
World Wide Web (2013) 16:111–139
DOI 10.1007/s11280-012-0159-3

RASIM: a rank-aware separate index method
for answering top-k spatial keyword queries

Hyuk-Yoon Kwon · Kyu-Young Whang · Il-Yeol Song ·
Haixun Wang

Received: 18 November 2011 / Revised: 18 February 2012 /
Accepted: 27 February 2012 / Published online: 19 May 2012
© Springer Science+Business Media, LLC 2012

Abstract A top-k spatial keyword query returns k objects having the highest (or
lowest) scores with regard to spatial proximity as well as text relevancy. Approaches
for answering top-k spatial keyword queries can be classified into two categories:
the separate index approach and the hybrid index approach. The separate index
approach maintains the spatial index and the text index independently and can
accommodate new data types. However, it is difficult to support top-k pruning
and merging efficiently at the same time since it requires two different orders for
clustering the objects: the first based on scores for top-k pruning and the second
based on object IDs for efficient merging. In this paper, we propose a new separate
index method called Rank-Aware Separate Index Method (RASIM) for top-k spatial
keyword queries. RASIM supports both top-k pruning and efficient merging at the
same time by clustering each separate index in two different orders through the
partitioning technique. Specifically, RASIM partitions the set of objects in each index
into rank-aware (RA) groups that contain the objects with similar scores and applies
the first order to these groups according to their scores and the second order to the
objects within each group according to their object IDs. Based on the RA groups, we
propose two query processing algorithms: (i) External Threshold Algorithm (External

H.-Y. Kwon · K.-Y. Whang (B)
Department of Computer Science, Korea Advanced Institute of Science
and Technology (KAIST), Daejeon, South Korea
e-mail: kywhang@cs.kaist.ac.kr

H.-Y. Kwon
e-mail: hykwon@mozart.kaist.ac.kr

I.-Y. Song
College of Information Science and Technology, Drexel University, Philadelphia, USA
e-mail: song@drexel.edu

H. Wang
Microsoft Research Asia, Beijing, China
e-mail: haixunw@microsoft.com

112 World Wide Web (2013) 16:111–139

TA) that supports top-k pruning in the unit of RA groups and (ii) Generalized
External TA that enhances the performance of External TA by exploiting special
properties of the RA groups. RASIM is the first research work that supports top-k
pruning based on the separate index approach. Naturally, it keeps the advantages of
the separate index approach. In addition, in terms of storage and query processing
time, RASIM is more efficient than the IR-tree method, which is the prevailing
method to support top-k pruning to date and is based on the hybrid index approach.
Experimental results show that, compared with the IR-tree method, the index size of
RASIM is reduced by up to 1.85 times, and the query performance is improved by
up to 3.22 times.

Keywords top-k spatial keyword query · separate index · top-k pruning

1 Introduction

Recently, there is a growing need of integrating databases and information retrieval
(simply, the DB-IR integration) [8, 29] due to widespread use of the Web [16]. The
emergence of mobile technologies in the Web [2, 22] adds the spatial dimension to
DB-IR integration. Storing and managing various types of such complex data and
integrated processing of queries on them are of growing importance. An example of
such fusion is storing each spatial object along with a text description in the database
and processing complex queries on them. Indeed, commercial Web search engines
such as Google Maps support queries including both keywords and geographical
information. Other applications that use such queries include map services, local
searches, and local advertisements [10]. We call this type of query the spatial keyword
query [15].

A spatial keyword query consists of a query region and a set of keywords, and
returns the objects that are inside the query region and that include the keywords
[15]. Efficient query processing is based on the spatial index and the text index.
Existing work can be classified into two categories according to their index structures
[15]: the separate index approach and the hybrid index approach. The former [9]
maintains the spatial index and the text index independently, and finds the result
objects by merging objects retrieved through the two indexes. The latter [15, 34]
builds a single index that combines the spatial and text indexes.

A top-k spatial keyword query consists of a query point and a set of keywords, and
returns k objects that have the highest (or lowest) scores. Here, the score combines
spatial proximity between an object and the query point as well as text relevancy
between the object and the keywords in the query [12]. Figure 1 shows a sample data
set used in the running examples of this paper. We assume that each object consists of
a location description and a text description: Figure 1a shows the location description
of the objects; Figure 1b the text description. An example of top-k spatial keyword
queries is as follows: “Find the top three objects whose location is closest to the query
point q.loc and whose text description is most relevant to keywords ‘vegetable’ and
‘food’.”

Just like spatial keyword queries, existing work on top-k spatial keyword queries
can be classified into two categories: the separate index approach and the hybrid
index approach [21]. Martin et al. [21] compare the two approaches for top-k spatial

World Wide Web (2013) 16:111–139 113

Objects

o1 …vegetable...food...vegetable…food…food…

o2 …meat…vegetable…

o3 …vegetable…vegetable…food…food…

o4 …vegetable….vegetable…vegetable…

o5 …meat…vegetable…food…food…

o6 …meat…food…

(a) Location description of objects. (b) Text description of objects.

q.loc

Text Descriptiono

o o

o

o

o

3

5

6

4

2

1

Figure 1 A sample data set consisting of location description and text description.

keyword queries. The separate index approach is shown to be superior to the hybrid
index approach because (i) processing nearest neighbor queries (queries with spatial
predicates only) or text retrieval queries (queries with text predicates only) is more
efficient; (ii) updates can be handled in each index independently; (iii) adding
attributes with new data types or removing an existing one is easy.

Top-k spatial keyword query processing relies on two techniques: (i) efficient top-
k pruning [9], i.e., stopping execution when the top-k results have been found; and
(ii) efficient merging of objects retrieved from the two indexes. To support top-k
pruning and efficient merging, two different orders of clustering objects are required:
top-k pruning requires ordering objects based on their scores, and efficient merging
requires ordering objects based on their object IDs. However, objects in an index are
usually clustered in a single order.

Chen et al. [9] proposed a separate index method that supports efficient merging
by clustering both the objects in the spatial index and those in the text index in the
order of object IDs. But, this method does not handle top-k pruning. Cong et al. [10]
and Li et al. [19] proposed the IR-tree method that supports top-k pruning using the
hybrid index approach, which simultaneously considers spatial proximity and text
relevancy of an object in the index structure. The IR-tree method is the prevailing
method that supports top-k pruning for top-k spatial keyword queries to date.

In this paper, we propose a novel separate index method, called the Rank-Aware
Separate Index Method (RASIM), that supports both top-k pruning and efficient
merging. RASIM is novel in the sense that objects in each index are clustered
in two different orders, so that it supports top-k pruning and efficient merging
simultaneously. This is achieved by a partitioning technique that partitions objects
in each index into rank-aware groups that contain the objects with similar scores. We
apply the first order to these groups based on their scores and the second order to
the objects within each group based on their object IDs. Based on the rank-aware
groups, we propose two query processing algorithms: External Threshold Algorithm
(External TA) and Generalized External TA. External TA extends Threshold Algo-
rithm (TA) proposed by Fagin et al. [11] to handle groups (mapped to disk pages)
of objects rather than individual objects as the unit of pruning. Generalized External
TA enhances the performance of External TA by exploiting special properties of the
rank-aware groups to be explained in Section 4.3.3.

114 World Wide Web (2013) 16:111–139

We make the following four contributions. First, RASIM is the first work that
supports top-k pruning based on the separate index approach for top-k spatial
keyword queries. Second, we propose two query processing algorithms based on
the rank-aware groups: External TA and Generalized External TA. Third, RASIM
is space efficient in that it supports top-k pruning without having to store part of
the inverted index redundantly as opposed to the IR-tree method. Experimental
results show that the size of RASIM is reduced by up to 1.85 times compared with
that of the IR-tree method. Fourth, RASIM has better query performance than
the IR-tree method. There are three reasons for this improvement: (i) the pruning
power of RASIM, which follows that of TA, is comparable to or better than the
IR-tree method; (ii) RASIM consolidates the index so that a single I/O is capable
of retrieving objects in both orders, which reduces index access time, while the IR-
tree method needs to access additional index to perform the same function; and
(iii) RASIM clusters the text index in one file while the IR-tree method stores it
in multiple files over different nodes resulting in multiple fragmented text indexes.
Experimental results show that the query performance of RASIM is improved from
1.08 to 3.22 times compared with that of the IR-tree method.

The rest of this paper is organized as follows. Section 2 describes related work.
Section 3 formally defines the top-k spatial keyword query. Section 4 proposes
the rank-aware separate indexes and query processing algorithms based on them.
Section 5 presents the results of performance evaluation. Section 6 summarizes and
concludes the paper.

2 Related work

Top-k queries A top-k query returns k objects that have the highest (or lowest)
scores according to user preference [18]. The representing work for top-k queries are
Threshold Algorithm (TA) proposed by Fagin et al. [11] and the ONION method
proposed by Chang et al. [7]. TA uses, as the input, multiple lists each of which
is sorted by one attribute. The ONION method regards objects as points in a
multidimensional space and constructs a list of layers for them.

Text retrieval queries A text retrieval query returns documents that include a set of
keywords given in the query. The inverted index is the most widely used for this query
type [3, 35]. Figure 2 shows the structure of the inverted index. The inverted index
consists of keywords and posting lists with each list being associated with a keyword.
Each posting list consists of postings where each posting contains the information
such as the document identifier (DocID) and the frequency of occurrence of the
keyword, i.e., the term frequency (TF), in the document. In addition, a B+-tree on
keywords (simply, the keyword index) can be built to search the posting list of a
specific keyword efficiently.

The representatives of ranking measures for text retrieval queries are the query-
independent score such as PageRank [5] and the query-dependent score such as TF-
IDF [9]. For the former, we can efficiently retrieve the top-k results by maintaining
the postings in each posting list in the order of the (query-independent) score and by
accessing them according to this order [5]. For the latter, since the cost of calculating
the exact scores of all the documents with respect to the given keywords is expensive

World Wide Web (2013) 16:111–139 115

<DocID, TF>

DocID: document identifier
TF: term frequency of keyword k in document d

the keyword index posting lists of keywords

a posting

Figure 2 The structure of the inverted index.

[35], several heuristic approaches [1, 6] have been proposed to find the top-k results;
they maintain the postings in each posting list in the order of the term frequency
(TF) or term frequency-inverse document frequency (TF-IDF) and compute the
approximate scores of the objects accessing only part of the posting lists. Long et al.
[20] propose a method that finds the top-k results using both PageRank and TF-IDF
as ranking measures.

Guo et al. [13] propose an efficient method for updating the query-independent
score of documents. The main idea is to divide each posting list into chunks, each
of which is composed of postings with similar query-independent scores and a score
range. The method reflects the updated score to the index only when the new score
is out of the range of the chunk to which the document belongs. RASIM adopts
a similar index structure in that objects are grouped based on the score. However,
the work by Guo et al. cannot be applied to top-k spatial keyword queries due to
the following distinct properties in top-k spatial keyword queries. First, the scores of
the objects in top-k spatial keyword queries are determined dependent of the query
while Guo et al. deal with the scores (such as PageRank) that can be determined
independent of the query. Second, top-k spatial keyword queries deal with the scores
that are calculated by component scores from multiple sources (i.e., text descriptions
and location descriptions) while Guo et al. deal with the score that is from a single
source. Thus, we need a new top-k pruning technique for dealing with the query-
dependent scores from multiple sources.

Nearest neighbor queries A nearest neighbor query returns objects geographically
closest to the query point. The incremental nearest neighbor (Incremental NN)
algorithm proposed by Hjaltason et al. [17] is a representative work on nearest
neighbor queries and is used by several existing works on top-k spatial keyword
queries [10, 12]. Incremental NN finds objects closest to the query point one object
at a time by computing the distance between the MBR of each node and the query
point and by choosing the next node to access in the R-tree.

Spatial keyword queries Chen et al. [9] propose a separate index method that uses
grid-based spatial structures in memory as the spatial index. This approach can
efficiently merge the results from each index by clustering both spatial objects in
each cell of the spatial index and the postings in each posting list in the same order
of object IDs. The query processing algorithm merges the objects retrieved from

116 World Wide Web (2013) 16:111–139

the two indexes using the object IDs and filters out those merged objects that are not
included in the query region by accessing the spatial objects themselves. This method
handles merging efficiently, but cannot handle top-k pruning.

Zhou et al. [34] propose a method based on the hybrid index approach building the
inverted index on each leaf node of the R*-tree, or the R*-tree on each posting list of
the inverted index. Vaid et al. [28] presents an index whose structure is very similar to
that of Zhou et al. [34]. Park et al. [23] propose a method that uses the R-tree as the
spatial index and the S-tree, a hierarchical signature file with a structure symmetric
to the R-tree, as the text index. This method connects each node of the R-tree to a
node in the S-tree. Hariharan et al. [15] propose an R-tree-based method in which
each node stores a list of keywords included in the objects of the node. Although all
of these methods find the objects that satisfy spatial and keyword predicates, they do
not handle top-k pruning.

Top-k Spatial keyword queries Cong et al. [10] and Li et al. [19] propose the IR-
tree method that supports top-k pruning based on the hybrid index approach. IR-
tree builds the inverted index on each node of the R-tree. It extends Incremental NN
[17] to use the score that combines spatial proximity and text relevancy instead of the
distance. The score is derived from spatial proximity using MBRs in the R-tree and
text relevancy using the inverted index. Figure 3 shows the structure of the IR-tree
using the example in Figure 1. Figure 3a shows objects clustered by spatial proximity;
Figure 3b shows the structure of the IR-tree. In each leaf node, the inverted index is
built on the objects in the node. In each internal node, an inverted index is built on
its children, and each posting is composed of the child ID (CID) for a child node and
the maximum TF of the postings in the posting list of the corresponding keyword in
the child node. We note that 1) the inverted indexes on internal nodes are redundant
representation of the inverted indexes on the leaf nodes, which can be obviated in
the separate index approach, and 2) the inverted indexes are stored in multiple files
over different nodes.

Rocha-Junior et al. [24] propose the Spatial Inverted Index (simply, S2I). S2I is a
method based on the hybrid index approach and builds the R-tree on each posting
list of the inverted index. It retrieves the results by evaluating R-trees on the posting
lists for the query keywords using Incremental NN. A major assumption in S2I is that
only the objects including the query keywords can be the candidates for the result.
However, typical top-k queries, including top-k spatial keyword queries, do not
require this assumption. Due to this assumption, S2I cannot generate the same results
as in the typical top-k spatial keyword queries. Figure 4 shows the structure of S2I
for keywords k1 and k2. Let us suppose a query where q.keywords = {k1} to retrieve
top-2 results according to the combined scores by summation of spatial proximity
and text relevancy. Even if the correct answer is {o5, o1}, S2I retrieves {o1, o3} as
the results since it builds the index only for o1 and o3 and processes only them. This
approximation affects the query performance since S2I considers only the objects
including query keywords, but not all the objects based on the scoring function. Thus,
it is unfair to directly compare RASIM with S2I since RASIM guarantees to provide
correct results. The correctness of RASIM is proved in Theorems 1 and 2.

Martin et al. [21] propose a naive method based on the separate index approach.
The method retrieves the results from each index, sorts them by each ranking
measure, and then, computes combined scores by merging them. Meanwhile, Felipe
et al. [12] deal with the problem using only spatial proximity as the ranking measure

World Wide Web (2013) 16:111–139 117

P1

o1 o2

P4:

P1:

<1, 2> <2, 1>

<1, 3>

<2, 1>

3, 2> <4, 3>

<3

<

, 2>

5, 1>

<5

<

, 2> <6, 1>

<5, 1> <6, 1>

o3 o4 o5 o6P2: P3:

P2 P3P5:

P4 P5P6:

keyword
(CID, TF)

vegetable <1, 2>

food

vegetable

food

<1, 3>

meat

vegetable

food

meat

vegetable

food

meat

<1, 1>

 , 3> <4, 1>

<3

<3

, 2> <4, 2>

<4, 1>

keyword Posting list
(CID, TF)

keyword Posting list
(DocID, TF)

keyword Posting list
(DocID, TF)

keyword Posting list
(CID, TF)

vegetable <5, 2> <6, 3>

food <5, 3> <6, 1>

meat

vegetable

food

meat

<5, 1> <6, 2>

(a) Clustering objects based on spatial proximity in the R-tree.

(b) The structure of the IR-tree based on (a).

q.loc

Posting list

keyword
(DocID, TF)
Posting list

o

o

o

o

o

o

P
P

P

P

P P
P

3

3

5

5

2

2

4

4

4

1
1

6

6

Figure 3 The structure of the IR-tree.

and keywords only as filtering conditions. In their method, they use an R-tree based
index structure in which each node has additional signature information on text
description of the objects in the node. This method cannot be applied to top-k spatial
keyword queries, which consider not only spatial proximity but also text relevancy,
since text relevancy cannot be effectively calculated using the signature information
[35].

Objects
Spatial

Proximity
Text

Relevancy (k1)

o1 0.3 0.5

o3 0.5 0.1

o2 0.1 0.0

o4 0.7 0.0

o5 0.9 0.0

S2I for keyword k1

Objects
Spatial

Proximity
Text

Relevancy (k2)

o1 0.3 0.0

o3 0.5 0.1

o2 0.1 0.5

o4 0.7 0.3

o5 0.9 0.0

S2I for keyword k2

Figure 4 The structure of S2I.

118 World Wide Web (2013) 16:111–139

3 Problem definition

In this section, we formally define the problem of the top-k spatial keyword query.
Let D be a database. Each object o in D is defined as a pair (o.loc, o.doc) where
o.loc is the location description in a multidimensional space and o.doc is the text
description that describes the object. We represent o.loc as an MBR as in IR-tree
[10]. Table 1 summarizes the notation. A top-k spatial keyword query q is defined
as a 4-tuple (q.loc, q.keywords, q.k, q.p). Top-k spatial keyword queries retrieve k
objects with the highest (or lowest) combined scores. Without loss of generality, in
the rest of this paper, we assume that we are looking for objects having the highest
scores.

We use the following combined scoring function f (q, o) as defined in [10].

f (q, o) = q.p ∗ fSP(q.loc, o.loc)/maxSP

+ (1 − q.p) ∗ fT R(q.keywords, o.doc)/maxT R (1)

The component scores fSP(q.loc, o.loc) and fT R(q.keywords, o.doc) are normal-
ized by maxSP and maxT R, respectively. In (1), f (q, o) uses the OR semantics [9]
to combine fSP() and fT R(). Hence, objects that do not include q.keywords (i.e.,
fT R() = 0) may still belong to the result sets according to their combined scores.

The value of fSP(q.loc, o.loc) can be computed according to any measure that
reflects the spatial similarity between an object and a query point. In this paper,
we use the Euclidian distance ED, and fSP(q.loc, o.loc) is computed by (maxSP –
ED(q.loc, o.loc)). The higher the value of fSP(q.loc, o.loc), the more relevant it is to
the query.

The value of fT R(q.keywords, o.doc) can be computed according to any mea-
sure that reflects the similarity between a set of keywords and an object. In

Table 1 The notation.

Symbols Definitions

q.loc The location description specified in q
q.keywords The set of keywords {k1, k2, ..., kn} specified in q
q.k The desired number of results for q
q.p The user preference: the weight for the spatial component score

(1-q.p: the weight for the keyword component score)
f (q, o) The combined score of object o with respect to the query q
fSP(loci, loc j) Spatial component score computed from spatial proximity between

location descriptions loci and loc j

fT R(q.keywords, o.doc) Keyword component score computed from text relevancy between
q.keywords and text description o.doc of the object o

T F(o.doc, ki) Term frequency for the keyword ki in the text description o.doc of
the object o

DF(D, ki) Document frequency for the keyword ki in D (i.e., the number of
postings in the posting list for the keyword ki)

N The number of objects in the database
ED(loci, loc j) The Euclidean distance between location descriptions loci and loc j

maxSP The maximum spatial component score: maxox,oy∈D ED(ox.loc, oy.loc)
maxT R The maximum keyword component score:

maxo∈D fT R(q.keywords, o.doc)

World Wide Web (2013) 16:111–139 119

this paper, we use the term-weighting scheme [3] as shown in (2), which is the
best known query-dependent score for measuring text relevancy. The higher
the value of fT R(q.keywords, o.doc), the more relevant it is to the query. In
fT R(q.keywords, o.doc) we assume the OR semantics [20]; i.e., objects including only
a subset of q.keywords can have scores as well.

fT R(q.keywords, o.doc) =
n∑

i=1

fT R(q.ki, o.doc) =
n∑

i=1

T F(o.doc, ki) log
N

DF(D, ki)

(2)

In this paper, we focus on the efficiency of query processing and not on the
effectiveness of a ranking function. In addition to (1), any arbitrary ranking function
that is monotone with respect to the spatial component score and the keyword
component score can be used.

4 The rank-aware separate index method (RASIM)

4.1 The concept

Top-k spatial keyword query processing based on the separate index approach
requires two different orders for clustering: (i) ordering for efficient merging of
objects retrieved from the spatial index and from the text index and (ii) ordering
for top-k pruning. For the former, we can order objects according to their object
IDs. For the latter, we can order objects according to their component scores and
find the top-k results by applying top-k query processing methods such as Threshold
Algorithm [11]. We note that we should consider two different orders for clustering
simultaneously for top-k spatial keyword queries.

In this section, we present the basic idea of RASIM. RASIM supports clustering
objects by two different orders through a two-step process: the partitioning step and
the sorting step as shown in Figure 5. The former partitions the set of objects into
groups that contains objects with similar component scores. We call each group of
objects in Figure 5 a rank-aware group. The latter sorts (i) rank-aware groups by
scores and (ii) objects in each rank-aware group by object IDs.

Objects
Component

Score
Component

Score

o1 0.6

o2 0.2

o3 0.1

o4 0.7

Objects

o4 0.7

o1 0.6

o2 0.2

o3 0.1

R1

R2

o1 0.6

o4 0.7

o2 0.2

o3 0.1

R1

R2

partitioning
step

sorting
step

(a) Original objects and
their components cores.

(b) Objects are partitioned into
R1 and R2 according to their
component scores.

(c) Rank-aware groups are sorted
by component scores; objects in
each group are sorted by object IDs.

Component
Score

Objects
Component

Score

Figure 5 The two-step process for clustering objects by two different orders.

120 World Wide Web (2013) 16:111–139

For the rest of the paper, we denote “rank-aware” as RA. Each RA group R
has a range of component scores bounded by lower bound(R), which is a score lb
satisfying that lb <= component score(o) for all o in R, and upper bound(R), which
is a score ub satisfying that ub >= component score(o) for all o in R. We will explain
how to determine lower bound(R) and upper bound(R) for each component score
in Section 4.3.1. We note that the component scores of objects for a top-k spatial
keyword query can be computed only when the query is given. Thus, we partition the
set of objects according to their similarity such as spatial proximity or text relevancy
used for calculating the component scores rather than component scores themselves;
we then obtain a sorted list of the groups according to component scores dependent
of the query when the query is given.

Based on the concept of the RA group, we propose two query processing algo-
rithms: External TA and Generalized External TA. External TA extends Threshold
Algorithm (TA) [11], which uses individual objects as the unit, to use the RA groups
as the unit. Generalized External TA enhances External TA. In External TA, we
observe two types of inefficiencies: (i) it accesses two lists equally regardless of the
user preference even if it is desirable to process more objects from the list with a
higher weight and (ii) unnecessary object accesses are required due to the overlap of
the score ranges among the RA groups. Generalized External TA solves these types
of inefficiencies of External TA by generalizing the concept of the RA group. We
elaborate on these algorithms in Section 4.3.

4.2 RA separate indexes

RASIM uses an RA spatial index for search by location and an RA inverted index for
search by text. Collectively, we call them RA separate indexes. Each index consists of
a set of RA groups; objects1 in each group are sorted by their object IDs. We use the
RA group as the unit of physical access mapped to one disk page.

The RA spatial index The RA spatial index is an index for spatial data that consists
of a multilevel directory and leaf nodes. In the RA spatial index, an entry in the
leaf-level node represents the MBR and the pointer to an object; an entry in a non-
leaf-level node represents the MBR containing the objects in a child directory node
or a leaf node together with the pointer to the node. Each leaf node of the RA spatial
index contains a set of objects clustered by spatial proximity. The RA spatial index
regards each leaf node as an RA group; entries in each group are sorted according
to their object IDs.2 Each entry in the group is a triple <object ID, object pointer,
MBR>. Options for the RA spatial index include the R-tree family [4, 14, 25] and
the MBR-MLGF [26].

1Objects are actually stored in the data file, and the index has an entry for each object that indicates
the information on the object such as the object ID and the pointer to that object. For convenience,
however, when there is no ambiguity, we denote an entry as an object.
2This step can be omitted if the objects are already in the object ID order. For example, when MBR-
MLGF [26] is used for the RA spatial index, it maintains the objects in each leaf node according to
the Z-order. In that case, we do not need to sort the objects in the RA group if we use the Z-order
values themselves as object IDs. If the index requires a different order among the entries in a leaf
node, the index access algorithm may have to be slightly modified to accommodate the order RASIM
requires.

World Wide Web (2013) 16:111–139 121

(a) Representation of objects and MBRs. (b) The structure of the RA spatial index for (a).
<Ni> represents the pointer to the node Ni.
Leaf nodes N1,N2,N3 are RA groups.

N3N2N1

N4 N5

N6

object
ID

object
pointer

MBR

q.loc

N1

N2

N3

N4

N5

N6

o .loc

o

o

o

o
o loc

.loc

.loc

.loc

.loc

4

3

5

6

1

o1

<N1> <N2> <N3>

<N5><N4>

o2 o3 o4 o5 o6
2

Figure 6 An example RA spatial index.

Example 1 Figure 6a shows objects and MBRs of objects in an RA spatial index.
Figure 6b shows the structure of the RA spatial index for the objects shown in
Figure 6a. N4, N5, and N6 are non-leaf pages; N1, N2, and N3 leaf pages, each of
which is an RA group.

The RA inverted index In the RA inverted index, each keyword corresponds to
a posting list. Each posting list is partitioned into RA groups according to text
relevancy. As shown in (2), text relevancy of the postings in a posting list for keyword
ki can be determined by T F(oj.doc, ki) since all the postings in the posting list have
the same DF(D, ki) and N. RA groups in each posting list are maintained in the
order of T F(oj.doc, ki); postings in each group are sorted according to their object
IDs. Each posting is a triple <object ID, object pointer, T F(oj.doc, ki)>. The RA
inverted index uses the subindex [31, 32] to support search for the specific posting of
an object.

Example 2 Figure 7 shows an example RA inverted index. Rvegetable,1 indicates the
RA group that contains the objects with the highest TFs in the posting list of the
keyword ‘vegetable’.

<1, pointer(o1), 2> <4, pointer(o4), 3> <3, pointer(o3), 2> <5, pointer(o5), 1>

<1, pointer(o1), 3> <5, pointer(o5), 2> <3, pointer(o3), 2> <6, pointer(o6), 1>

Rvegetable,1 Rvegetable,2Keyword “vegetable”

Subindex

Rfood, 1 Rfood,, 2Keyword “food”

Subindex

<object ID, object pointer, TF(oj.doc, ki)>

<2, pointer(o2), 1>

Rvegetable, 3

Figure 7 An example RA inverted index.

122 World Wide Web (2013) 16:111–139

4.3 Query processing algorithms based on the RA separate indexes

We first present in Section 4.3.1 a method to obtain a sorted list of the RA groups
according to their component scores from the RA separate indexes when the query
is given. We then present two query processing algorithms—External TA and
Generalized External TA—in Sections 4.3.2 and 4.3.3, respectively.

4.3.1 Dynamic sorted RA group list

Definition 1 The sorted RA group list L is defined as the list of RA groups {Ri}
(1 ≤ i ≤ n) that are sorted by upper bound(Ri). The current RA group of L is defined
as the RA group that is being processed for the query. The next RA group of L is
defined as the RA group Ri+1 to access after the current RA group Ri in L.

We denote the sorted RA group list for the spatial component score as LSP and
that for the keyword component score as LT R. We define SSP (ST R) as an upper
bound of the next RA group in LSP (LT R). We construct the sorted RA group lists
LSP and LT R by accessing the current RA group one by one from the RA spatial
index and the RA inverted index, respectively.

The sorted RA group list LSP To obtain the current RA group of LSP, we apply the
Incremental NN algorithm [17] in the unit of RA groups instead of individual objects.
For Incremental NN, we maintain a priority queue that sorts the RA groups by their
upper bounds. We obtain the current RA group from the front of the priority queue.3

Here, we use fSP(q.loc, MBR(R)) as upper bound (R) of an RA group R since the
spatial component score fSP() of any object in R cannot be higher than fSP(q.loc,
MBR(R)). We can compute fSP(q.loc, MBR(R)) without accessing R, which is a
leaf node of the RA spatial index, since MBR(R) can be obtained from the parent of
R in the RA spatial index. SSP can be obtained as fSP(q.loc, MBR(NG)) where NG
is the next RA group of LSP and can be obtained from the priority queue.

Example 3 Let us consider q.loc in Figure 1 as q.loc of a top-k spatial keyword query.
In Figure 8, we obtain the spatial component scores of objects and RA groups with
respect to q.loc from Figure 6a. Here, the spatial component score fSP() is calculated
as (maxSP – ED(q.loc,o.loc)) as explained in Section 3. The current RA group of
LSP is N1 = {(o1, 0.6), (o2, 0.7)} since upper bound (N1), i.e., fSP(q.loc, MBR(N1)),
is the highest among those of the RA groups. SSP = 0.5 from fSP(q.loc, MBR(N2))
since N2 is the next RA group of LSP.

The sorted RA group list LT R When a single query keyword is given, the current
RA group is obtained from the posting list for the keyword. When multiple query
keywords are given, the current RA group is obtained by merging the current RA
groups from multiple posting lists—one for each query keyword. We first summarize
the notion for the sorted RA group list LT R in Table 2.

3When we use the R+-Tree [4] as the RA spatial index, we need to eliminate duplicated objects since
an object may be stored in multiple leaf nodes.

World Wide Web (2013) 16:111–139 123

Figure 8 The spatial
component scores fSP() of
objects and RA groups with
respect to q.loc.

Objects fSP(q.loc, ox)

o1 0.6

o2 0.7

o3 0.3

o4 0.4

o5 0.2

o6 0.4

RA groups fSP(q.loc, MBR(Ny))

N1 0.8

N2 0.5

N3 0.4

N1

N2

N3

Figure 9 shows the algorithm for retrieving the current RA group of LT R. The in-
put to the algorithm is q.keywords. We obtain the current RA group from Rcandidates,
which is obtained by n-way merging the current RA group (ki) (ki ∈ q.keywords)
according to object IDs. Since the current RA group (ki) (ki ∈ q.keywords) is
mapped to a disk page, we can access the objects with similar keyword component
scores for each keyword by a disk I/O. When there are multiple keywords in
q.keywords, since the size of Rcandidates could be different from that of an RA group,
NP, we retrieve NP objects as a unit. We retrieve NP objects of Rcandidates as the
current RA group in the order of the object ID; we maintain the remaining objects
in Rcandidates for the next RA group. If the current size of Rcandidates is less than NP,
we access the next RA group (ki) (ki ∈ q.keywords) and merge them into Rcandidates

until the size of Rcandidates is larger than or equal to NP except when no more RA
group for ki remains. fT R(q.keywords, o.doc) of an object o in the current RA group
is computed as

∑n
i=1 fT R(ki, o.doc) by (2). If o is not included in the current RA

group (ki) for keyword ki, we obtain fT R(ki, o.doc) by searching for a posting of o
from the posting list for ki using the subindex.

ST R is determined as the maximum value of (i) the highest value of keyword
component scores fT R(q.keywords, o.doc) of the objects remaining in Rcandidates and
(ii) an upper bound of keyword component scores of the objects that have not yet
been included in Rcandidates. The latter can be obtained as

∑n
i=1 ST R(ki) since each

ST R(ki) is an upper bound of the next RA group (Ri). Here, we use the lowest value
of fT R(ki, o.doc) of the objects in the current RA group (ki) as ST R(ki) since RA
groups R j (1 ≤ j ≤ n) in LT R(ki) are disjoint.

Table 2 Summary of notation for LT R.

Symbols Definitions

NP The maximum number of postings stored in an RA group
LTR(ki) The RA groups Ri (1 ≤ i ≤ n) that are sorted by TFs in the

posting list for keyword ki

The current RA group (ki) The RA group that is being processed in LTR(ki)
The next RA group (ki) The RA group Ri+1 to access after the current RA group (ki) Ri

in LT R(ki)
STR(ki) An upper bound of the next RA group (ki)
Rcandidates The objects that have so far been included in the current RA group

(ki) (ki ∈ q.keywords) but that have not yet been included in the
current RA group of LTR

124 World Wide Web (2013) 16:111–139

Algorithm RetrieveCurrentRAGroupOfLTR:

1: Input: q.keywords: {k1, k2, … , kn}

2: Output: CGTR: the current RA group of LTR

3: CGTR := {};

4: Rtemp :={};

/* Rcandidates stores the objects that have so far been included in the current RA group(ki)

(ki ∈

∈

q.keywords) but that have not yet been included in the current RA group of LTR */

5: IF |Rcandidates| NP THEN BEGIN

6: Store NP objects of Rcandidates into CGTR in the order of object ID;

7: Rcandidates := Rcandidates – CGTR;

8: END

9: ELSE BEGIN

10: WHILE |Rcandidates| < NP DO BEGIN

/* R(ki) denotes the current RA group (ki) */

11: Store a list of objects obtained by n-way merging (i.e., outer join) of R(ki)’s

(ki q.keywords) into Merged;

12: WHILE objects are remaining in Merged DO BEGIN

13: o := the first element in Merged;

14: IF o has not yet been included in Rcandidates THEN BEGIN

15: fTR(q.keywords, o.doc) := 0; /* initialize */

16: FOR i := 1 to n DO BEGIN /* for each keyword ki in q.keywords */

17: IF o is included in the current RA group(ki) THEN

18: Compute fTR(ki, o.doc);

19: ELSE BEGIN

20: Search for the posting of o from the posting list for ki using subindex;

21: Compute fTR(ki, o.doc);

22: END

23: fTR(q.keywords, o.doc) := fTR(q.keywords, o.doc) + fTR(ki, o.doc);

24: END

25: IF |Rcandidates| < NP THEN

26: Merge <o, fTR(q.keywords, o.doc)> into Rcandidates in the order of object IDs;

27: ELSE

28: Append <o, fTR(q.keywords, o.doc)> into Rtemp;

29: Mark that o has been included in Rcandidates in the hash table;

30: END

31: Advance o to the next object in Merged;

32: END

33: FOR i := 1 to n DO /* for each keyword ki in q.keywords */

34: Advance R(ki) to the next RA group(ki);

35: END

36: CGTR := Rcandidates:

37: Rcandidates := Rtemp;

38: END

39: RETURN CGTR;

≥

Figure 9 The algorithm for retrieving the current RA group of LT R.

World Wide Web (2013) 16:111–139 125

Example 4 Let us consider {‘vegetable, ‘food’} as q.keywords of a top-k spatial
keyword query. In Figure 10, we obtain the keyword component scores of the objects
with respect to q.keywords from Figure 7. Here, NP (i.e., the maximum number
of postings stored in an RA group) is 2. The keyword component score fT R()
is calculated using (2). For example, fT R(q.keywords, o1) = fT R(‘vegetable’, o1)
+ fT R(‘food’, o1) by (2); fT R(‘vegetable’, o1) = 0.158 since T F(o1, ‘vegetable’) = 2,
N = 6, and DF(D, ‘vegetable’) = 5; fT R(‘food’, o1) = 0.528 since T F(o1, ‘food’) = 3
and DF(D, ‘food’) = 4.

The current RA group of LT R is obtained from Rcandidates; Rcandidates is obtained
by merging the current RA group (‘vegetable’) and the current RA group (‘food’).
Hence, Rcandidates = {(o1, 0.686), (o4, 0.237), (o5, 0.431)}; the current RA group of
LT R is {(o1, 0.686), (o4, 0.237)}; o5 remains in Rcandidates for the next RA group.
ST R = 0.510 from the maximum value of (i) fT R(q.loc, o5) = 0.431 (i.e., the highest
keyword component score fT R() among the objects remaining in Rcandidates) and (ii)∑n

i=1 ST R(ki) = 0.510 (i.e., ST R(‘vegetable’) = 0.158 and ST R(‘food’) = 0.352).

4.3.2 External Threshold Algorithm (External TA)

The Threshold Algorithm (TA) [11] is a method that supports top-k pruning by using
individual objects as the unit when sorted lists are given. TA retrieves k objects with
the highest combined scores while accessing sorted lists in parallel until top-k objects
whose scores are higher than the threshold value are obtained. TA maintains the
threshold value by applying the component score of the last object accessed from
each list into the scoring function. If an object o is accessed from only one list, TA
randomly accesses o in the other list to obtain the component score.

To support top-k pruning when using the RA group as the unit, we propose
External TA that extends TA to handle the RA group rather than individual objects.
We use the RA group as the unit of I/O by mapping it to one disk page. We note
that the objects in an RA group have similar component scores and are retrieved by
one disk I/O operation. To explain External TA, we first define the threshold value
in Definition 3.

Definition 2 The threshold value is defined as (1) obtained by substituting the spatial
component score fSP() with SSP and the keyword component score fT R() with ST R.

Figure 11 shows External TA. The inputs are the lists LSP, LT R, and a top-k spatial
keyword query q; the output is the list of top-k objects with the highest combined

Objects fTR(‘vegetable’, ox)

o1 0.158

o4 0.237

o3 0.158

o5 0.079

o2 0.079

Rvegetable, 1

Rvegetable, 2

Objects fTR(‘food’, ox)

o1 0.528

o5 0.352

o3 0.352

o6 0.176

Rfood, 1

Rfood, 2

Objects fTR(q.keywords, ox)

o1 0.686

o2 0.079

o3 0.510

o4 0.237

o5 0.431

o6 0.176Rvegetable, 3

Figure 10 The keyword component score fT R() of objects with respect to q.keywords.

126 World Wide Web (2013) 16:111–139

Algorithm ExternalTA:

1: Input: (1) LSP, (2) LTR, (3) q: a top-k spatial keyword query

2: Output: Result: the list of top-k objects with the highest combined scores f()

3: CSLowerThanThreshold:= {}; /* initialize CSLowerThanThreshold */

4: CSHigherThanThreshold :={}; /* initialize CSHigherThanThreshold */

5: REPEAT

/* Step 1: Retrieve the current RA groups and compute the threshold value Threshold */

6: Retrieve the current RA groups CGSP of LSP and CGTR of LTR;

7: Compute Threshold by plugging SSP and STR into Eq. (1) as the component scores;

/* Step 2: Examine the objects in CSLowerThanThreshold */

8: FOR each o CSLowerThanThreshold DO BEGIN

9: IF f(q, o) > Threshold THEN BEGIN

10: CSHigherThanThreshold := CSHigherThanThreshold {o};

11: CSLowerThanThreshold:= CSLowerThanThreshold – {o};

12: END

13: END

/* Step 3: Examine the objects in the current groups */

/* CGSP and CGTR are in the order of the object ID */

14: i := the first element in CGSP; j := the first element in CGTR;

15: WHILE objects are remaining in either CGSP or CGTR DO BEGIN

/* Step 3-1: Compute the combined score of each object o */

16: IF object ID(i) = object ID(j) THEN BEGIN

17: o := i; /* o is retrieved from both lists LSP and LTR */

18: Compute the combined score f(q, o) in Eq. (1);

19: Advance i and j to the next object in CGSP and CGTR, respectively;

20: END

21: ELSE IF object ID(i) > object ID(j) THEN BEGIN

22: o := j; /* o is retrieved only from LTR */

23: Do random access to the other list LSP to obtain the spatial component score of o;

24: Compute the combined score f(q, o) in Eq. (1);

25: Advance j to the next object in CGTR;

26: END

27: ELSE BEGIN /* object ID(i) < object ID(j) */

28: o := i; /* o is retrieved only from LSP */

29: Do random access to the other list LTR to obtain keyword the component score of o;

30: Compute the combined score f(q, o) in Eq. (1);

31: Advance i to the next object in CGSP;

32: END

/* Step 3-2: Store the object according to its combined score */

33: IF f(q, o) > Threshold THEN

34: CSHigherThanThreshold := CSHigherThanThreshold {o};

35: ELSE /* f(q, o) Threshold */

36: CSLowerThanThreshold:= CSLowerThanThreshold {o};

37: END

38: UNTIL |CSHigherThanThreshold | k

/* Step 4: Retrieve the top-k results */

39: RETURN top-k objects in CSHigherThanThreshold ;

∈

∪

∪

∪
≤

≥

Figure 11 External TA.

World Wide Web (2013) 16:111–139 127

scores in (1). The algorithm initializes CSLowerThanThreshold, the objects whose
combined scores (CS) are lower than or equal to the threshold value, and CSHigh-
erThanThreshold, the objects whose combined scores are higher than the threshold
value. These objects are maintained in the order of the combined score in a priority
queue. The algorithm iteratively performs the following three steps until the number
of the objects in CSHigherThanThreshold becomes higher than or equal to k. In
Step 1, the algorithm first retrieves the current RA groups of LSP and LT R. It then
computes the threshold value by plugging SSP and ST R into (1) as the component
scores. In Step 2, the algorithm examines the objects in CSLowerThanThreshold.
If the combined score of an object in CSLowerThanThreshold is higher than the
threshold value, it stores the object in CSHigherThanThreshold. In Step 3, the
algorithm examines the objects in the current RA groups. First, it computes the
combined scores of the objects in the current RA groups. If an object o is retrieved
from both lists LSP and LT R, the algorithm directly computes the combined score; if
o is retrieved from only one list Li, the algorithm randomly accesses the other list L j

(i �= j) to obtain the component score of o, and then, computes the combined score
f (q, o). Randomly accessing object o can be supported differently for each list. We
can easily obtain the spatial component score by accessing o in the data file through
a pointer to o maintained in the index since the location description for computing
the spatial component score is stored in the data file. However, we cannot obtain the
keyword component score from the data file since T F(ki, o.doc) and DF(ki, D) for
computing the keyword component score are not stored in the data file, but in the
index. In that case, we obtain it by searching for the posting of o from each posting
list for q.keywords using the subindex. Next, if the combined score f (q, o) is higher
than the threshold value, it stores the object in CSHigherThanThreshold; if not, it
stores the object in CSLowerThanThreshold. In Step 4, the algorithm returns top-k
objects in CSHigherThanThreshold.

Theorem 1 External TA correctly f inds the top-k results.

Proof In External TA, scores used for computing the threshold value are different
from those in TA. Hence, while TA uses the component score of the last object
accessed from each list, External TA uses SSP and ST R. We need to prove that SSP

(ST R) is an upper bound of component scores of the objects that have not yet been
retrieved from the list LSP (LT R). This holds for the following reasons: (i) SSP (ST R)
is obtained from the next RA group R whose upper bound (R) is the highest among
those of the RA groups that have not yet been retrieved from the list LSP (LT R) and
(ii) SSP (ST R) is an upper bound of the component scores of the objects in the next
RA group of LSP (LT R). The rest of the proof is the same as that for TA in Fagin
et al. [11]. ��

Example 5 Let us consider a top-k spatial keyword query q (q.loc, {‘vegetable’,
‘food’}, 1, 0.5) for the database in Figure 1. Thus, q.keywords = {‘vegetable’, ‘food’},
q.k = 1, and q.p = 0.5. We assume maxSP and maxT R are 1.0. The steps for
processing the query in External TA are as follows.

1. Retrieve the current RA groups:

– The current RA group of LSP is {(o1, 0.6), (o2, 0.7)} (from Example 3)

128 World Wide Web (2013) 16:111–139

– The current RA group of LT R is {(o1, 0.686), (o4, 0.237)} (from Example 4)

2. Compute the threshold value:

– SSP = 0.5 and ST R = 0.51 (from Examples 3 and 4)
– Threshold value = 0.505 (from (1) with SSP = 0.5, ST R = 0.510)

3. Calculate the combined scores of the objects in the current RA groups:

– f (q, o1) = 0.643 (from (1) with fSP(q.loc, o1) = 0.6 and fT R(q.loc, o1) =
0.686)

– f (q, o2) = 0.3895 (from (1) with fSP(q.loc, o2) = 0.7 and fT R(q.loc, o2) =
0.079)

– f (q, o4) = 0.3185 (from (1) with fSP(q.loc, o4) = 0.4 and fT R(q.loc, o4) =
0.237)

o1 is stored in CSHigherThanThresholdValue and is returned as the output since f (q,
o1) > threshold value.

4.3.3 Generalized External TA

In this section, we generalize the notion of the RA group as follows: (i) the RA group
has an arbitrary size mapped to a set of pages and (ii) score ranges of RA groups may
overlap. Then, we present Generalized External TA that enhances the performance
of External TA.

We first generalize the RA group such that an RA group has an arbitrary size. The
group size is the number of pages (or the number of objects) in an RA group. We
regard the original TA that deals with individual objects as a special case where each
group consists of one object. By controlling the group size, RASIM can be made a
method handling only top-k pruning or a method handling only efficient merging at
extremes. That is, if the group size is one object, RASIM becomes the former. If the
group size ≥ x pages, where x pages contain all the objects that can be the results,
RASIM becomes the latter. Since a large group size means that many objects can
be accessed and processed at a time, a larger group size means better efficiency for
large k.

Based on this generalization, we propose a weighted access technique that controls
the group size for each list in proportion to the user preference. By using a larger
group size for a list with a higher weight, we can enhance the performance since (i)
the threshold value can be decreased fast as we proceed and (ii) more objects can
be processed from the list with a higher weight. We present an intuitive example in
Example 6.

Example 6 Figure 12a shows the process of accessing the lists LSP and LT R in
proportion to the user preference; Figure 12b shows the process of accessing the lists
LSP and LT R with an equal proportion regardless of the user preference. Here, we
assume q.k = 3, q.p = 0.75, maxSP = 1.0, and maxT R = 1.0. In Figure 12a, after
accessing the current RA groups for each list, the threshold value and the combined
scores of the objects are as follows:

– Threshold value = 0.4 (from (1) with SSP = 0.3, ST R = 0.7)
– f (q, o1) = 0.5; f (q, o2) = 0.475; f (q, o5) = 0.75 (from (1) with fSP() and fT R()

in Figure 12)

World Wide Web (2013) 16:111–139 129

Objects fSP ()

o1 0.5

o2 0.6

o5 0.7

o3 0.1

04 0.3

< L >

Objects fTR()

o5 0.9

o1 0.5

o2 0.1

o3 0.7

04 0.3

< L >

Objects fSP ()

o2 0.6

o5 0.7

o1 0.5

o3 0.1

04 0.3

< L >

Objects fTR()

o3 0.7

o5 0.9

o1 0.5

o2 0.1

04 0.3

< L >

(a) Accessing the lists in proportion
to the user preference.

(b) Accessing the lists with an
equal proportion.

SP SPTR TR

Figure 12 An example for weighted access (q.p = 0.75).

In Figure 12(b), after accessing the current RA groups for each list, the threshold
value and the combined scores of the objects are as follows:

– Threshold value = 0.5 (from (1) with SSP = 0.5, ST R = 0.5)
– f (q, o2) = 0.475; f (q, o3) = 0.25; f (q, o5) = 0.75 (from (1) with fSP() and fT R()

in Figure 12)

We observe that we can retrieve all top-3 results in Figure 12a since the combined
scores of o1, o2, and o5 are higher than the threshold value. However, we retrieve
only o5 in Figure 12b.

Next, we generalize the RA group such that component score ranges of the RA
groups may overlap. By overlapping we mean the lowest component score of objects
in the current RA group may be lower than the upper bound of the objects that have
not yet been processed. The reason of this overlap in LSP is as follows. The order of
RA groups in LSP is determined by fSP(q.loc, MBR(R)), where R is an RA group.
fSP(q.loc, MBR(CG)), where CG is the current RA group, is the highest among
those of RA groups in LSP. However, fSP(q.loc, MBR(CG)) is an upper bound of
the spatial component scores of all the objects in CG. Thus, it does not guarantee
that the component score of every object in CG is higher than those of the objects in
the next RA group. This lack of guarantee comes from the fact that each RA group
is constructed not by the spatial component scores of objects but by similarity (i.e.,
spatial proximity) of objects. For example, in Figure 6a, while upper bound (N2),
fSP(q.loc, MBR(N2)), is higher than, upper bound (N3), fSP(q.loc, MBR(N3))—i.e.,
MBR(N2) is closer to q than MBR(N3)—the spatial component score fSP(q.loc, o3)
of o3 in N2 is lower than the spatial component score fSP(q.loc, o6) of o6 in N3—i.e.,
o3 is farther from q than o6 (see Figure 8).

The reason that the component score ranges of RA groups in LT R may overlap
is as follows. The component score ranges of the RA groups for each keyword
are partitioned. However, if we merge the current RA group (ki) for all ki ∈
q.keywords to obtain the current RA group of LT R, the overlap could occur. This
is because an object in the current RA group (kx) for a keyword kx may have a low
fT R(ky, o.doc) for another keyword ky, and consequently, the keyword component
score of the object can be lower than those of the objects that have not yet been

130 World Wide Web (2013) 16:111–139

processed. For example, in Figure 7, even though o5 is included in the current RA
group (‘food’) and o3 in the next RA group (‘food’), fT R(q.keywords, o3) is higher
than fT R(q.keywords, o5) (see Figure 10).

By using this generalization, we propose a deferred random access technique
that reduces random accesses required by External TA. Due to the overlap, the
spatial (keyword) component scores of the objects in the current RA group may
be lower than SSP (ST R), and the combined scores of these objects are lower than
the threshold value. From this property, we can reduce the number of random
accesses by deferring random accesses until they are necessary. When the object o is
included only in the current RA group of Li (i = SP or TR), we first simply compute
the highest possible combined score of o, which we denote by f (q, o), instead of
randomly accessing o. f (q, o) is computed from (1) by taking S j of the other list L j

(i �= j) as the component score. If f (q, o) is higher than the threshold value, o may
belong to the top-k result at this iteration, and we randomly access o from L j (i �= j) to
obtain the precise component score of o. If not, o cannot belong to the top-k result at
this iteration, and we do not need to access the objects; thus, we defer random access
to these objects—adding them to the next RA group for the next iteration.

Figure 13 shows Generalized External TA. The inputs are the lists LSP, LT R, and
a top-k spatial keyword query q. The output is the list of top-k objects with the
highest combined scores in (1). The algorithm initializes CSLowerThanThreshold
and CSHigherThanThreshold. It also initializes HPCSLowerThanThreshold, the
objects whose highest possible combined scores (HPCS) are lower than or equal
to the threshold value. We only explain Steps 1, 3, and 4-1 because Generalized
External TA is different from External TA only in these steps. In Step 1, the
algorithm retrieves the current RA groups CGSP and CGT R from LSP and LT R in
proportion to the user preference. In Step 3, the algorithm merges the objects in
HPCSLowerThanThreshold into CGSP and CGT R. Here, if each object in HPC-
SLowerThanThreshold was retrieved from LSP, it is merged into CGSP; if each
object was retrieved from LT R, it is merged into CGT R. In Step 4-1, if o is retrieved
from both lists LSP and LT R, the algorithm directly computes the combined score;
if o is retrieved from only one list Li, the algorithm does the following: If f (q, o)

is higher than the threshold value, the algorithm randomly accesses the other list
L j (i �= j) to obtain the component score of o; if not, the algorithm stores o in
HPCSLowerThanThreshold for the next iteration.

Theorem 2 Generalized External TA correctly f inds the top-k results.

Proof Unlike External TA, Generalized External TA excludes the objects whose
f (q, o) are lower than or equal to the threshold value from CSHigherThanThreshold
at this iteration. Thus, we only need to prove that such objects cannot belong to
CSHigherThanThreshold. If f (q, o) is lower than or equal to the threshold value, so
is the combined score of o since f (q, o) is the highest possible combined score of o.
Since the combined scores of the objects in CSHigherThanThreshold must be higher
than the threshold value, o cannot belong to CSHigherThanThreshold. ��

Example 7 In Example 5, the step for calculating the combined scores of the objects
in the current RA group is modified in Generalized External TA as follows:

– f (q, o1) = 0.643 (from (1) with fSP(q.loc, o1) = 0.6 and fT R(q.loc, o1) = 0.686)

World Wide Web (2013) 16:111–139 131

Algorithm Generalized External TA:

1: Input: (1) LSP, (2) LTR, (3) q: a top-k spatial keyword query

2: Output: Result: the list of top-k objects with the highest combined scores f()

3: CSLowerThanThreshold := {}; /* initialize CSLowerThanThreshold */

4: CSHigherThanThreshold:= {}; /* initialize CSHigherThanThreshold */

5: HPCSLowerThanThreshold := {}; /* initialize HPCSLowerThanThreshold */

6: REPEAT

/* Step 1: Retrieve the current RA groups and compute the threshold value Threshold */

7: Retrieve the current RA groups CGSP and CGTR from LSP and LTR in proportional to

the user preference;

8: Compute Threshold by plugging SSP and STR into Eq. (1) as the component scores;

/* Step 2: Examine the objects in CSLowerThanThreshold */

9: … // These lines are omitted because they are the same as line 8~13 of External TA in Fig. 11

/* Step 3: Merge the objects in HPCSLowerThanThreshold into the current RA groups */

10: FOR each o HPCSLowerThanThreshold DO BEGIN

11: IF o was retrieved from LSP THEN

12: CGSP := CGSP {o};

13: ELSE /* o was retrieved from LTR */

14: CGTR := CGTR {o};

15: HPCSLowerThanThreshold := HPCSLowerThanThreshold – {o};

16: END

/* Step 4: Examine the objects in the current groups */

/* CGSP and CGTR are in the order of the object ID */

17: i := the first element in CGSP; j := the first element in CGTR;

18: WHILE objects are remaining in either CGSP or CGTR DO BEGIN

/* Step 4-1: Compute the combined score of each object o */

19: IF object ID(i) = object ID(j) THEN BEGIN

20: … // These lines are omitted because they are the same as line 8~13 of External TA in Fig. 11

21: ELSE IF object ID(i) > object ID(j) THEN BEGIN

22: o := j; /* o is retrieved only from LTR */

23: Compute f(q, o);

24: IF f(q, o) > Threshold THEN BEGIN

25: … // These lines are omitted because they are the same as line 8~13 of External TA in Fig. 11

26: ELSE /* f(q, o) Threshold */

27: HPCSLowerThanThreshold := HPCSLowerThanThreshold {o};

28: Advance j to the next object in CGTR;

29: END

30: ELSE BEGIN /* object ID(i) < object ID(j) */

31: o := i; /* o is retrieved only from LSP */

32: Compute f(q, o);

33: IF f(q, o) > Threshold THEN BEGIN

34 … // These lines are omitted because they are the same as line 8~13 of External TA in Fig. 11

35: ELSE /* f(q, o) Threshold */

36: HPCSLowerThanThreshold := HPCSLowerThanThreshold {o};

37: Advance i to the next object in CGSP;

38: END

/* Step 4-2: Store the object according to its combined score */

39: … // These lines are omitted because they are the same as line 8~13 of External TA in Fig. 11

40: UNTIL |CSHigherThanThreshold| k

/* Step 5: Retrieve the top-k results */

41: RETURN top-k objects in CSHigherThanThreshold;

∈

∪

∪

≤

≤

∪

∪

≥

Figure 13 Generalized External TA.

132 World Wide Web (2013) 16:111–139

– f (q, o2) = 0.605 (from (1) with fSP(q.loc, o2) = 0.7 and ST R = 0.510)
– f (q, o4) = 0.3685 (from (1) with SSP = 0.5 and fT R(q.loc, o4) = 0.237)

We randomly access o2 to obtain the component score since f (q, o2) > threshold
value, but do not access o4.

5 Performance evaluation

5.1 Experimental data and environment

In this section, we compare the index size and query performance of RASIM with
those of the IR-tree method [10]. The index size of RASIM is the sum of the size of
the RA spatial index and that of the RA inverted index while the index size of the
IR-tree method is that of the IR-tree itself. For measuring the query performance,
we use the wall clock time and the number of page accesses. We use three data
sets: DataSet1, DataSet2, and DataSet3. In DataSet1, the spatial data contains two-
dimensional real spatial objects for buildings located in Seoul, and the text data is
from Web pages collected through Web crawling. In DataSet2, the spatial data are
generated randomly, and the text data are from Web pages collected through Web
crawling. We generate five sets with different sizes for DataSet2: 20K, 40K, 60K, 80K,
and 100K. The data sets were generated by randomly selecting a Web page for each
spatial object. DataSet3 is created combining texts from 20 Newsgroups dataset4 and
locations from LA streets.5 This is the same dataset used by Cong et al. [10]. We use
DataSet2 in the experiment to measure the performance as the data size is varied and
DataSet1 and DataSet3 in the other experiments. Table 3 shows the characteristics of
the data sets used in the experiment.

We generate four query sets, in which the number of keywords is 1, 2, 3, and
4, respectively. Each query set is composed of 100 queries, and each keyword in a
query is randomly selected. We present the average wall clock time and the numbers
of object and page accesses of the queries.

We conducted all the experiments on a Pentium4 3.6GHz Linux PC with 1.5GB of
main memory. To avoid the buffering effect of the LINUX system and to guarantee
actual disk I/O’s, we used raw disks for storing data and indexes. We implemented
both RASIM and the IR-tree method [10] using the MBR-MLGF [26] and the
inverted index implemented in the Odysseus DBMS [32, 33]. The page size for data
and indexes is set to 4,096 bytes.

The MBR-MLGF is an RA spatial index based on the MLGF [30]. An MLGF is
a balanced tree and consists of a multilevel directory and leaf nodes. An entry in a
leaf-level node contains a region vector and a pointer to an object; an entry in a non-
leaf-level node consists of the region vector and the pointer to a child node. In the
n-dimensional case, a region vector consists of n hash values that uniquely identify
the region. The MBR-MLGF is a variation of the MLGF that represents each region
vector as an MBR containing the objects in the region.

4http://people.csail.mit.edu/jrennie/20Newsgroups
5http://www.rtreeportal.org

http://people.csail.mit.edu/jrennie/20Newsgroups
http://www.rtreeportal.org

World Wide Web (2013) 16:111–139 133

Table 3 Characteristics of the data sets.

Data sets DataSet1 DataSet2 DataSet3

Total number of objects 78,260 100,000 131,461
Maximum number of postings per keyword 55,949 78,463 131,461
Average number of postings per keyword 89 82 168
Total number of unique words in the data set 206,636 318,916 114,831
Total number of words in the data set 18,397,075 26,161,111 19,278,878

The MBR-MLGF and R-tree family [4, 14, 25] differ in the way they cluster
the objects. While the MBR-MLGF clusters the objects in the transformed space,
the R-tree family clusters the objects in the original space. It has been shown
through experiments [27] that clustering effects of the objects in the MBR-MLGF
are comparable to or better than those in the R*-tree. The IR-tree method is based
on the R-tree, but can also be applied to the MBR-MLGF in a similar way. Thus, for
the sake of fairness, we compare the performance of RASIM with that of the IR-tree
method that uses the MBR-MLGF.

5.2 Results of the Experiments

5.2.1 Index size

Table 4 shows the sizes of the indexes. The index size of RASIM is reduced by
1.43∼1.85 times compared with that of the IR-tree method. This result supports our
discussion in Section 2.

5.2.2 Query processing performance

Performance analysis of RASIM Figure 14a shows the performance of RASIM with
different group sizes as k is varied. Here, the user preference p = 0.5 and the number
of keywords in the query nKeywords = 1. We observe that a small (large) group
size is more efficient for a small (large) k. Specifically, for the case of k = 1, query
performance for the group size of one object is the most efficient; for the case of
k = 1000, that for the group size of 64 pages is the most efficient. Figure 14b shows
overall performance enhancement of Generalize External TA as p is varied. Here,
k = 100 and nKeywords = 1. In Figure 14, External TA-WA (External TA-DRA) is
the method that applies weighted access (deferred random access) to External TA;
Generalized External TA is the method that applies both of them to External TA.
We observe that weighted access enhances the query performance by 0.98∼1.51, and
deferred random access by 1.20∼2.06. Overall, Generalized External TA enhances
the performance of External TA by 1.20∼2.22. Henceforth, we use Generalized
External TA as the query processing algorithm of RASIM for the comparison with
the IR-tree method.

Table 4 Sizes of indexes (KB).

Method DataSet1 DataSet2 DataSet3

RASIM 654,908 1,170,852 870,668
IR-tree method 981,420 1,677,320 1,611,156

134 World Wide Web (2013) 16:111–139

(a) query performance of RASIM
with different group size

(b) overall performance enhancement
of Generalized External TA

Figure 14 The query performance analysis of RASIM.

Comparison with the IR-tree method Figure 15 shows the performance as k is
varied. Here, p = 0.5 and nKeywords = 1. We observe that the number of object
accesses of RASIM is reduced by 1.09∼1.42 times, the query processing time by
1.15∼2.03 times, and the number of page accesses by 1.28∼2.17 times as compared to
those of the IR-tree method. There are three reasons for this performance advantage.
(i) The pruning power of RASIM, which inherits from TA [11], is comparable to or
better than that of the IR-tree method, which inherits from Incremental NN [17].
This result is evidenced by the number of object accesses measured in Figure 15a. (ii)
RASIM obviates extra accesses to redundantly stored part of the inverted index (i.e.,
access to the inverted indexes on internal nodes) in the IR-tree method. (iii) RASIM
clusters the text index in one file while the IR-tree method stores it in multiple files
over different nodes resulting in multiple fragmented text indexes. (ii) and (iii) are
supported by the fact that while the number of object accesses in RASIM is slightly
less than that in the IR-tree method as in Figure 15a, the number of page accesses in
RASIM is much less than that in the IR-tree method as in Figure 15c.

Figure 16 shows the performance as p is varied. Here, k = 10 and nKeywords = 1.
We observe that the query processing time of RASIM is reduced by 1.08∼3.22
times and the number of page accesses by 1.31∼3.65. We note that the gap of

RASIM IR-tree method RASIM IR-tree method RASIM IR-tree method

(a) the number of object accesses. (b) query processing time. (c) the number of page accesses.

Figure 15 The query performance as k is varied.

World Wide Web (2013) 16:111–139 135

(a) query processing time. (b) the number of page accesses

RASIM IR-tree method RASIM IR-tree method

p p

Figure 16 The query performance as p is varied.

query performance between RASIM and the IR-tree method becomes larger as p
is decreased (i.e., less weight on the spatial component score than on the keyword
component score). The query performance of the IR-tree method is degraded as p is
decreased because each leaf node of the IR-tree contains objects clustered according
to spatial proximity, but the IR-tree method cannot take advantage of the effects
of the clustering when a low weight is assigned to spatial proximity. In contrast, the
performance of RASIM is relatively less affected by p since RASIM can control the
group size of each list according to p.

Figure 17 shows the performance as nKeywords is varied. Here, k = 10 and
p = 0.5. We observe that the query processing time of RASIM is reduced by
1.72∼1.84 times and the number of page accesses by 1.69∼2.00. Figure 18 shows the
performance as the data set size increases. Here, k = 10, p = 0.5, and nKeywords =
1. We observe that the performance advantage of RASIM over the IR-tree method
stays relatively constant regardless of the data set size.

Experiments on DataSet3 We have performed the same extensive experiments
on DataSet3 as on DataSet1. Figure 19 shows the performance as k is varied; Fig-
ure 20 shows the performance as p is varied; Figure 21 shows the performance as
nKeywords is varied. For each experiment, the default parameters are as follows: k =
10, p = 0.5, and nKeywords = 1. The results are consistent with those for DataSet1.

RASIM IR-tree method RASIM IR-tree method

(a) query processing time. (b) the number of page accesses

nkeywords nkeywords

Figure 17 The query performance as nKeywords is varied.

136 World Wide Web (2013) 16:111–139

RASIM IR-tree method

2500

2000

1500

1000

500

0
20K 40K 60K

Data Size

Q
u

er
y

P
ro

ce
ss

in
g

 T
im

e
(m

s)

80K 100K

RASIM IR-tree method

400

350

300

250

200

150

100

50

0
20K 40K 60K

Data Size

o

f
p

ag
e

ac
ce

ss
es

 (
I/O

)

80K 100K

(a) query processing time. (b) the number of page accesses

Figure 18 The query performance as the data set is varied.

RASIM IR-tree method

6000

5000

4000

3000

2000

1000

0
1 10 20

k

Q
u

er
y

p
ro

ce
ss

in
g

 t
im

e
(m

s)

50 1 10 20 50

 RASIM IR-tree method

1000

800

600

400

200

0

k

o

f
p

ag
e

ac
ce

ss
es

 (
I/O

)

(a) query processing time. (b) the number of page accesses

Figure 19 The query performance as k is varied on DataSet3.

RASIM IR-tree method

2500 350

300

250

200

150

100

50

0

2000

1500

1000

500

0
0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9

p p

Q
u

er
y

p
ro

ce
ss

in
g

 t
im

e
(m

s)

RASIM IR-tree method

o

f
p

ag
e

ac
ce

ss
es

 (
I/O

)

(a) query processing time. (b) the number of page accesses

Figure 20 The query performance as p is varied on DataSet3.

World Wide Web (2013) 16:111–139 137

RASIM IR-tree method

9000 1600

1400

1200

1000

800

600

400

200

0

8000

7000

6000

5000

4000

1000

2000

3000

0
1 2 3 4 1 2 3 4

nKeywords nKeywords

Q
u

er
y

p
ro

ce
ss

in
g

 t
im

e
(m

s)
RASIM IR-tree method

o

f
p

ag
e

ac
ce

ss
es

 (
I/O

)

(a) query processing time. (b) the number of page accesses

Figure 21 The query performance as nKeywords is varied on DataSet3.

6 Conclusions

We have proposed a new separate index method, called Rank-Aware Separate Index
Method (RASIM). RASIM is the first research work that supports top-k pruning
while using the separate index method. The key property of RASIM is that each
index is clustered by two different orders—one for top-k pruning and the other
for efficient merging. We have shown that this property can be obtained through
partitioning. RASIM partitions the set of objects in each index to a set of RA groups
that contain objects with similar scores. Based on the notion of the RA group, we
have proposed two query processing algorithms: (i) External TA, which supports
top-k pruning in the unit of the RA group mapped to a disk page and (ii) Generalized
External TA, which enhances the performance of External TA by exploiting the
special properties of the RA groups. We have proved the correctness of the proposed
algorithms in Theorems 1 and 2.

We have shown through experiments that RASIM is more efficient than the
IR-tree method in terms of both storage and query processing time. The IR-tree
method is the prevailing method to date that supports top-k pruning for top-k spatial
keyword queries. RASIM improves storage efficiency since the IR-tree method
stores part of the inverted index redundantly for top-k pruning, but RASIM obviates
this redundant data structure. Experimental results show that the size of the index
in RASIM is by up to 1.85 times smaller than that of the IR-tree method. RASIM
improves the query performance since (i) it maintains pruning power comparable
to or better than the IR-tree method, (ii) obviates extra accesses to redundantly
stored part of the index, and (iii) clusters the text index in one file while the IR-
tree method stores it in multiple files over different nodes resulting in multiple
fragmented text indexes. Experimental results show that the query processing time
of RASIM is improved by 1.08∼3.22 times compared with that of the IR-tree method
as the parameters k, user preference, the number of keywords, and data set size are
varied.

A very important observation on RASIM is that, since it is based on the separate
index approach, it inherits the advantages of scalability for accommodating new data
types and flexibility of maintaining each index independently. Thus, we can utilize
the RASIM approach for integrating other (possibly new) data types besides spatial

138 World Wide Web (2013) 16:111–139

and text types. In this regard, we expect it to trigger many interesting research
investigations in processing top-k multiple-type integrated queries. We leave this as
a further study.

Acknowledgements This work was partially supported by the National Research Foundation
of Korea (NRF) grant funded by the Korea government (MEST) (No. 2012R1A2A2A01012605)
and was also partially supported by the MKE(The Ministry of Knowledge Economy), Korea and
Microsoft Research, under IT/SW Creative research program supervised by the NIPA(National IT
Industry Promotion Agency) (NIPA-2010-C1810-1002-0010) and partially supported by Microsoft
Research Asia through KAIST-Microsoft Research Collaboration Center (KMCC).

References

1. Anh, V., Moffat, A.: Impact transformation: effective and efficient Web retrieval. In: Proc. ACM
SIGIR Int’l Conf. on Research and Development in Information Retrieval, pp. 3–10 (2002)

2. Asadi, S., Zhou, X., and Yang, G.: Using local popularity of Web resources for geo-ranking of
search engine results. World Wide Web J. 12(2), 149–170 (2009)

3. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. ACM Press, Addison-Wesley
(1999)

4. Beckmann, N., Kriegel, H., Schneider, R., Seeger, B.: The R*-Tree: an efficient and robust access
method for points and rectangles. In: Proc. Int’l Conf. on Management of Data, ACM SIGMOD,
pp. 322–331 (1990)

5. Brin, S., Page, L.: The anatomy of a large-scale hypertextual Web search engine. Comput. Netw.
ISDN Syst. 30(1–7), 107–117 (1998)

6. Brown, E.W.: Fast evaluation of structured queries for information retrieval. In: Proc. ACM Int’l
SIGIR Conf. on Research and Development in Information Retrieval, pp. 30–38 (1995)

7. Chang, Y., Bergman, L., Castelli, V., Li, C., Lo, M., Smith, J.: The ONION technique: indexing
for linear optimization queries. In: Proc. Int’l Conf. on Management of Data, ACM SIGMOD,
pp. 391–402 (2000)

8. Chaudhuri, S., Ramakrishnan, R., Weikum, G.: Integrating DB and IR technologies: what is the
sound of one hand clapping? In: Proc. Conf. on Innovative Data Systems Research (CIDR), pp.
1–12 (2005)

9. Chen, Y., Suel, T., Markowetz, A.: Efficient query processing in geographic Web search engines.
In: Proc. Int’l Conf. on Management of Data, ACM SIGMOD, pp. 277–288 (2006)

10. Cong, G., Jensen, C., Wu, D.: Efficient retrieval of the Top-k most relevant spatial web objects.
In: Proc. 35th Int’l Conf. on Very Large Data Bases (VLDB), pp. 754–765 (2009)

11. Fagin, R., Lotem, A., Naor, M.: Optimal aggregation algorithms for middleware. In: Proc. 20th
ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems (PODS),
pp. 102–113 (2001)

12. Felipe, I., Hristidis, V., Rishe, N.: Keyword search on spatial databases. In: Proc. 24th Int’l Conf.
on Data Engineering (ICDE), IEEE, pp. 656–665 (2008)

13. Guo, L., Shanmugasundaram, J., Beyer, K., Shekita, E.: Efficient inverted lists and query algo-
rithms for structured value ranking in update-intensive relational databases. In: Proc. 21st Int’l
Conf. on Data Engineering (ICDE), IEEE, pp. 298–309 (2005)

14. Guttman, A.: R-trees: a dynamic index structure for spatial searching. In: Proc. Int’l Conf. on
Management of Data, ACM SIGMOD, pp. 47–57 (1984)

15. Hariharan, R., Hore, B., Li, C., Mehrotra, S.: Processing Spatial-Keyword (SK) Queries in
Geographic Information Retrieval (GIR) systems. In: Proc. 19th Int’l Conf. on Scientific and
Statistical Database Management (SSDBM), p. 16 (2007)

16. Harper, S., Chen, A.: Web accessibility guidelines: a lesson from the evolving Web. World Wide
Web J. 15(1), 61–88 (2012)

17. Hjaltason, G., Samet, H.: Distance browsing in spatial databases. ACM Trans. Database Syst.
24(2), 265–318 (1999)

18. Ilyas, I., Beskales, G., Soliman, M.: A survey of Top-K query processing techniques in relational
database systems. ACM Comput. Surv. 40(4), 11 (2008)

19. Li, Z., Lee, K., Zheng, B., Lee, W., Lee, D., Wang, X.: IR-Tree: an efficient index for geographic
document search. IEEE Trans. Knowl. Data Eng. 23(4), 585–599 (2011)

World Wide Web (2013) 16:111–139 139

20. Long, X., Suel, T.: Optimized query execution in large search engines with global page ordering.
In: Proc. 29th Int’l Conf. on Very Large Data Bases (VLDB), pp. 129–140 (2003)

21. Martins, B., Silva, M., Adnrade, L.: Indexing and ranking in Geo-IR systems. In: Proc. 2nd Int’l
Workshop on Geo-IR(GIR), ACM SIGIR, pp. 31–34 (2005)

22. Masutani, O., Iwasaki, H.: BEIRA: an area-based user interface for map services. World Wide
Web J. 12(1), 51–68 (2009)

23. Park, D., Kim, H.: An enhanced technique for k-Nearest neighbor queries with non-spatial
selection predicates. Multimedia Tools and Application Archive 19(1), 79–103 (2003)

24. Rocha-Junior, J., Gkorgkas, O., Jonassen, S., Norvag, K.: Efficient processing of Top-k spatial
keyword queries. In: Proc. 12th Intl Symposium on Spatial and Temporal Databases (SSTD),
pp. 205–222 (2011)

25. Sellis, T., Roussopoulos, N., Faloutsos, C.: The R+-Tree: a dynamic index for multi-dimensional
objects. In: Proc. 13th Int’l Conf. on Very Large Data Bases (VLDB), pp. 507–518 (1987)

26. Song, J., Whang, K., Lee, Y., Kim, S.: Spatial join processing using corner transformation. IEEE
Trans. Knowl. Data Eng. 11(4), 688–698 (1999)

27. Song, J., Whang, K., Lee, Y., Lee, M., Han, W., Park, B.: The clustering property of corner
transformation for spatial database applications. Inf. Softw. Technol. 44(7), 419–429 (2002)

28. Vaid, S., Jones, C., Joho, H., Sanderson, M.: Spatio-textual indexing for geographical search on
the Web. In: Proc. 9th International Symposium on Spatial and Temporal Databases (SSTD),
pp. 218–235 (2005)

29. Weikum, G.: DB&IR: both sides now. In: Proc. Int’l Conf. on Management of Data, ACM
SIGMOD, pp. 25–30 (2007)

30. Whang, K., Krishnamurthy, R.: The multilevel grid file: a dynamic hierarchical multidimensional
file structure. In: Proc. Int’l Symposium on Database Systems for Advanced Applications (DAS-
FAA), pp. 449–459 (1991)

31. Whang, K., Park, B., Han, W., Lee, Y.: Inverted index storage structure using subindexes and
large objects for tight coupling of information retrieval with database management systems.
United States Patent 6349308. Appl. No. 09/250,487, 15 Feb. 1999 (2002)

32. Whang, K., Lee, M., Lee, J., Kim,M., Han,W.: Odysseus: a high-performance ORDBMS tightly-
coupled with IR features. In: Proc. 21st Int’l Conf. on Data Engineering (ICDE), IEEE, pp.
1104–1105 (2005). This paper received the Best Demonstration Award

33. Whang, K., Lee, J., Kim, M., Lee, M., Lee, K., Han, W., Kim, J.: Tightly-coupled spatial database
features in the Odysseus/OpenGIS DBMS for high-performance. GeoInformatica 14(4), 425–446
(2010)

34. Zhou, Y., Xie, X., Wang, C., Gong, Y., Ma, W.: Hybrid index structures for location-based
Web search. In: Proc. 14th ACM Conf. on Information and Knowledge Management (CIKM),
pp. 155–162 (2005)

35. Zobel, J., Moffat, A.: Inverted files for text search engines. ACM Comput. Surv. 38(2), 1–56
(2006)

	RASIM: a rank-aware separate index method for answering top-k spatial keyword queries
	Abstract
	Introduction
	Related work
	Problem definition
	The rank-aware separate index method (RASIM)
	The concept
	RA separate indexes
	Query processing algorithms based on the RA separate indexes
	Dynamic sorted RA group list
	External Threshold Algorithm (External TA)
	Generalized External TA

	Performance evaluation
	Experimental data and environment
	Results of the Experiments
	Index size
	Query processing performance

	Conclusions
	References

