and B0, · · · , Bm−1 by using the sets of thresh-
olds QA = {qA

0 , · · · , qA
m−1} and QB = {qB

0 , · · · , qB
m−1},

respectively. Let BA
j and BB

j be the j-th component lists, and
SA

j and SB
j the lists of cumulative squared sums. We then

define the TQ-distance, denoted by Dtq(A, B), as in Eq. (11)
using the lower and upper bitmap vectors of A and B.

Dtq(A, B) =

√√√√m−1∑
j=1

(snABj
+ snBAj

) , where (11)

snABj
=

{
nABj -th element of SA

j if nABj ≥ 1
0 if nABj = 0

snBAj
=

{
nBAj -th element of SB

j if nBAj ≥ 1
0 if nBAj = 0

The TQ-distance is closer to the real distance than the BQ-
distance even though both use the same bitmap vectors. This
is because the TQ-distance uses the real component values
(the exact cumulative squared sums) while the BQ-distance
the thresholds, i.e., nABj

· q2
k ≤ snABj

(=
∑nABj

a=1 v2
k,a).

Example 6: The TQ-distance Dtq(A, B) of Fig. 7 is com-
puted as in Eq. (12) if m = 4.

Dtq(A, B) =
√
{(0.8)2 + (0.4)2 + (0.2)2}

+{(0.7)2 + (0.6)2 + (0.2)2 + (0.3)2} = 1.35
(12)

As shown in Eq. (12), the TQ-distance of 1.35 is tighter
than the BQ-distance of 1.33 in Example 5.

Lemma 3: For d-dimensional document vectors A and B

of size 1.0, their TQ-distance Dtq(A, B) is a lower bound of
the Euclidean distance D(A, B), i.e., Dtq(A, B) ≤ D(A, B)
holds.

PROOF: |BA
j | = |SA

j | and |BB
j | = |SB

j | hold by Eqs. (9)
and (10), respectively. As shown in Eq. (11), nABj

(nBAj
) is

the number of components whose bitmaps Aj and B0 (Bj and
A0) are both 1. Thus, 0 ≤ nABj

≤ |SA
j | and 0 ≤ nBAj

≤
|SB

j |. Moreover, snABj
(1 ≤ nABj

≤ |BA
j |) and snBAj

(1 ≤
nBAj

≤ |BB
j |), which are nABj

-th and nBAj
-th elements of

SA
j and SB

j , are sums of the first nABj
and nBAj

elements
of BA

j and BB
j , respectively. Thus, they are always equal to

or less than real component values rendering the TQ-distance
a lower bound of the real distance.

C. k-NN Search Algorithm

Fig. 9 shows the k-NN search algorithm using Q-Reduction.
Its basic concept comes from Corollary 1, which states that
“we can exclude (i.e., prune) the document vector whose
Q-distance to the query vector is larger than the Euclidean
distance of the k-th similar document seen so far” [?]. We
use the term ‘Q-distance’ here as a generic term for the TQ-
distance and the BQ-distance.

Algorithm k-NN-Search

// Assumption: all document and query vectors have been normalized to size 1 in advance.

Input
(1) DB: a database containing document vectors with their Q-Reduced bitmaps;
(2) Q: the query vector;
(3) k: the number of similar vectors returned;

Output
kNNHeap: a max heap containing k-NN document vectors from the query vector Q;

Algorithm

1. Construct bitmaps Qj (j=0,1,...,m-1) from Q by Q-Reduction; 

2. Retrieve initial k document vectors {D} from DB and compute their Euclidean distances {dE} to Q;

3. Initialize kNNHeap and insert <ID, dE> for each document in {D} into kNNHeap; 

// ID: the document identifier.

// dE: the Euclidean distance of a document to Q.

4. <IDcurr_max, dcurr_max> = <ID, dE> in the root node of kNNHeap;

5. foreach document vector A in DB except the initial k document vectors do    

6. dq = Dq(Q,A); /* Q-distance */

7. if(dq < dcurr_max) then begin

8. Retrieve the document vector A from DB;

9. dE = D(Q,A); /* Euclidean distance */

10. if(dE < dcurr_max) then begin

11. Replace the root of kNNHeap with <ID, dE> of A and readjust kNNHeap;

12. <IDcurr_max, dcurr_max> = <ID, dE> in the root node of kNNHeap;

13. end-if

14. end-if

15. end-for

Fig. 9. k-NN search algorithm using UL-Reduction.

Corollary 1: Let the Euclidean distance between the query
vector Q and the k-th similar document vector seen so far be
dso−far , Q-distance between a certain document vector A and
Q be Dq(Q, A), and their Euclidean distance be D(Q, A).
Then, Eq. (13) holds.

Dq(Q, A) > dso−far ⇒ D(Q, A) > dso−far (13)

PROOF: By Lemmas 2 and 3, Dq(Q, A) ≤ D(Q, A).

Algorithm k-NN-Search in Fig. 9 finds the k most similar
documents in one-pass using Q-distance and Linear-Time
Top-k Sort [25]. We now explain the algorithm in detail.
The inputs to the algorithm are a database DB that stores
all document vectors, a query vector Q, and the number k

of similar documents to be returned. We assume that each
document vector in DB is stored with its m bitmap vectors
as well as the thresholds (or the list Sk) for Q-Reduction. The
outputs are k document vectors that are most similar to the
query vector Q to be returned in kNNHeap. The kNNHeap
is a k-sized maximum heap [26] that finds k closest (similar)
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document vectors with the time complexity of O(n) ‡. In the
algorithm, we first construct m bitmap vectors of the query
vector Q (Line 1). We then retrieve k document vectors from
DB and compute their real (Euclidean) distances to the query
vector Q (Line 2). We store the identifiers of the document
vectors together with their real distances in the result list
kNNHeap (Line 3). Hereafter, kNNHeap maintains k most
similar document vectors seen so far. For the document vector
in the root node of kNNHeap, we denote its real distance to
Q as dcurr max and its identifier as IDcurr max (Lines 4 and
12). In Lines 5 to 15, we investigate the rest of the document
vectors in DB and find the final k most similar documents
through the filtering process that exploits Q-distance. We first
access bitmap vectors and exclude the document whose Q-
distance dq is larger than dcurr max without accessing its real
document vector by Corollary 1 (Lines 6 and 7). On the other
hand, if dq ≤ dcurr max , we retrieve the document vector and
compute its real (Euclidean) distance as dE (Lines 8 and 9). If
dE < dcurr max , we then replace the root node of kNNHeap
with the document vector A and readjust kNNHeap (Lines 10
to 13). At the completion of the algorithm, we get the k most
similar document vectors stored in kNNHeap.

Theorem 1: Algorithm k-NN-Search correctly finds the k

documents most similar to the query vector, i.e., it correctly
finds the k document vectors whose Euclidean distances to the
query vector are the k largest.

PROOF: kNNHeap always contains the k most similar
document vectors seen so far from Corollary 1 and Lines 7 to
12 of the algorithm.

VI. PERFORMANCE EVALUATION

A. Experimental Data and Environment

We use two real document sets, RCV1 [24] and Enron
Emails in Bag of Words (EMAILS in short) [27], that are
widely used in text mining. RCV1 comprises 804, 414 doc-
uments with 47, 219 terms while EMAILS 39, 861 documents
with 28, 102 terms. As the weight of terms, RCV1 uses the
term frequency-inverse document frequency (tf-idf) [24], while
EMAILS the term frequency (tf) [27]. We normalize all the
document vectors to size 1.0 as mentioned in Section IV. In
storing document vectors, we consider non-zero components
only. More precisely, for each vector, we store a list of
<identifier, weight> pairs of non-zero components instead of
a full high-dimensional vector.

In the experiments, we measure the costs of preprocessing
(i.e., dimensionality reduction) and k-NN search. For pre-
processing, we compare Q-Reduction (Q-R) using the TQ-
distance with LSI and RP, which are widely used vertical
reduction techniques for text documents. For k-NN search,
we compare the following reduction techniques that obtain
exact k-NN results from the original document vectors: 1)
UL-Reduction (UL-R), 2) Q-Reduction using BQ-distance
(Q-R(BQ)), 3) Q-Reduction using TQ-distance (Q-R(TQ)),

‡ A patent of the linear-time top-k sort algorithm using a maximum (or
minimum) heap has been applied [25].

4) DFT, 5) SAX, and 6) no reduction, i.e., a sequential
scan (SEQ-SCAN). Here, we consider only non-zero bytes in
maintaining bitmap vectors. That is, for each bitmap vector,
we store its non-zero bytes with their corresponding offsets in
disk and dynamically reconstruct it in main memory when it
is read from disk. We implement all reduction techniques and
k-NN algorithms using C. We conduct all the experiments on
a Pentium-4 3.2GHz Linux (Version 2.6.23) PC with 2GB of
main memory.

For preprocessing, we measure the dimensionality reduction
time and storage cost. We compare our Q-R with LSI and RP
by measuring reduction time and size of reduced vectors. For
k-NN search, we measure the number of document vectors
accessed from the database and the wall clock time. In our
k-NN search algorithm, accessing a document vector occurs
only when the lower bound cannot prune the document vector.
Hence, the number of document vectors accessed evaluates
how effective (i.e., tight) the lower bound is, and the wall clock
time evaluates the overall efficiency of the search algorithm –
including the lower bound computation.

B. Preprocessing Cost

Experiment 1: Dimensionality reduction time and storage
cost We set the dimension of the reduced vectors to 1, 500
for LSI and RP and the number m of sub-ranges to 5 for
Q-R. The reason why we choose these numbers is that, for
fair comparison of reduction techniques, we want to make
their storage spaces for the reduced vectors to be similar to
each other. We do not use the entire 39, 861 documents of
EMAILS but instead use randomly selected 6, 000 documents
since LSI cannot handle the entire set of documents due to
its heavy SVD processing overhead. The results of RCV1 are
very similar to those of EMAILS, and for brevity we explain
EMAILS only for the preprocessing cost. For LSI, we use
las2, the fastest SVD implementation of the most widely used
package SVDPACK [28].

Table I shows the relative dimensionality reduction time
and the relative storage space for the reduced vectors. Q-R
performs the reduction 59.1 and 80.9 times faster than LSI
and RP, respectively. The main reason for this speed up is that
Q-R is much simpler due to its instance-level nature while LSI
and RP are quite complex due to their schema-level nature.
The storage spaces are made similar in all three techniques
for fair comparison.

TABLE I
THE RELATIVE DIMENSIONALITY REDUCTION TIME AND STORAGE COST

OF 6, 000 DOCUMENT VECTORS REDUCED.

Experimental Reduction Storage space
method time for reduced vectors
LSI/Q-R 59.1 1.0
RP/Q-R 80.9 1.0

Fig. 10 shows the dimensionality reduction time as the
number of documents is varied. Here, we observe that LSI
and RP take significantly more time than Q-R due to the
complex SVD process and the complex matrix multiplication,
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respectively. If the number of documents reaches tens of
thousands, we cannot practically use LSI and RP due to this
excessive preprocessing time. For this reason, most existing
reduction techniques including LSI and RP use sampling
to reduce the number of documents and perform similarity
search using the sampled documents only. However, since the
sampled documents cannot fully reflect the entire document
set, the exact results of similarity search is sacrificed for
performance. In contrast, our Q-R uses the entire document
set and obtain the exact results.
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Fig. 10. Dimensionality reduction time as the number of documents is varied.

We also measure the dimensionality reduction time for
inserting new documents to the document set. The results show
that Q-R requires only a marginal time because it suffices
to reduce the inserted documents only, but LSI and RP take
much longer time than that of Q-R since they must reduce
the entire set of documents including the new ones. The same
phenomenon also occurs when deleting documents from the
document set. Due to the excessive update time, we cannot
use LSI and RP for dynamic sets with frequent updates. In
contrast, our Q-R is very suitable for dynamic sets since its
update time is negligible.

C. k-NN Search Cost

In this section, we discuss the performance of k-NN search
that finds the exact k-NN results from the original document
set. We compare UL-R, Q-R(BQ), Q-R(TQ), DFT, SAX, and
SEQ-SCAN. As described in Experiment 1, LSI and RP cannot
obtain the exact k-NN results since they handle the reduced
set of document vectors only (rather than the original set of
document vectors). Besides, LSI and RP are not suitable for
dynamic document sets. In contrast, the six techniques above
can obtain exact k-NN results and are suitable for dynamic
document sets. In other words, the k-NN results of LSI and
RP are not the same as those of the other six techniques. Since
LSI and RP are inherently different from the six techniques, we
exclude them from the k-NN search performance comparisons.

We set the experimental parameters as follows. First, for
Q-R, we set the number of sub-ranges to nine for RCV1 and
five for EMAILS since these numbers result in the best search
performance, especially in search time. Second, to determine
the thresholds (i.e., lower and upper) of UL-R, we apply the
ratio of 10% to the base range. Third, we use six features for
DFT as has been done in Faloutsos et al. [17]. Fourth, for
SAX, we set the number of alphabets to ten and the reduced
dimensionality to 16, as has been done in Lin et al. [19]. We

use 20 documents randomly selected from each dataset as the
input queries and average the result of those queries.

Experiment 2: k-NN search performance with different
dimensionalities Fig. 11 shows the k-NN search performance
on two datasets, RCV1 and EMAILS, whose dimensionalities
are different from each other; the dimensionality of the former
(= 47, 219) is almost double that of the latter (= 28, 102). We
use the training set (23, 149 document vectors) of RCV1 and
23, 149 document vectors randomly selected from EMAILS.
We set the number k to be ten. Fig. 11(a) shows the number of
documents accessed from the database; Fig. 11(b) the elapsed
time of k-NN search.
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(Total 23,149 documents; k=10)
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(Total 23,149 documents; k=10)
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Fig. 11. k-NN search performance by varying dimensionality.

In Fig. 11, we note that overall trends of EMAILS and
RCV1 are very similar to each other. As shown in Fig. 11, Q-
R(TQ) shows the best result in both document sets. Compared
with SEQ-SCAN, Q-R(TQ) reduces the number of documents
accessed by 19.6 times for RCV1 and 2.9 times for EMAILS
and improves the k-NN search time by 5.5 times for RCV1
and 1.6 times for EMAILS§. We also note that the performance
improvement by UL-R is very small and actually negligible.
This is because the UL-distance is far from the Euclidean
distance as we explained in Section V-A. In Fig. 11, DFT and
SAX do not improve the performance at all. This is because, as
we explained in Section II-B, these techniques are not effective
in dimensionality reduction of text documents.

Even though overall trends for EMAILS and RCV1 are
similar, all techniques except Q-R(TQ) show a slightly dif-
ferent result for each set. That is, as shown in Fig. 11(b),
five techniques except Q-R(TQ) show a longer search time
in RCV1 than in EMAILS. This happens because the di-
mensionality of RCV1 is larger than that of EMAILS, and
the time for computing real distances and/or lower bounds
is longer in RCV1. In the case of Q-R(TQ), however, the
search time in RCV1 is shorter than that of EMAILS. This is
because, as shown in Fig. 11(a), Q-R(TQ) prunes much more
documents in RCV1 than in EMAILS. The main reason why
we have a larger pruning effect in RCV1 is that the number
of sub-ranges of RCV1 (= 9) is larger than that of EMAILS
(= 5). The number of the component values included in the
list of cumulative squared sums Sk increases as the number
of thresholds (i.e., sub-ranges) increases. Thus, the tightness
between the real distance and the TQ-distance in RCV1 is

§ The reason why the improvement of k-NN search time is smaller than
that of the number of documents accessed is that the time for computing
Q-distances is relatively larger than that of other lower bound distances.
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much larger than that in EMAILS.
As mentioned earlier in this section, we use nine sub-

ranges for RCV1 and five for EMAILS. The reason why they
have different optimal values is as follows. The number of
components having non-zero values in a document of RCV1
is larger than that of EMAILS. Further, since RCV1 uses tf-idf
as the component values while EMAILS tf¶ (i.e., RCV1 has
more unique values). Hence, RCV1 requires more sub-ranges
than EMAILS to achieve high performance.

Experiment 3: k-NN search performance by varying the
size of the document set We measure the k-NN search
performance as the number of documents is varied. In Fig. 12,
we vary the number of documents in RCV1 from 23, 149 (the
training set) to 804, 414. In Fig. 13, we vary the number in
EMAILS from 10, 000 to 39, 861. We note that, in Figs. 12
and 13, overall performance trends of RCV1 and EMAILS
are similar to each other. Regardless of the document sets, our
Q-R(TQ) outperforms other techniques significantly. In partic-
ular, the performance improvement of Q-R(TQ) increases as
the size of document set increases. For example, in Fig. 12(a),
Q-R(TQ) with 23, 149 documents improves the number of
documents accessed by 19.6 times compared with SEQ-
SCAN, while that with 804, 414 by 521.6 times. The main
reason of this improvement is that the ratio of the documents
pruned for a fixed k increases as the size of the document set
increases.
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Fig. 12. k-NN search performance as the size of the document set is varied
(RCV1).
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(28,102 dimensions; k=10)

(b) k-NN search time
(28,102 dimensions; k=10)
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Fig. 13. k-NN search performance as the size of the document set is varied
(EMAILS).

Experiment 4: k-NN search performance by varying k

Figs. 14 and 15 show the k-NN search performance as k is
varied. Larkey et al. [29] and Yang [11], [30] used 20 and 25

¶ The number of unique component values in a document is usually larger
when using tf-idf and smaller when using tf. The reason is, when using tf-idf,
two components with the same tf value may have different idf values resulting
in different tf-idf values.

(a) Number of documents accessed
(Total 804,414 documents; 47,219 dimensions)

(b) k-NN search time
(Total 804,414 documents; 47,219 dimensions)

0

200,000

400,000

600,000

800,000

1,000,000

1 

N
um

be
r 

of
 d

oc
um

en
t 

ac
ce

ss
ed

k

Q-R(TQ) Q-R(BQ)
UL-R DFT
SAX SEQ-SCAN

1 10 20 40 60 80 1005

0

20

40

60

80

100

120

1 

W
al

l-
cl

oc
k-

tim
e 

(s
ec

)

k

Q-R(TQ) Q-R(BQ)
UL-R DFT
SAX SEQ-SCAN

1 10 20 40 60 80 1005

Fig. 14. k-NN search performance as k is varied (RCV1).

(a) Number of documents accessed
(Total 39,861 documents; 28,102 dimensions)

(b) k-NN search time
(Total 39,861 documents; 28,102 dimensions)
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Fig. 15. k-NN search performance as k is varied (EMAILS).

as the maximum value of k, respectively. Using these values
as references, we vary k for RCV1, a larger set (801, 414
documents), from 1 to 100 and k for EMAILS, a smaller set
(39, 861 documents), from 1 to 20. In these figures, the results
of SEQ-SCAN are naturally constant since it needs to access
all the documents for any value of k. The results of the other
techniques including UL-R and Q-R increase as k increases
since they prune less number of documents. Specifically, in
Algorithm k-NN-Search of Fig. 9, as k increases, so do the
current pruning distance, dcurr max, and the number of pruned
documents whose lower bound is larger than dcurr max. UL-
R, DFT, and SAX do not show a meaningful improvement
since they are not effective in dimensionality reduction of
text documents. The results of Q-R(TQ) increase only very
slightly because the TQ-distance is a very tight lower bound
maximizing the pruning effect.

From the results of Experiments 1 to 4, we conclude the
following. From Experiment 1, we conclude that Q-Reduction
is more appropriate for large document sets than LSI and
RP since Q-Reduction, which uses instance-level reduction,
reduces documents much faster than LSI or RP, which uses
schema-level reduction. We also conclude that Q-Reduction
works much better for dynamic document sets with frequent
updates since Q-Reduction needs to consider only the updated
documents while LSI and RP should consider the entire
document set for every update. From Experiments 2, 3, and
4, we observe that Q-Reduction improves the k-NN search
performance significantly compared with existing reduction
techniques by reducing the number of document accesses. The
major reason for this improvement is that the Q-distance is a
tighter lower bound of the real Euclidean distance than those of
other reduction techniques. Therefore, we finally conclude that
Q-Reduction is the best dimensionality reduction technique
that produces the exact results over large-scale document sets
with frequent updates.
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VII. CONCLUSIONS

In this paper, we have proposed new dimensionality re-
duction techniques for efficient similar search in large-scale
document sets with frequent updates. Similar document search
is one of the most important technical issues for text classifica-
tion and clustering, and the dimensionality reduction technique
is considered indispensable for efficient search. First, we have
presented a new viewpoint of classifying the reduction tech-
niques into vertical and the horizontal reductions – identifying
that most existing techniques belonged to vertical reduction.
We have also shown that the previous reduction techniques
are not adequate for large-scale document sets with frequent
updates. Second, we have presented UL-Reduction as an
implementation of horizontal reduction for text documents,
and then, proposed Q-Reduction as its generalization. We have
formally proved that UL-distance and Q-distance are lower
bounds of the real distance. Third, we have proposed the k-
NN search algorithm using Q-Reduction and formally proved
its correctness. Fourth, we have shown the superiority of Q-
Reduction through extensive experiments with real data sets.
Compared with the well-known LSI and RP, Q-Reduction
reduces the preprocessing (reduction) time and the update time
by one or two orders of magnitude. For k-NN search, Q-
Reduction with TQ-distance beats all the existing reduction
techniques. In particular, it outperforms the sequential scan by
one to three orders of magnitude. Therefore, we conclude that
the concept of horizontal reduction is crucial for fast similar
search in large-scale document sets with frequent updates.
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