
Transform-Space View: Performing
Spatial Join in the Transform Space

Using Original-Space Indexes
Min-Jae Lee, Student Member, IEEE, Kyu-Young Whang, Senior Member, IEEE,

Wook-Shin Han, Member, IEEE, and Il-Yeol Song, Member, IEEE Computer Society

Abstract—Spatial joins find all pairs of objects that satisfy a given spatial relationship. In spatial joins using indexes, original-space

indexes such as the R-tree are widely used. An original-space index is the one that indexes objects as represented in the original space.

Since original-space indexes deal with extents of objects, it is relatively complex to optimize join algorithms using these indexes. On the

other hand, transform-space indexes, which transform objects in the original space into points in the transform space and index them,

deal only with points but no extents. Thus, optimization of join algorithms using these indexes can be relatively simple. However, the

disadvantage of these join algorithms is that they cannot be applied to original-space indexes such as the R-tree. In this paper, we

present a novel mechanism for achieving the best of these two types of algorithms. Specifically, we propose the new notion of the

transform-space view and present the transform-space view join algorithm. The transform-space view is a virtual transform-space index

based on an original-space index. It allows us to “interpret” or “view” an existing original-space index as a transform-space index with no

space and negligible time overhead and without actually modifying the structure of the original-space index or changing object

representation. The transform-space view join algorithm joins two original-space indexes in the transform space through the notion of

the transform-space view. Through analysis and experiments, we verify the excellence of the transform-space view join algorithm. The

transform-space view join algorithm always outperforms existing ones for all the data sets tested in terms of all three measures used:

the one-pass buffer size (the minimum buffer size required for guaranteeing one disk access per page), the number of disk accesses for

a given buffer size, and the wall clock time. Thus, it constitutes a lower-bound algorithm. We believe that the proposed transform-space

view can be applied to developing various new spatial query processing algorithms in the transform space.

Index Terms—Transform-space view, adaptive row major order, spatial join, corner transformation, databases.

�

1 INTRODUCTION

S patial joins (or simply joins) find all pairs of objects that
satisfy a given spatial relationship. An example of a

spatial join is “finding all the roads that overlap with
rivers.” Since spatial joins require a significant cost of
processing, much effort has been made to develop efficient
algorithms [4], [12], [20], [25], [28].

Existing spatial join algorithms can be classified into
those that use indexes on both files and those that do not.
Join algorithms that do not use indexes on both files include
the Partition-Based Spatial Merge Join [25], Spatial Hash
Join [20], Seed Join [19], Sort/Sweep Spatial Join [8], Unified
Approach for Indexed and Non-Indexed Spatial Joins [1],

Iterative Spatial Join [13], and Slot Index Spatial Join [21].
These join methods are best used when there is no
preexisting index on the files to be joined or there exists
an index on only one file. However, when there are indexes
on both files, these algorithms are slower than those that
use indexes. Therefore, in this paper, we limit our
discussion to join algorithms that use indexes on both files
(we call them index join algorithms).

Index join algorithms are classified into those whose
indexes are created in the original-space (o-space) and those

whose indexes are created in the transform-space (t-space).
O-space index join algorithms use indexes that consider the
extents of objects in the o-space. On the other hand, t-space

index join algorithms use indexes in which objects with
extents in the o-space have been transformed into points
with no extents in the t-space.

O-space index join algorithms include the Depth-First
Traversal R-tree Join [4] and the Breadth-First Traversal
R-tree Join [12]. Both are based on the R-tree family [2],

[9]. The Depth-First Traversal R-tree Join is a representative
algorithm widely used for comparing the performances of
other join algorithms. It performs the join by traversing

two R-trees in the depth-first order. Since it optimizes only a
part of the sequence of accessing disk pages (page access

sequence) for joining two R-trees, it only achieves local

optimization [12], [28]. The Breadth-First Traversal R-tree
Join achieves global optimization by optimizing the page

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 2, FEBRUARY 2006 245

. M.-J. Lee is with Research Center, Neowiz, Co., Ltd., 159-1 Assem Tower
6th fl., Samsung Dong, Gangnam Gu, Seoul, 135-798, Korea.
E-mail: mjlee@mozart.kaist.ac.kr.

. K.-Y. Whang is with the Department of Computer Science and Advanced
Information Technology Research Center (AITrc), Korea Advanced
Institute of Science and Technology (KAIST), 373-1 Koo-Sung Dong,
Yoo-Sung Ku, Daejeon, 305-701, Korea.
E-mail: kywhang@mozart.kaist.ac.kr.

. W.-S. Han is with the Department of Computer Engineering, Kyungpook
National University, 1370 Sankyuk-Dong, Puk-Gu, DaeGu, 702-701,
Korea. E-mail: wshan@knu.ac.kr.

. I.-Y. Song is with the College of Information Science and Technology,
Drexel University, Philadelphia, PA 19104. E-mail: song@drexel.edu.

Manuscript received 29 Mar. 2005; revised 22 July 2005; accepted 27 July
2005; published online 19 Dec. 2005.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDE-0117-0305.

1041-4347/06/$20.00 � 2006 IEEE Published by the IEEE Computer Society

access sequence for the entire join. This is done by traversing
the two R-trees in the breadth-first order. However, it has a
drawback of incurring disk or memory overhead to store the
entire page access sequence before performing join.

T-space index join algorithms include the Transformation-
Based Spatial Join [28]. It is based on the Multi-Level Grid File
(MLGF) [17], [29]. This algorithm achieves global optimiza-
tion by utilizing special characteristics of the t-space. Due to
this global optimization, it shows performance comparable to
or better than that of the Depth-First Traversal R-tree Join.
Besides, since the algorithm does not store the entire page
access sequence, unlike the Breadth-First Traversal R-tree
Join, it does not incur as much disk or memory overhead.
Thus, it shows a performance comparable to or better than
that of the Breadth-First Traversal R-tree Join. But, it has a
drawback in that it cannot be applied to joining two o-space
indexes or joining a t-space index with an o-space index.

Each class of index join algorithms has some advantages
and disadvantages. O-space index join algorithms have an
advantage in that they can be applied to widely used index
structures such as the R-tree family in the o-space. The
disadvantage is that, since the algorithms deal with the
extents of the objects, it is relatively complex to optimize
them. In particular, doing global optimization requires sig-
nificant disk or memory overhead. In contrast, since t-space
index join algorithms deal with only points but no extents,
optimization is relatively straightforward and a global
optimization is possible without significant overhead.
However, the disadvantage is that they cannot be applied
to widely used index structures such as the R-tree.

In this paper, we propose a novel mechanism for
achieving the best of these two types of approaches.
Specifically, we propose a technique that can apply a t-space
index join algorithm to an o-space index. Our approach is
based on the new notion of the transform-space view (t-space
view), which is a virtual t-space index for an o-space index.
The importance of the t-space view is that it allows us to
dynamically “interpret” or “view” an existing o-space index
as a t-space index with no space and negligible time overhead
and without modifying the structure of the o-space index or
changing the representation of objects stored in it. Thus,
efficient t-space index join algorithms can be applied to
o-space indexes through the t-space view. We also propose a
t-space index join algorithm based on the t-space view (we
call it the t-space view join algorithm). This t-space view
method is applicable to tree-structured o-space indexes,
where regions and objects stored in the index are represented
as minimum bounding rectangles (MBRs).1

In the t-space index, join algorithms, including the
Transformation-Based Spatial Join [28]—the page access
sequence for which various space filling curves could be
used—makes a significant impact on the performance. In
[18], the authors have presented a formal analysis of the
effect of the space filling curves on the performance of the
Transformation-Based Spatial Join algorithm and proposed
a new space filling curve called the adaptive row major order
(ARM order). The ARM order significantly enhances the

performance of the algorithm by controlling the order of
accessing pages for a given buffer size adaptively. Here, we
adapt this analysis and the ARM order to the t-space view
join algorithm and show that they are also feasible for the t-
space view join algorithm. Experimental results show that
the analysis is highly accurate and the ARM order
significantly improves the performance of the proposed
algorithm.

Through extensive experiments, we show that the t-space
view join algorithm always outperforms existing join algo-
rithms that use R-trees in the o-space for all the data sets
tested. As the measures of performance, we use the one-pass
buffer size, the number of disk accesses, and the wall clock
time. Here, the one-pass buffer size is the minimum buffer size
necessary for processing joins while accessing the pages to be
joined only once. Smaller one-pass buffer sizes allow more
joins to be done with optimal disk accesses given limited
buffer.

The contributions of our paper are summarized as
follows: First, we propose the new notion of the t-space
view that allows us to dynamically interpret an o-space
index as a t-space index without modifying its original
structure and with no space and negligible time overhead.
This allows us to apply conventional t-space index join
algorithms to widely used R-trees. Second, we propose a
new join algorithm based on the t-space view. Third, we
show that the formal analysis and the ARM order for the
Transformation-Based Spatial Join algorithm [18] are also
usable for the proposed algorithm. Fourth, through experi-
ments, we show that applying a t-space index join algorithm
to R-trees through the t-space view is faster than applying o-
space join algorithms to R-trees in the o-space for all the data
sets tested, thus rendering it a lower-bound algorithm.

The rest of this paper is organized as follows: Section 2
describes related work covering o-space and t-space index
join algorithms. Section 3 defines the concept of the t-space
view and Section 4 presents our t-space view join algorithm.
Section 5 explains a formal analysis of the effect of the space
filling curve on the one-pass buffer size and Section 6
introduces the ARM order. Section 7 presents the experi-
mental results for performance evaluation of the algorithm.
In Section 8, we summarize and conclude the paper.

2 RELATED WORK

In this section, we describe representative join algorithms
that use indexes. Section 2.1 describes o-space index join
algorithms based on R-trees. Section 2.2 explains t-space
index join algorithms.

2.1 O-Space Index Join Algorithms

We consider two R-tree based join algorithms2 depending
on the traversal method used: the Depth-First Traversal R-tree
Join algorithm proposed by Brinkhoff et al. [4] and the
Breadth-First Traversal R-tree Join algorithm proposed by
Huang and Jing [12]. Here, we briefly explain the structure
of the R-tree [9] and define some notation. The R-tree is a
height balanced tree structure storing multidimensional

246 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 2, FEBRUARY 2006

1. Examples are R-tree [9], R*-tree [2], X-tree [3], and SKD-Tree [22].
Examples to which the t-space view method cannot be applied are P-Tree
[14] and Cell-Tree [7].

2. To the extent of the authors’ knowledge, these are the only R-tree-
based spatial join algorithms reported in the literature. Other algorithms are
their variants or do not require indexes on both files.

rectangles. A nonleaf page of an R-tree contains entries of
the form < mbr; ref > , where mbr is the minimum bound-
ing rectangle (MBR) containing all MBRs of the entries in a
child page and ref is the pointer to the child page. A leaf
page contains entries of the form < mbr; oid > , where mbr is
the MBR of a spatial object and oid refers to the spatial object
in the database.

The Depth-First Traversal R-tree Join finds all pairs of
MBRs that overlap with each other from nonleaf pages of
the two given R-trees by traversing depth first. The
algorithm minimizes the search space by using the property
that, when a pair of MBRs do not overlap with each other,
their child pages will not overlap either and it thereby
excludes them from further traversal.

It is necessary to control the page access sequence to
prevent pages from being reread frequently from the disk.
The Depth-First Traversal R-tree Join uses some heuristics,
such as local plane-sweeping and local Z-ordering, to
minimize disk accesses. Since these heuristics optimize the
page access sequence of the child pages of only one pair of
nonleaf pages that overlap with each other at a time, they
tend to find a local optimum rather than finding the global
optimum [12], [28].

If we generate and optimize the page access sequence of
the child pages of as many pairs of overlapping nonleaf
pages as possible simultaneously, then a near-global
optimum can be found. Based on this observation, the
Breadth-First Traversal R-tree Join generates the page access
sequence of the entire set of pages by traversing breadth-
first, optimizing the sequence, and performing the join.
However, because this algorithm incurs a significant over-
head for keeping track of the entire sequence, the algorithm
has a lower performance than the Depth-First Traversal R-
tree Join in small or large buffers depending on the
techniques of managing the sequence. That is, when the
page access sequence is stored in main memory (Combo2
strategy), it, in effect, causes a reduction in the buffer size.
Since an insufficient buffer significantly drops the perfor-
mance of join, the algorithm performs worse for small
buffers. When the page access sequence is stored on the
disk (Combo1 strategy), a performance drop caused by
insufficient buffer does not occur. However, this strategy
always causes extra disk accesses to store and access the
entire page access sequence to the disk; thus, the algorithm
performs worse for large buffers.

2.2 T-Space Index Join Algorithms

T-space index join algorithms use t-space indexes that
manage points. The points are transformed from the objects
with extents in the o-space by using a transformation
technique. A typical transformation technique used is
corner transformation [24], [27]. Corner transformation trans-
forms each object in the n-dimensional o-space into a single
point in the 2n-dimensional t-space by using 2n parameters.
These points are subsequently indexed by a multidimen-
sional point access method. The coordinates of a point in the
2n-dimensional space are determined by the minimum and
maximum values of the MBR on each of the n axes in the
o-space. For example, a one-dimensional object whose
minimum and maximum values on the x-axis are lx and
rx, respectively, is transformed into the point < lx; rx> in
the two-dimensional t-space.

When we use the t-space index to process an o-space
query, we must transform the o-space query into a t-space
query. Fig. 1 shows t-space regions used for transforming
o-space queries into t-space queries [24], [28]. Fig. 1a
shows a query region q in the o-space and Fig. 1b shows
six t-space regions A to F having different spatial relation-
ships with the query region q. In Fig. 1b, region A contains
all the points that enclose q in the o-space; region D
contains those that are contained by q; regions A, B, C, and
D contain those that overlap with q; regions E and F
contains those that do not overlap with q. Using these
t-space regions, an o-space query that finds objects over-
lapping with q in the o-space is transformed into a t-space
query that finds points in the union of t-space regions A, B,
C, and D. Since finding points with no extents in a region
is conceptually more straightforward than finding objects
with extents that satisfy a spatial relationship with a
region, processing queries in the t-space can be more
concisely done than in the o-space [6], [28]. We can also
process spatial join more concisely in the t-space.

Some transformation techniques [26] transform n-dimen-
sional objects into one-dimensional points. These points are
then indexed by a one-dimensional access method. These
methods first partition the space into grid cells. Each grid cell
is labeled with a unique number given by the Z-order or the
Hilbert order. Objects are then indexed by a Bþ-tree
according to the label of the grid cell in which the objects
are contained. It is known that these techniques are not
favorable for spatial join since they have an obvious
disadvantage in that, if the grid structures of the two indexes
are not compatible, they cannot be joined unless the labels of
one of them are recomputed [6].

The Transformation-Based Spatial Join [28] uses the Multi-
Level Grid File (MLGF) [17], [29] as the index. This algorithm
joins two MLGF indexes R and S that contain points that
have been transformed by corner transformation. Here, we
briefly explain the structure of the MLGF and define some

LEE ET AL.: TRANSFORM-SPACE VIEW: PERFORMING SPATIAL JOIN IN THE TRANSFORM SPACE USING ORIGINAL-SPACE INDEXES 247

Fig. 1. T-space regions having different spatial relationships with the

query region q in the o-space. Here, q̂q is the transformed point of q.

(a) Query region q in the o-space. (b) Six regions in the t-space

according to spatial relationships to q.

notation. The MLGF is a height-balanced index tree that
stores multidimensional point data. A nonleaf page in an
MLGF contains entries of the form < region; ref > , where
ref is the pointer to the child page and region contains all
the regions represented by the entries of the child page
pointed by ref. A leaf page contains entries of the form
< point; oid > , where point is the coordinate of the points
in the t-space and oid is the identifier of the object stored in
the database.

The Transformation-Based Spatial Join finds a pair of
points whose original objects overlap by comparing the
points in all the leaf-pages of indexes R and S. Here, the
two t-space regions of S that are to be joined with
two adjacent t-space regions of R have considerably
overlapping areas. By taking advantage of this character-
istic, together with the LRU buffer policy, the algorithm
globally optimizes the number of disk accesses. On the
other hand, the drawback of the algorithm is that it cannot
be directly applied to the data stored in and managed by an
o-space index.

3 T-SPACE VIEW

A t-space view is a virtual t-space index mapped from an
o-space one by the transformation technique. Using the
t-space view, an o-space index can be interpreted or
viewed as a t-space index without modifying the structure
of the o-space index. Thus, the t-space join algorithms can
be directly applied to the t-space views of the o-space
index. Fig. 2 illustrates the process of performing a join
using t-space views. In the figure, two o-space indexes R
and S are interpreted as virtual t-space views TV(R) and
TV(S), respectively, and a t-space index join algorithm is
applied to TV(R) and TV(S).

The t-space view is interpreted by mapping the
structure of the o-space index into that of the t-space
index. We first informally describe the mapping using the
R-tree for the o-space index and the MLGF for the t-space
index. As shown in Section 2, an entry in a nonleaf page
of the R-tree has the form < mbr; ref > and the one in
the MLGF has < region; ref > . Here, mbr represents an
n-dimensional o-space region and region represents a
2n-dimensional t-space region. Thus, we map an mbr of
the R-tree into a region of the MLGF. Similarly, an entry in a
leaf page of the R-tree has the form < mbr; oid > and the
one in the MLGF has < point; oid > . Here, mbr represents
an n-dimensional o-space object and point represents a
2n-dimensional t-space point. Thus, in this case, we map an

mbr of the R-tree into a point of the MLGF. Using these
mappings, we can interpret an R-tree as an MLGF, without
physically materializing a new index.

We now formally define the mapping of the 2n-dimen-
sional t-space view for an n-dimensional o-space index. We
use corner transformation for the mapping. Here, we
assume that the o-space index is tree-structured and regions
and objects stored in the index are represented as MBRs.

Definition 1. Suppose objects and regions in the n-dimensional
o-space are represented in the form

½l1; r1� � ½l2; r2� � � � � � ½ln; rn�;

where li is the minimum value and ri is the maximum value
on the ith axis. The 2n-dimensional t-space view for an
n-dimensional o-space index is interpreted as follows:

a. Mapping of o-space objects. An object ½l1; r1� �
½l2; r2� � � � � � ½ln; rn� in the n-dimensional o-space is
mapped into the point < l1; r1; l2; r2; � � � ; ln; rn> in
the 2n-dimensional t-space.

b. Mapping of o-space regions. A region ½l1; r1� �
½l2; r2� � � � � � ½ln; rn� in the n-dimensional o-space is
mapped into the region ½l1; r1� � ½l1; r1� � ½l2; r2� �
½l2; r2� � � � � � ½ln; rn� � ½ln; rn� in the 2n-dimensional
t-space.

The mapping of o-space objects in Definition 1 follows the
definition of corner transformation. The mapping of o-space
regions is an extension of the corner transformation
modified in such a way that the containment relationships
between objects and regions in the o-space are preserved in
the t-space. That is, the mapping guarantees that the t-space
region corresponding to an o-space region is the region that
contains all the t-space points corresponding to the objects
contained in the o-space region. We need the preservation of
the containment relationship to maintain a proper search
structure in the t-space view. Suppose a one-dimensional
o-space object ½lx0; rx0� contained in the one-dimensional
o-space region ½lx; rx� (i.e., lx � lx0 � rx0 � rx) is mapped
into the two-dimensional t-space point P< lx0; rx0> . Then, P
exists in the t-space region ½lx; rx� � ½lx; rx� by the relation-
ship lx � lx0 � rx and lx � rx0 � rx. Therefore, the relation-
ships between the objects and regions in the o-space are
preserved in the t-space as well after mapping.

Example 1. Fig. 3 illustrates an example of a one-
dimensional R-tree and its two-dimensional t-space
view. Fig. 3a shows a one-dimensional R-tree in the
o-space. Fig. 3b shows the two-dimensional t-space

248 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 2, FEBRUARY 2006

Fig. 2. The process of performing a join using t-space views.

view mapped from the R-tree in Fig. 3a. Fig. 3c shows
the representation of o-space objects and regions of

Fig. 3a in the one-dimensional o-space. Fig. 3d shows
the representation of the corresponding point objects

and regions in the two-dimensional t-space. The R-tree
in Fig. 3a consists of two leaf pages, A and B, and one
nonleaf page, Root. Leaf pages store o-space objects a, b,

c, d, and e. The mapping is done as follows: By
Definition 1a, the o-space object a, represented as

½0:1; 0:3� in Fig. 3c, is interpreted as the t-space point
< 0:1; 0:3> in Fig. 3d. Other o-space objects b, c, d, and

e can be interpreted similarly. By Definition 1b, the
o-space region A, represented as ½0:1; 0:6� in Fig. 3c, is

interpreted as the t-space region ½0:1; 0:6� � ½0:1; 0:6� in
Fig. 3d. The region B, represented as ½0:4; 0:9� in Fig. 3c,
is similarly interpreted as the t-space region ½0:4; 0:9� �
½0:4; 0:9� in Fig. 3d.

Since the t-space view is defined in the t-space, all the
properties of the t-space are applied to the t-space view.
Thus, the relationships for the t-space in Fig. 1b are also

effective for the t-space view. In addition, the t-space view
has the following properties: The first property is that the
mapping from an o-space index to a t-space view has no
space and negligible time overhead since each entry of an
o-space index is mapped into an entry of a t-space view
through mere “interpretation” or “viewing.” Thus, we can
apply efficient t-space join algorithms to o-space indexes
through the t-space view without additional cost. The
second property is that the t-space view does not generate
horizontally adjacent regions of pages because regions in a
t-space view are always squares and on the diagonal from
Definition 1. We take advantage of this property in the
t-space view join algorithm that we present in Fig. 9.
Using this property, we omit the process of grouping
horizontally adjacent pages needed to perform spatial join
in the t-space. Details are explained in Section 4.

4 T-SPACE VIEW JOIN ALGORITHM

The t-space view join algorithm spatially joins two t-space
views TV(R) and TV(S) of o-space indexes R and S. For
ease of explanation, we first explain the algorithm in the

LEE ET AL.: TRANSFORM-SPACE VIEW: PERFORMING SPATIAL JOIN IN THE TRANSFORM SPACE USING ORIGINAL-SPACE INDEXES 249

Fig. 3. An example of the interpretation of the t-space view for an o-space index. (a) One-dimensional R-tree. (b) Two-dimensional t-space view

corresponding to the R-tree in (a). (c) Representation of objects and regions of the R-tree in (a) in the one-dimensional o-space. (d) Representation

of points and regions in the two-dimensional t-space view.

two-dimensional t-space defined from the one-dimensional
o-space. We then extend it to handle the 2n-dimensional
t-space. We assume the LRU buffer replacement policy
commonly used in DBMSs.

We use the notion of the spatial join window [28]. We first
describe its properties and, then, we present the t-space view
join algorithm that takes advantage of these properties.

Definition 2 [28]. Let t-spaces of indexes R and S to be joined be
TS(R) and TS(S). The Spatial Join Window SJW(P) for a

rectangular region P in TS(R) is the minimum region in TS(S)
where all the objects intersecting with the objects in P can
reside.

The region of SJW(P) in TS(S) is obtained as follows: To
intersect with some objects in P, objects in TS(S) must
intersect with the object q̂q ¼< lx; rx > that corresponds to
the upper-left corner point of P since q̂q is the largest o-space
object containing any o-space object residing in P. According
to Lemma 1, SJW(P) is derived as a region ½0; rx� � ½lx; 1�.
Lemma 1 [28]. The minimum region in TS(S) where all the

t-space points whose o-space objects intersect with the o-space
object q̂q ¼< lx; rx> in two-dimensional TS(R) can reside is
½0; rx� � ½lx; 1�.

Proof. See Appendix A, which can be found on the
Computer Society Digital Library at http://computer.
org/tkde/archives.htm. tu

Example 2. Fig. 4 shows SJW(P) in TS(S) for a rectangular
region P in TS(R). In Fig. 4, P is shown as a dark-gray
rectangle and SJW(P) is shown as a light-gray rectangle.

The two SJW’s in TS(S) for two adjacent regions in TS(R)
significantly overlap due to two properties. This overlap
allows us to minimize the number of disk accesses by
retaining the pages of the SJW to be reread in the buffer.

The first property is that SJWs for two horizontally
adjacent regions have the containment relationship. In
Fig. 5a, illustrating two adjacent regions, let the one far
from the diagonal line be P1 and the one near the diagonal
line be P2. Then, as shown in Fig. 5b, the relationship
SJWðP1Þ � SJWðP2Þ holds. If we join P2 and SJWðP2Þ after
we join P1 and SJWðP1Þ, SJWðP2Þ has already been read
into the buffer and, thus, extra disk access can be avoided.
Therefore, we use the notion of the horizontal strip enclosing
horizontally adjacent regions and those regions in a
horizontal strip are joined consecutively.

The second property is that, between two vertically
adjacent horizontal strips HSTR1 and HSTR2, SJWðHSTR1Þ
and SJWðHSTR2Þ significantly overlap. In Fig. 6, if we join
HSTR2 and SJWðHSTR2Þ after we join HSTR1 and
SJWðHSTR1Þ, the former join can be processed with only
incremental disk accesses because most of SJWðHSTR2Þ has
already been read into the buffer. Therefore, we perform the
join by selecting vertically adjacent horizontal strips
consecutively.

Using these two properties, we define the t-space view
join algorithm as in Fig. 7. The algorithm takes two t-space
views TV(R) and TV(S) and a space filling curve SFC as the
input. Since a t-space view is a virtual structure defined in
the t-space, all the properties of the t-space, including the
SJW and its two properties, are also preserved in the t-space
view. In the explanation of the algorithm, we assume that
TV(R) and TV(S) have the same properties of TS(R) and
TS(S). The space filling curve [15] is a way of linearly ordering
regions in a space. Here, the curve is used to select horizontal
strips in a sequence. In a two-dimensional t-space, the SFC is
the vertical axis RX. The case of 2n-dimensional t-space will
be discussed at the end of this section.

In Fig. 7, the t-space view join algorithm consists of
two loops. The first loop in Line 1 selects the region r_region

of a leaf page in TV(R) using the function Next_Leaf_Region

in Fig. 8. The function Next_Leaf_Region returns the region
corresponding to each leaf page in TV(R) following the
order of SFC. The function discards the regions in TV(R)

250 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 2, FEBRUARY 2006

Fig. 4. A spatial join window.

Fig. 5. Spatial join windows for horizontally adjacent regions.

(a) Horizontally adjacent regions P1 and P2. (b) SJWðP1Þ and SJWðP2Þ.

Fig. 6. Spatial join windows for vertically adjacent horizontal strips.

(a) Vertically adjacent horizontal strips HSTR1 and HSTR2.

(b) SJWðHSTR1Þ and SJWðHSTR2Þ.

that are not to be joined with any region in TV(S) as soon as
possible. By doing this, it prevents the algorithm from
reading unnecessary pages from TV(R). For SFC, the
function can use any space filling curve defined recursively.
In the first loop, we use each region as a horizontal strip
because 1) there are no horizontally adjacent pages in a
t-space view according to the properties identified from
Definition 1 and 2) objects are not duplicated in the
intersecting regions according to the properties of o-space
indexes like the R-tree.3 Line 2 sets r_page to the page
corresponding to r_region. The second loop in Line 3 selects
each leaf page s_page from the set of pages in SJW(r_region)
in TV(S). Line 4 joins the two selected leaf pages, r_page and
s_page, using the function Join_Pages.

Fig. 8 shows the function Next_Leaf_Region. It takes
two t-space views TV(R) and TV(S) and a space filling curve
SFC as the input and returns the region corresponding to
each leaf page in TV(R) following the order of SFC. By
exploiting the hierarchical structure of the t-space view, the
function can select regions of the leaf pages in a sorted order
according to SFC with minimal overhead. In the hierarch-
ical structure of the t-space view, the region of the parent
page always comes before the region of a child page. That
is, the region of the page will not be selected by SFC until
the region of the parent page is selected. Using this
property, we can significantly reduce the number of the
regions to be sorted at a time. Since the regions to be sorted
are dynamically changing as the selection proceeds, we use
a heap4 to maintain the SFC-sorted order and heap sort [16]
to incrementally add and subtract regions maintaining the
sorted order. We call this technique hierarchical region-based
sorting and elaborate on this in Fig. 8. The concept of this
technique has been derived from a similar technique used
by Hjaltason and Samet [11] to find k-nearest neighbors
incrementally using R-trees. Here, pages are selected
incrementally in the order of the distance between the
query point and the region of each page.

In Fig. 8, the function Next_Leaf_Region initializes heap
with the region of the root page in TV(R) (Lines 1, 2). For
each subsequent Next_Leaf_Region call, the function sub-
tracts a region r_region (Lines 4, 5) and checks whether any
page exists in SJW(r_region) in TV(S). If no page exists in
SJW(r_region), we simply discard the r_region (Line 7). By

doing this, we can discard any r_regions that are not going
to participate in the join, thus avoiding unnecessary page
accesses. If the r_region is a leaf region, we simply return the
page for r_region (Lines 8, 9). If it is not a leaf region, we add
all the child regions of r_region (Lines 10, 11). The size of
heap is very small since each region in the heap does not
expand into regions of the child pages until it is selected by
SFC. In our extensive experiments, the size of the heap has
been less than 4 Kbytes in all the cases.

We have so far explained the two-dimensional t-space
view join based on the two-dimensional spatial join
windows, horizontal strips, and space filling curves. We
now extend them to 2n-dimensional cases.

We define the spatial join window in the 2n-dimensional
space as the Cartesian product of n number of two-dim-
ensional spatial join windows. That is, for a hyper-
rectangular region P in the 2n-dimensional TS(R), let q̂q be
< ld1; rd1; ld2; rd2; . . . ; ldn; rdn > , where ldi is the minimum
value on the ð2i� 1Þth axis and rdi is the maximum value on
the 2ith axis. Then, the 2n-dimensional SJW(P) is the region
½0; rd1� � ½ld1; 1� � ½0; rd2� � ½ld2; 1� � :::� ½0; rdn� � ½ldn; 1�.

We define the 2n-dimensional horizontal strip as the
Cartesian product of n number of two-dimensional hor-
izontal strips. Then, the space filling curve for ordering the
horizontal strips is defined in the n-dimensional subspace
consisting of the Cartesian product of n number of vertical

LEE ET AL.: TRANSFORM-SPACE VIEW: PERFORMING SPATIAL JOIN IN THE TRANSFORM SPACE USING ORIGINAL-SPACE INDEXES 251

Fig. 7. The t-space view join algorithm.

Fig. 8. The Next_Leaf_Region function using hierarchical region-based

sorting.

3. In the case of joining o-space indexes where objects are duplicated,
duplicated join pairs can occur in the result. Thus, we need to eliminate
them after the join is completed. However, we note that this step is also
needed even if we use an o-space join algorithm.

4. The heap is implemented by using a complete binary tree. It has
Oðlog2 nÞ time complexity for adding and subtracting regions.

axes of two-dimensional spaces. This is an extension of the
space filling curve for the two-dimensional case, which is
simply the (one-dimensional) vertical axis. We can use any
space filling curve that is able to order the strips in the
n-dimensional space. Examples of such space filling curves
are the row major order, Z-order [23], and Hilbert order
[10]. In Sections 5 and 6, through a formal analysis, we
propose a new space filling curve that minimizes the one-
pass buffer size and the number of disk accesses.

The t-space view join achieves global optimization by
considering the entire page access sequences of two t-space
views, TV(R) and TV(S). Here, we take advantage of the
properties of the spatial join window and the LRU buffer
replacement policy. By exploiting the hierarchical structure
of the TV(R) and the heap whose elements are ordered by
SFC, the ordering of the page access is done with little
overhead, resulting in global optimization in the t-space
view join. Therefore, it always outperforms the Breadth-
First Traversal R-tree Join that needs significant overhead
for global optimization. It also outperforms the Depth-First
Traversal R-tree Join that only does local optimization.

We also have solved the problems of the Transformation-
Based Spatial Join algorithm—an earlier t-space index join
algorithm. The t-space view join has the following advan-
tages: First, it can be applied to o-space indexes, while the
Transform-Based Spatial Join cannot. Second, the t-space
view join does not access unnecessary leaf pages of the outer
index, while the Transform-Based Spatial Join does.

5 SPACE FILLING CURVES AND ONE-PASS

BUFFER SIZE
5

The order of accessing disk pages makes a significant
impact on the performance of joins [4], [12], [18], [28] in
terms of the one-pass buffer size and the number of disk
accesses. Here, the one-pass buffer size is the minimum buffer
size necessary for processing joins while accessing the pages
to be joined only once. In this section, we adapt the analysis
[18] of the effect of the space filling curve on the one-pass
buffer size, when used with the Transformation-Based
Spatial Join algorithm [28], to the t-space view join
algorithm. We first explain a method that calculates the
one-pass buffer size for a given space filling curve and
calculate one-pass buffer sizes for typical space filling

curves by using this method. We then conclude which space
filling curve is preferable for the t-space view join.

To make analysis easy, we make a few assumptions for
data distributions, which we call uniform data and page
distribution assumptions. We assume the distribution of data
is uniform in terms of the positions and sizes of objects in
the two-dimensional o-space, that the sizes of the regions
corresponding to the leaf pages of the o-space index are
equal, and that their center positions have a uniform
distribution. Finally, we use the LRU buffer replacement
policy commonly used in DBMSs.

Fig. 9 shows the process of joining the pages of TV(R)
and TV(S) in the t-space view join algorithm. Here, the
pages in TV(R) are read consecutively following the order
of SFC. Pi represents the ith page read from TV(R) and
SJWPðPiÞ represents the set of pages corresponding to the
region SJWðPiÞ in TV(S).

Among the pairs of pages whose SJWPs overlap in Fig. 9,
let Ps and Pe be the pair whose difference between the
two values s and e is the maximum. Then, to guarantee one-
pass, the t-space view join algorithm needs an LRU buffer
whose size is equal to the total number of pages read in
when doing the join starting from Ps to Pe. This constitutes
the one-pass buffer. If the buffer is smaller than the one-
pass buffer, due to LRU buffer replacement, not all the
pages that have been read in when the join is processed for
Ps are guaranteed to remain in the buffer until the join is
processed for Pe. Equation (1) calculates the average one-
pass buffer size:

ð1þ jSJWPðPsÞjÞ þ
XMAXLDIST�1

i¼1

ð1þAVGðj�SJWPjÞÞ: ð1Þ

In (1), ð1þ jSJWPðPsÞjÞ represents the number of pages
read in for Ps and SJWPðPsÞ. ð1þAVGðj�SJWPjÞÞ
represents the average number of pages read in for each
page Pi processed after Ps and the incremental SJWPðPiÞ
that is newly read in. MAXLDIST is the maximum linear
distance between any two pages whose SJWPs overlap. In
Fig. 9, MAXLDIST is je� sþ 1j.

According to (1), MAXLDIST is the most dominant factor
of the one-pass buffer size. To obtain MAXLDIST, we first
define in Fig. 10 a scheme for identifying pages in the four-
dimensional t-space by two-dimensional coordinate values.
Fig. 10a and Fig. 10b show the LX-RX and LY-RY planes
that are t-spaces of the X and Y axes, respectively. Here, a
rectangle represents the region corresponding to a disk
page. In Fig. 10c, we project the four-dimensional space
onto the RX-RY plane (the Cartesian product of two vertical
axes as described in Section 4), where the regions are to be
selected according to the space filling curve. For simplicity,
Fig. 10c represents these regions projected onto the RX-RY
plane in an array-like fashion in order to identify them

252 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 2, FEBRUARY 2006

5. We prominently cite our earlier work in the following: The analysis in
Section 5 and the ARM order in Section 6 have appeared in an earlier paper
[18] in the context of the Transformation-Based Spatial Join algorithm [28].
The main contribution of the earlier paper is that it presents a formal
analysis of the effect of the space filling curves on the performance of the
Transformation-Based Spatial Join algorithm and proposes a new space
filling curve called the ARM order. The current paper applies them to the
t-space view join algorithm and verifies whether they work properly in the
context of the t-space view join algorithm. Experimental results in
Section 7.1 show that the analysis is highly accurate and the ARM order
significantly improves the performance of the t-space view join algorithm.

Fig. 9. The process of joining pages in the t-space join algorithm.

clearly. Next, we assign the two-dimensional coordinate

value ðu; vÞ to the region in the RX-RY plane whose

coordinate in the RX axis is u and in the RY axis is v. Since

each region corresponds to a page, a page is identified by

the coordinate of the region.
A space filling curve C represents the order using a

linearization function LC. The linearization function LC is a

function that maps the page whose coordinate is ðu; vÞ to the

order number i. This is denoted as LCðu; vÞ ¼ i. When the

coordinates of two pages P1 and P2 are ðu1; v1Þ and ðu2; v2Þ,
the distance between the two pages for a space filling

curve C is calculated as jLCðu2; v2Þ � LCðu1; v1Þ þ 1j.
To obtain MAXLDIST, we now define the notion of page

adjacency.

Definition 3. The page adjacency of an index is defined as the

minimum constant c satisfying ju1 � u2j � c and jv1 � v2j � c
for all pairs of pages ðu1; v1Þ and ðu2; v2Þwhose SJWPs overlap,

i.e., if ju1 � u2j > c or jv1 � v2j > c, then the SJWPs of the

pages ðu1; v1Þ and ðu2; v2Þ do not overlap.

Using the page adjacency defined above, we calculate

MAXLDIST’s for typical space filling curves: the row major

order, Z-order, and Hilbert order. For other space filling

curves, MAXLDIST can be calculated similarly. We first

explain the cases when the page adjacency is 1. We then

explain them when the page adjacency is greater than 1.

Lemma 2. Under uniform data and page distribution assump-

tions, for the row major order, MAXLDISTRM ¼ d
ffiffiffi
n
p e þ 2

when the page adjacency = 1 and n � 4.

Proof. See Appendix B, which can be found on the
Computer Society Digital Library at http://computer.
org/tkde/archives.htm. tu

Lemma 3. Under uniform data and page distribution assump-
tions, for the Z-order, MAXLDISTZ ¼ n

2 þ 2 when the page
adjacency = 1 and the number of pages n � 4.

Proof. See Appendix C, which can be found on the
Computer Society Digital Library at http://computer.
org/tkde/archives.htm. tu

Lemma 4. Under uniform data and page distribution assump-
tions, for the Hilbert order, MAXLDISTHilbert ¼ 10nþ8

12 when
the page adjacency = 1 and the number of pages n � 4.

Proof. See Appendix D, which can be found on the
Computer Society Digital Library at http://computer.
org/tkde/archives.htm. tu

Example 3. Fig. 11 shows MAXLDISTs for the row major
order, Z-order, and Hilbert order when the number of
pages n ¼ 64 and the page adjacency = 1. Two pages
with the linear distance between them being MAXLDIST
are represented as gray rectangles and the path of the
space filling curve between the two pages as black
curves. In each figure, the length of the curve is
MAXLDIST. For the row major order, MAXLDIST is
d
ffiffiffiffiffi
64
p
e þ 2 ¼ 10, for Z-order, 64

2 þ 2 ¼ 34, and for Hilbert
order, 10�64þ8

12 ¼ 54.

Now, we consider the case where the page adjacency
c > 1. For the row major order, MAXLDISTRM ¼ c� d

ffiffiffi
n
p e þ

cþ 1 from (4) in Appendix B, which can be found on the

LEE ET AL.: TRANSFORM-SPACE VIEW: PERFORMING SPATIAL JOIN IN THE TRANSFORM SPACE USING ORIGINAL-SPACE INDEXES 253

Fig. 10. A four-dimensional t-space. (a) LX-RX plane. (b) LY-RY plane. (c) RX-RY plane.

Fig. 11. MAXLDISTs for typical space filling curves. (a) Row major order. (b) Z-order. (c) Hilbert order.

Computer Society Digital Library at http://computer.org/
tkde/archives.htm, since maxðju1 � u2jÞ and maxðjv1 � v2jÞ
are c. For the Z-order and Hilbert order, their MAXLDISTs
are independent of the page adjacency c within the error of
4blog2 cc from Lemma 5.

Lemma 5. For the space filling curves Z-order and Hilbert order,6

the value of MAXLDIST is the same regardless of the page

adjacency c within the error of 4blog2 cc.

Proof. See Appendix E, which can be found on the
Computer Society Digital Library at http://computer.
org/tkde/archives.htm. tu

In Lemmas 2, 3, and 4, we have formally derived
MAXLDISTs of typical space filling curves. We observe that
MAXLDIST of the row major order is Oð ffiffiffinp Þ while the
others are OðnÞ. Therefore, the row major order has the
smallest one-pass buffer size when n	 1. Hence, to
minimize the one-pass buffer size, using the row major
order is preferable. However, when the given buffer is
smaller than the one-pass buffer, the row major order
abruptly incurs a lot of disk accesses. In the next section, we
analyze this problem and present a solution. As the
solution, we introduce a new space filling curve, called
the adaptive row major order, that has been proposed in [18].

6 ADAPTIVE ROW MAJOR ORDER

As shown in Section 5, the row major order is the space

filling curve that has the smallest one-pass buffer size. But,

it has the problem of reading some pages more than once

when the buffer is smaller than the one-pass buffer. We

analyze this problem as follows.

In the row major order, when the given buffer is even

slightly smaller than the one-pass buffer, we may have to

reread SJWPs of all the pages that have been processed.

When page adjacency = c, if we let ðu; vÞ be the ith page, then

ðuþ c; vþ cÞ is identified as the ðiþMAXLDISTRMÞth page.

Since the linear distance between them is MAXLDISTRM

and the buffer is smaller than the one-pass buffer deter-

mined by MAXLDISTRM from (1), the SJWP of ðu; vÞ must

have been swapped out by the time the page ðuþ c; vþ cÞ is

processed. However, since the SJWP of ðuþ c; vþ cÞ over-

laps that of ðu; vÞ (note that page adjacency = c), we need to

reread the SJWP of the page ðu; vÞ from disk. In this way, for

each i, we may have to reread the SJWP of the ith page ðu; vÞ
from the disk when joining the ðiþMAXLDISTRMÞth page

ðuþ c; vþ cÞ if the LRU buffer given is smaller than the one-

pass buffer determined by MAXLDISTRM.

The linear distance between ðu; vÞ and ðuþ c; vþ cÞ is

proportional to d ffiffiffi
n
p e, which is the horizontal width of the

row major order. Thus, we can solve the problem by

controlling the horizontal width. For this purpose, we use a

new space filling curve, the adaptive row major order (ARM

order), proposed in [18]. The formal definition is stated in

Definition 4.

Definition 4. The linearization function of the ARM order LARM

is defined as (2):

LARMðu; vÞ ¼

v� d
ffiffi
n
p
e

k þ u if u <
d
ffiffi
n
p
e

k and k > 0

� � �
v� d

ffiffi
n
p
e

k þ ðu�
id
ffiffi
n
p
e

k Þ þ i�n
k for 1 � i < k� 1 if

id
ffiffi
n
p
e

k � u < ðiþ1Þd
ffiffi
n
p
e

k and k > 2

� � �
v� d

ffiffi
n
p
e

k þ ðu�
ðk�1Þd

ffiffi
n
p
e

k Þ þ ðk�1Þn
k if

u � ðk�1Þd
ffiffi
n
p
e

k and k > 1:

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð2Þ

Example 4. Equation (3) and Fig. 12 show the ARM order

when n ¼ 36 and k ¼ 2 . This ARM order consists of

two components, each traversed in the row major order.

In general, the ARM order consists of k number of

components of width d
ffiffi
n
p
e

k , each traversed in the row

major order. The left part ðu < 3Þ has a width of 3 and is

described by the linearization function v� 3þ u. The

right part ðu � 3Þ also has a width of 3 and is described

by the linearization function v� 3þ ðu� 3Þ þ 18.

LARMðu; vÞ ¼
v� 3þ u; if u < 3
v� 3þ ðu� 3Þ þ 18 if u � 3:

�
ð3Þ

In the ARM order, we determinek in such a way that, given

a buffer of a specific size B and page adjacency c, the one-pass

buffer size determined by MAXLDIST within one component

(MAXLDISTcomponent) is equal to or smaller than B. Here,

MAXLDISTcomponent ¼ c�
ffiffi
n
p

k þ cþ 1. From (1), we deter-

mine k as the minimum one satisfying ð1þ jSJWPðPsÞjÞ þ
ð1þAVGðj�SJWPjÞÞ �ðMAXLDISTcomponent � 1Þ � B.7

7 EXPERIMENTS

In this section, we first compare the performances of the

t-space view joins using different space filling curves and

254 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 2, FEBRUARY 2006

6. This lemma can be applied to any space filling curve defined
recursively. The details are not discussed here since it is beyond the scope of
this paper.

7. The parameters, jSJWPðPsÞj, AVGðj�SJWPjÞ, and c, can be measured
or predicted by sampling nonleaf pages. To handle the worst case in the
nonuniform distribution, we sample some nonleaf pages in the densest
region identified from the index with a small overhead. Nevertheless, these
nonleaf pages tend to remain in the buffer without (or with only a few for
small buffers) extra disk accesses. The extra cost for measuring these
parameters has been added in the experimental results in Section 7.

Fig. 12. Adaptive row major where n ¼ 36; k ¼ 2.

verify the analytic results in Sections 5 and 6. We then
compare the performance of the t-space view join with
those of o-space index join algorithms—the Depth-First
Traversal R-tree Join and the Breadth-First Traversal R-tree
Join (Combo1 and Combo2). Table 1 summarizes the
algorithms compared.

We perform experiments using the three measures: the
one-pass buffer size, the number of disk access, and the
wall clock time. We use three distributions of data:
uniform, exponential, and real distributions. The data and
distributions are identical to those used in [28]. Data sets
U1 and U2 have uniform distributions; data sets E1 and E2
exponential distributions. Each data set has 130,000 MBRs
(3.5 MBytes). The center points of the MBRs in U1 and U2
are uniformly distributed in the o-space, and those in E1
and E2 are exponentially distributed with an average value
of 1/4 along each axis in the o-space. The number of join
results for U1 and U2 is 87,434 and that for E1 and E2 is
87,346. The real data set consists of Tiger1 and Tiger2,
which are identical to those used by Brinkhoff et al. [4] and
Huang and Jing [12]. Tiger1 contains 131,461 MBRs of
streets in an area of California (3.8 MBytes); Tiger2 contains
128,971 MBRs of rivers and railway tracks (3.4 MBytes).8

The number of join results of Tiger1 and Tiger2 is 86,094.
All the data sets used for the experiments are in the two-
dimensional o-space. For spatial join algorithms, perfor-
mances in the two-dimensional o-space are most important
since almost all spatial applications deal with two-dimen-
sional data—for example, maps.

We conduct all the experiments on a Sun Ultra 60
workstation. To avoid the buffering effect of the file system
and to guarantee actual disk I/Os, we use raw disks for
indexes. Indexes used in the experiments are R*-trees,
which are identical to those used by Brinkhoff et al. [4]. The
page size of the R*-trees is 4 Kbytes. We use the LRU buffer
replacement policy.

7.1 Performance Comparison among T-Space
View Join Algorithms Using Different Space
Filling Curves

We verify the analysis in Sections 5 and 6 on the one-pass
buffer size of the t-space view join algorithms using
different space filling curves for uniform data sets. We also

compare the results for other data sets: exponential and real
ones. Fig. 13 summarizes the one-pass buffer sizes. The
results show that TSVJ-RM and TSVJ-ARM have the
smallest one-pass buffer size as we have analytically
predicted in Sections 5 and 6. Compared to TSVJ-Z, TSVJ-
RM and TSVJ-ARM reduce the one-pass buffer size by up to
14.0 times9 for different data sets. Compared to TSVJ-
Hilbert, they reduce the one-pass buffer size by up to
21.3 times.

For uniform data sets, the results show that the ratio of

three one-pass buffer sizes for TSVJ-RM, TSVJ-Z, and TSVJ-

Hilbert is 71:885:1480 = 0.04:0.59:1.00. This ratio is very

close to the ratio 69:973:1615 = 0.04:0.60:1.00 calculated

from (1) and Lemmas 2, 3, and 4 when using the

parameters jSJWPðPsÞj ¼ 4, AVGðj�SJWPjÞ ¼ 1:12,10 the

page adjacency c ¼ 1,11 and the number of pages n ¼ 913.

These parameters have been measured by sampling pages

of the t-space view. This result indicates that the analysis

for uniform data sets is highly accurate. We also observe

that the results are similar for exponential and real ones,

indicating that the analysis based on uniform data sets is a

reasonable approximation.
Fig. 14 shows the number of disk accesses the t-space

view join algorithms incur as the buffer size is varied for the
uniform, exponential, and real data sets. In the figure, the
bottom horizontal line represents the optimal number of
disk accesses obtained with the one-pass buffer.

In Fig. 14, we observe that TSVJ-ARM outperforms other
TSVJ algorithms regardless of the buffer size. TSVJ-RM
incurs the same number of disk accesses as TSVJ-ARM when
the buffer is larger than the one-pass buffer. TSVJ-RM,
however, has the problem of causing excessive disk accesses
when the buffer is smaller than the one-pass buffer. This
experimental result matches the analytic result in Sections 5
and 6. To summarize the performance improvement of TSVJ-
ARM compared to the others, we distinguish two cases: those
using a small buffer and those using a large buffer. A small
buffer has a size of 1
 2 percent of the combined size of the
two indexes joined. A large buffer has a size of 5
 6 percent of
the same. We observe that TSVJ-ARM outperforms other
TSVJ algorithms by up to 3.95 times12 for the small buffer and
by up to 1.31 times for the large buffer.

7.2 Performance Comparison of T-Space View Join
Algorithm with O-Space Index Join Algorithms

In this section, we compare our TSVJ-ARM with DFRJ and
BFRJ. We choose TSVJ-ARM because it has the best
performance among TSVJ algorithms.

7.2.1 Comparison of TSVJ-ARM with DFRJ

Figs. 15, 16, and 17 summarize the results of experiments for
TSVJ-ARM and DFRJ using the uniform, exponential, and
real data sets. The results show that TSVJ-ARM always

LEE ET AL.: TRANSFORM-SPACE VIEW: PERFORMING SPATIAL JOIN IN THE TRANSFORM SPACE USING ORIGINAL-SPACE INDEXES 255

TABLE 1
Algorithms Compared

8. Although this size of the real data set is relatively small, we choose it
since it has been used in the literature for many other spatial join algorithms
to evaluate performance. We also note that the t-space view join only needs
small memory (buffer) whose size is 5
 6 percent of the size of indexes to
be joined for guaranteeing optimal disk performance. Thus, using modern
computer systems, we can join fairly large indexes optimally. For example,
with 60 MBytes of buffer, we can optimally join the indexes of 1 GBytes.

9. one�pass buffer size ðother algorithmÞ
one�pass buffer size ðTSVJ�ARM or TSVJ�RMÞ.

10. Experiments show that AVGðj�SJWPjÞ varies very little, having
nearly the same value for different space filling curves.

11. We note that the one-pass buffer sizes for the space filling curves
determined from (1) and Lemmas 3 and 4 are independent of the page
adjacency c within the error of 4blog2 cc from Lemma 5.

12. number of disk accesses ðother algorithmÞ
number of disk accesses ðTSVJ-ARMÞ .

outperforms DFRJ in terms of the three measures for all the
data sets tested.

Fig. 15 shows that, compared to DFRJ, TSVJ-ARM
reduces the one-pass buffer size by up to 15.7 times.
Fig. 16 compares the numbers of disk accesses as the buffer
size varies. Fig. 16 shows that, with the small buffer, TSVJ-
ARM reduces the number of disk accesses by up to
1.55 times and, with the large buffer, by up to 1.16 times.
Fig. 17 shows the result of the wall clock time with curves
similar to those in Fig. 16. The results using the uniform and
exponential data sets are omitted since they are similar to
those using the real data sets.

The reason why TSVJ-ARM has a better performance than

DFRJ is that TSVJ-ARM formally controls the order of page

accesses by employing global optimization that takes advan-

tage of the characteristics of the spatial join windows in the

t-space. On the other hand, DFRJ controls the order of page

accesses by using heuristics such as local plane-sweeping and

local Z-ordering, resulting in local optimization.

7.2.2 Comparison of TSVJ-ARM with BFRJ

BFRJ-Combo2 controls the LRU buffer by using the method

of pin/unpin, which helps the buffering efficiency. The pin
operation fixes the pages that are expected to be reread in
the buffer and assures that they remain in the buffer until
they are reread. The unpin operation undoes the pin

256 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 2, FEBRUARY 2006

Fig. 13. One-pass buffer sizes of TSVJs when using different space filling curves.

Fig. 14. The number of disk accesses of TSVJs with various space filling curves for uniform, exponential, and real data sets. (a) Uniform data set.

(b) Exponential data set. (c) Real data set.

Fig. 15. One-pass buffer sizes of DFRJ and TSVJ-ARM.

operation. This method can be applied to any algorithms

that do global optimization since, in these algorithms, we can

predict which pages are to be pinned or unpinned. This

method can also be applied to TSVJ-ARM. But, since TSVJ-

ARM carefully reads pages to assure that they are not

unnecessarily reread from the disk, TSVJ-ARM with and

without this method show almost the same performance.

Therefore, we DO NOT apply this method to TSVJ-ARM.

Fig. 18 compares the one-pass buffer sizes of TSVJ-ARM

and BFRJ-Combo2 for the uniform, exponential, and real

data sets. Since BFRJ-Combo1 uses external disk sort, it

always reads disk pages more than once. Thus, we have not

been able to obtain the one-pass buffer size of BFRJ-Combo1

and compare it with that of TSVJ-ARM. Fig. 18 shows that,

compared to BFRJ-Combo2, TSVJ-ARM reduces the one-

pass buffer size by up to 1.14 times.
Figs. 19 and 20 show the numbers of disk accesses and

the wall clock times of BFRJ-Combo1, BFRJ-Combo2, TSVJ-

RM, and TSVJ-ARM as the buffer size varies. Fig. 19

additionally shows the results of TSVJ-RM since they have

some similarities compared to those of BFRJ-Combo2. These

similarities are due to the ordering methods used in these

algorithms. BFRJ-Combo2 orders the regions primarily by

x coordinate value of the o-space regions and TSVJ-RM

orders regions primarily by the ry coordinate value and

secondarily by the rx coordinate value of the t-space

regions. Since the regions in both algorithms are primarily

ordered by one coordinate value of the regions, they show

similar performance.13

Fig. 19 shows that TSVJ-ARM always outperforms BFRJ-

Combo1 and BFRJ-Combo2. Compared to BFRJ-Combo1,

with the small buffer, TSVJ-ARM reduces the number of

disk accesses by up to 1.87 times; with the large buffer, by

up to 1.31 times. Compared to BFRJ-Combo2, with the small

buffer, TSVJ-ARM reduces the number of disk accesses by

up to 2.89 times; with the large buffer, the two algorithms

LEE ET AL.: TRANSFORM-SPACE VIEW: PERFORMING SPATIAL JOIN IN THE TRANSFORM SPACE USING ORIGINAL-SPACE INDEXES 257

Fig. 16. The number of disk accesses of DFRJ and TSVJ-ARM for uniform, exponential, and real data sets. (a) Uniform data set. (b) Exponential data

set. (c) Real data set.

Fig. 17. The wall clock time of DFRJ and TSVJ-ARM for real data sets.

13. Recently proposed spatial join algorithms, the Sort/Sweep Spatial
Join [8] and the Unified Approach for Indexed and Non-Indexed Spatial
Joins [1], also use a similar ordering to optimize the sequence of accessing
pages globally. Thus, they are expected to have a similar performance with
TSVJ-RM and BFRJ-Combo2. But, we did not perform a direct comparison
of them since the type of the algorithms [1], [8] is different from that of
TSVJs and BFRJs: These algorithms [1], [8] join a nonindexed file with an
indexed file; TSVJs and BFRJs join two indexed files. We also note that the
plane sweeping technique uses a similar ordering.

show almost the same performance since the buffer size is

close to the one-pass buffer sizes.
Fig. 20 shows the result of the wall clock time with

curves similar to those in Fig. 19. We note that the number

of disk accesses in Fig. 19 for BFRJs is similar with TSVJ-

ARM, but the wall clock time in Fig. 20 for BFRJs is worse

than TSVJ-ARM. The reason is that TSVJ-ARM uses less

CPU time than BFRJ: TSVJ takes advantage of the partial

sort result that the index already contains; on the other

hand, BFRJs do not use such pre-sorted result. But, we note

that overall trends in Figs. 19 and 20 are similar. The results

using the uniform and exponential data sets are omitted

since they are similar to those using the real data sets.

TSVJ-ARM outperforms both BFRJ-Combo1 and BFRJ-

Combo2 regardless of the buffer size because it does not

need extra disk or memory overhead for global optimiza-

tion. In contrast, BFRJ-Combo1 needs extra disk accesses to

store the join sequence of the entire pages, causing extra

disk access overhead. Thus, it performs worse for large

buffers. BFRJ-Combo2 needs memory overhead to store the

join sequence, effectively reducing the buffer size. Thus, it

performs worse for small buffers. It is a disadvantage of

BFRJs that any single algorithm is not efficient for all the

range of buffer sizes. TSVJ-ARM solves this problem. In

addition, TSVJ-ARM reduces the number of disk accesses

by adaptively controlling the order for a given buffer size,

while BFRJs do not.

8 CONCLUSIONS

In this paper, we first have proposed the new notion of the

t-space view. A t-space view is a virtual t-space index of an

o-space index. The novel aspect of this notion is that it

allows us to dynamically interpret an existing o-space index

such as the R-tree as a t-space index with no space and

negligible time overhead and without modifying its original

structure. The idea of the t-space view can be applied to any

o-space index where regions and objects stored in the index

are represented as minimum bounding rectangles (e.g.,

R-tree [9], R*-tree [2], X-tree [3], and SKD-Tree [22]).
Next, we have presented the t-space view join algorithm

based on the notion of the t-space view. The algorithm

258 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 2, FEBRUARY 2006

Fig. 19. The number of disk accesses of BFRJ-Combo1, BFRJ-Combo2, TSVJ-RM, and TSVJ-ARM for uniform, exponential, and real data sets.

(a) Uniform data set. (b) Exponential data set. (c) Real data set.

Fig. 18. One-pass buffer sizes of BFRJ-Combo2 and TSVJ-ARM.

globally optimizes the order of accessing the entire pages of
indexes by utilizing the special characteristics of the t-space
without much extra overhead in terms of memory or disk
access time, providing advantages over existing o-space
index join algorithms. It also solves the drawbacks of the
Transformation-Based Spatial Join algorithm [28], which is a
t-space index join algorithm.

Next, we have adapted the formal analysis [18] of the
effect of the space filling curves on the performance of
the Transformation-Based Spatial Join algorithm [28] to
the t-space view join algorithm. Experimental results
show that the analysis is highly accurate. We have also
applied the ARM order [18] to the t-space view join
algorithm. The ARM order adaptively controls the order
of accessing pages for a given buffer size. Experiments
show that the ARM order also works well (or even better)
with the t-space view join algorithm, significantly redu-
cing all three measures used: the one-pass buffer size, the
number of disk accesses for a given buffer size, and the
wall clock time.

Last, through extensive experiments, we have verified the
excellence of the t-space view join. It has been shown that the
t-space view join always outperforms the existing spatial
join algorithms that use R-trees in the o-space (the Breadth-
First Traversal R-tree Join and the Depth-First Traversal
R-Tree Join) for all data sets tested. Thus, it constitutes a
lower-bound algorithm. Specifically, it reduces the one-pass
buffer size by up to 1.14 times for the Breadth-First Traversal
R-tree Join and 15.7 times for the Depth-First Traversal
R-Tree Join. It reduces the number of disk accesses by up to
2.89 times for the Breadth-First Traversal R-tree Join and
1.55 times for the Depth-First Traversal R-Tree Join. We also
have shown that the wall clock time has a similar trend. The
reason why the proposed algorithm shows a superior
performance is that it performs a global optimization
without significant overhead while the others either do only
a local optimization or do a global optimization with certain
overhead.

The most important contribution of this paper is to
show that we can use o-space indexes such as the R-tree in
the t-space through the notion of the t-space view. As
further study, based on this new notion, we are expecting to
develop various new spatial query processing algorithms in
the t-space using conventional o-space indexes.

ACKNOWLEDGMENTS

This work was supported by the Ministry of Science and
Technology (MOST)/Korea Science and Engineering
Foundation (KOSEF) through the Advanced Information
Technology Research Center (AITrc) and by the BK21
project. The original version of this work was done as
part of Min-Jae Lee’s PhD dissertation while he was at
the Computer Science Department of KAIST. Kyu-Young
Whang was the corresponding author.

REFERENCES

[1] L. Arge, O. Procopiuc, S. Ramaswamy, T. Suel, J. Vahrenhold, and
J.S. Vitter, “A Unified Approach for Indexed and Non-Indexed
Spatial Joins,” Proc. Seventh Int’l Conf. Extending Database
Technology (EDBT), pp. 413-429, 2000.

[2] N. Beckmann, H.-P. Kriegel, and R. Schneider, “The R*-Tree: An
Efficient and Robust Access Method for Points and Rectangles,”
Proc. Int’l Conf. Management of Data (ACM SIGMOD), pp. 322-331,
1990.

[3] S. Berchtold, D. Keim, and H.-P. Kriegel, “The X-Tree: An Index
Structure for High-Dimensional Data,” Proc. 22nd Int’l Conf. Very
Large Data Bases, pp. 28-39, 1996.

[4] T. Brinkhoff, H.-P. Kriegel, and B. Seeger, “Efficient Processing of
Spatial Joins Using R-Trees,” Proc. Int’l Conf. Management of Data
(ACM SIGMOD), pp. 237-246, May 1993.

[5] C. Faloutsos, “Multiattribute Hashing Using Gray-Codes,” Proc.
Int’l Conf. Management of Data (ACM SIGMOD), pp. 227-238, 1986.

[6] V. Gaede and O. Günther, “Multidimensional Access Methods,”
ACM Computer Surveys, vol. 30, no. 2, pp. 170–231, 1998.

[7] O. Günther, “The Cell Tree: An Object-Oriented Index Structure
for Geometric Databases,” Proc. 15th IEEE Int’l Conf. Data Eng.,
pp. 598-605, 1989.

[8] C. Gurret and P. Rigaux, “The Sort/Sweep Algorithm: A New
Method for R-Tree Based Spatial Joins,” Proc. 12th Int’l Conf.
Scientific and Statistical Database Management (SSDBM), pp. 153-
165, 2000.

[9] A. Guttman, “R-Trees: A Dynamic Index Structure for Spatial
Searching,” Proc. Int’l Conf. Management of Data (ACM SIGMOD),
pp 47-57, 1984.

[10] D. Hilbert, “Über die stetige Abbildung einer Linie auf Flächen-
stück,” Annals of Math., vol. 38, pp. 459-460, 1891.

[11] G.R. Hjaltason and H. Samet, “Distance Browsing in Spatial
Databases,” ACM Trans. Database Systems, vol. 24, no. 2, pp. 265-
318, June 1999.

[12] Y.-W. Huang and N. Jing, “Spatial Joins Using R-Trees: Breadth-
First Traversal with Global Optimizations,” Proc. 23rd Int’l Conf.
Very Large Data Bases, pp. 396-405, 1997.

[13] E.H. Jacox and H. Samet, “Iterative Spatial Join,” ACM Trans.
Database Systems, vol. 28, no. 3, pp. 230-256, Sept. 2003.

[14] H.V. Jagadish, “Spatial Search with Polyhedra,” Proc. 16th IEEE
Int’l Conf. Data Eng., pp. 311-319, 1990.

[15] H.V. Jagadish, “Linear Clustering of Objects with Multiple
Atributes,” Proc. Int’l Conf. Management of Data (ACM SIGMOD),
pp. 332-342, May 1990.

[16] D.E. Knuth, The Art of Computer Programming, Vol. III: Sorting and
Searching. Addison Wesley, 1973.

[17] J. Lee, Y. Lee, K. Whang, and I. Song, “A Region Splitting Strategy
for Physical Database Design of Multidimensional File Organiza-
tions,” Proc. 23rd Int’l Conf. Very Large Data Bases, pp. 416-425, 1997.

[18] M. Lee, K. Whang, W. Han, and I. Song, “Adaptive Row Major
Order: A New Space Filling Curve for Efficient Spatial Join
Processing in the Transform Space,” J. Systems and Software, Oct.
2004.

[19] M.-L. Lo and C.V. Ravishankar, “Spatial Joins Using Seeded
Trees,” Proc. Int’l Conf. Management of Data (ACM SIGMOD),
pp. 209-220, May 1994.

[20] M.-L. Lo and C.V. Ravishankar, “Spatial Hash-Joins,” Proc. Int’l
Conf. Management of Data (ACM SIGMOD), pp. 247-258, June 1996.

[21] N. Mamoulis and D. Papadias, “Slot Index Spatial Join,” IEEE
Trans. Knowledge and Data Eng., vol. 15, no. 1, pp. 211-231, Jan./
Feb. 2003.

[22] B.C. Ooi, K.J. Mcdonell, and R. Sacks-Davis, “Spatial kd-Tree: An
Indexing Mechanism for Spatial Databases,” Proc. IEEE Computer
Software and Applications Conf., pp. 433-438, 1987.

LEE ET AL.: TRANSFORM-SPACE VIEW: PERFORMING SPATIAL JOIN IN THE TRANSFORM SPACE USING ORIGINAL-SPACE INDEXES 259

Fig. 20. The wall clock time of BFRJ-Combo1, BFRJ-Combo2, TSVJ-

RM, and TSVJ-ARM for real data sets.

[23] J. Orenstein, “Spatial Query Processing in an Object-Oriented
Database System,” Proc. Int’l Conf. Management of Data (ACM
SIGMOD), pp. 326-336, May 1986.

[24] B.-U. Pagel, H.-W. Six, and H. Toben, “The Transformation
Technique for Spatial Objects Revisited,” Proc. Third Int’l Symp.
Spatial Databases (SSD), pp. 73-88, 1993.

[25] J.M. Patel and D.J. Dewitt, “Partition Based Spatial-Merge Join,”
Proc. Int’l Conf. Management of Data (ACM SIGMOD), pp. 259-270,
June 1996.

[26] H. Samet, The Design and Analysis of Spatial Data Structures.
Addision-Wesley, 1990.

[27] B. Seeger and H.-P. Kriegel, “Techniques for Design and
Implementation of Efficient Spatial Access Methods,” Proc. 14th
Int’l Conf. Very Large Data Bases, pp. 360-371, 1988.

[28] J. Song, K. Whang, Y. Lee, M. Lee, and S. Kim, “Spatial Join
Processing Using Corner Transformation,” IEEE Trans. Knowledge
and Data Eng., vol. 11, no. 4, pp. 688-695, July/Aug. 1999.

[29] K. Whang and R. Krishnamurthy, “Multilevel Grid Files,” IBM
Research Report RC 11516, 1985.

Min-Jae Lee received the BS degree in compu-
ter science from the Korea Advanced Institute of
Science and Technology (KAIST) in 1995 and
the MS and PhD degrees in computer science
from KAIST in 1997 and 2004, respectively. Until
November 2004, he was a postdoctoral fellow at
the Advanced Information Technology Informa-
tion Center, KAIST. In December 2004, he
joined Neowiz, Co., Ltd., in Korea as a research
staff member. His research interests include

spatial databases, access methods, information retrieval, query proces-
sing, database systems, and storage systems. He is a student member
of the IEEE and a member of the ACM.

Kyu-Young Whang graduated (summa cum
laude) from Seoul National University in 1973
and received MS degrees from the Korea
Advanced Institute of Science and Technology
(KAIST) in 1975 and Stanford University in 1982.
He received the PhD degree from Stanford
University in 1984. From 1983 to 1991, he was
a research staff member at the IBM T.J. Watson
Research Center, Yorktown Heights, New York.
In 1990, he joined KAIST, where he is currently

a full professor in the Department of Computer Science and director of
the Advanced Information Technology Research Center (AITrc). His
research interests encompass database systems/storage systems,
object-oriented databases, multimedia databases, geographic informa-
tion systems (GIS), data mining/data warehouses, and XML databases.
He is an author of more than 90 papers in refereed international journals
and conference proceedings and more than 150 domestic ones. He
served as an IEEE Distinguished Visitor from 1989 to 1990, received the
Best Paper Award from the Sixth IEEE International Conference on Data
Engineering (ICDE) in 1990, served seven times as a program cochair
and vice chair for ICDE from 1989 to 2006, and served on program
committees of more than a hundred international conferences, including
VLDB, ACM SIGMOD, and ICDE. He was the program chair (Asia and
Pacific Rim) for COOPIS ’98 and the program chair (Asia, Pacific, and
Australia) for VLDB2000. He is the general chair of VLDB2006 and was
the general chair of PAKDD2003 and DASFAA2004. He received the
External Honor Recognition from IBM twice. He is an editor-in-chief of
the VLDB Journal, having served on the editorial board as a founding
member for 15 years. He was an associate editor of the IEEE Data
Engineering Bulletin from 1990 to 1993 and an editor of the Distributed
and Parallel Databases Journal from 1991 to 1995. He is currently on
the editorial boards of the IEEE Transactions on Knowledge and Data
Engineering, the International Journal of GIS, and the World Wide Web
Journal. He served as a trustee of the VLDB Endowment from 1998 to
2004 and is a steering committee member of the DASFAA and PAKDD
conferences. He was a member of the 10-year best paper award
committee of VLDB2003 and VLDB2005 and is currently a member of
the awards committee of IEEE ICDE. He is a senior member of the
IEEE, a member of the ACM, and a member of IFIP WG 2.6.

Wook-Shin Han received the BS degree in
computer engineering from Kyungpook National
University in 1994 and the MS and PhD
degrees in computer science from the Korea
Advanced Institute of Science and Technology
(KAIST) in 1996 and 2001, respectively. He is
currently an assistant professor in the Depart-
ment of Computer Engineering at Kyungpook
National University. His research interests
include object-oriented/object-relational data-

bases, XML databases, and information retrieval. He is a member of
the IEEE and the ACM.

Il-Yeol Song received the MS and PhD degrees
in computer science from Louisiana State Uni-
versity in 1984 and 1988, respectively. He is a
professor in the College of Information Science
and Technology at Drexel University, Philadel-
phia, Pennsylvania. His research focuses on the
practical application of modeling and design
theory to real-world problems. His current
research areas include database modeling and
design, design and performance optimization of

data warehouses and OLAP, database systems for Web-based
systems, bioinformatics, and object-oriented analysis and design with
UML. He has published more than 120 refereed technical articles in
various journals and international conferences. He is a coauthor of the
ASIS Pratt_Severn Excellence in Writing Award at National ASIS
meeting (1997) and received the Best Paper Award from the 2004 IEEE
Symposium on Computational Intelligence in Bioinformatics and
Computational Biology (IEEE CIBCB 2004). He received a Research
Scholar Award from Drexel University in 1992. He has also won
12 research awards from the annual Drexel Sigma Xi Scientific
Research Competitions or annual Drexel Research Days. He has won
three teaching awards from Drexel University: the Exemplary Teaching
Award in 1992, the Teaching Excellence Award in 2000, and the
Lindback Distinguished Teaching Award in 2001. He served as a
program cochair of CIKM ’99, DOLAP ’98, DOLAP ’99, ER ’03, and
DGOV ’04. He is an associate editor for the Journal of Database
Management and the International Journal of E-Business Research. He
is a member of the ACM, the IEEE Computer Society, KSEA, and
KOCSEA.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

260 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 2, FEBRUARY 2006

