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Abstract

In this paper, we study the problem of processing continuous range queries in a hierarchical

wireless sensor network. Recently, as the size of sensor networks increases due to the growth of

ubiquitous computing environments and wireless networks, building wireless sensor networks in a

hierarchical configuration is put forth as a practical approach. Contrasted with the traditional

approach of building networks in a “flat” structure using sensor devices of the same capability, the

hierarchical approach deploys devices of higher capability in a higher tier, i.e., a tier closer to the

server. While query processing in flat sensor networks has been widely studied, the study on query

processing in hierarchical sensor networks has been inadequate. In wireless sensor networks, the main

costs that should be considered are the energy for sending data and the storage for storing queries.

There is a trade-off between these two costs. Based on this, we first propose a progressive processing

method that effectively processes a large number of continuous range queries in hierarchical sensor

networks. The proposed method uses the query merging technique proposed by Xiang et al. as

the basis and additionally considers the trade-off between the two costs. More specifically, it works

toward reducing the storage cost at lower-tier nodes by merging more queries, and toward reducing

the energy cost at higher-tier nodes by merging fewer queries (thereby reducing “false alarms”).

We then present how to build a hierarchical sensor network that is optimal with respect to the

weighted sum of the two costs. It allows for a cost-based systematic control of the trade-off based

on the relative importance between the storage and energy in a given network environment and

application. Experimental results show that the proposed method achieves a near-optimal control

between the storage and energy and reduces the cost by 0.989 ∼ 84.995 times compared with the

cost achieved using the flat (i.e., non-hierarchical) setup as in the work by Xiang et al.

1

http://arxiv.org/abs/0906.0252v1


1 Introduction

As the computing environment evolves toward ubiquitous computing, there has been increasing atten-

tion and research on sensor networks. In the sensor networks environment, sensor nodes are connected

through the network to the server (or base station) which collects data sensed at the nodes[1]. Exam-

ple applications in such an environment include environment monitoring(e.g., temperature, humidity),

manufacturing process tracking, traffic monitoring, and intrusion detection in a surveillance system.

In particular, as wireless network becomes more common, there has been a lot of research on

wireless sensor networks in which sensor nodes are connected in an ad-hoc network configuration in

order to reduce the cost of deployment. In general, the objective in a wireless sensor network is to

deploy cheap sensor nodes with limited resources (e.g., battery power, storage space) effectively and to

collect data from those sensor nodes by using their limited resources efficiently [8].

There is an increasing trend lately toward large-scale wireless sensor networks[12, 13], as the scope

of applications extends to municipality management, global environmental monitoring, etc. These

networks typically aim at supporting a large number of sensor nodes deployed in a large area for use

by a large number of users. For example, in the Network for Observation of Volcanic and Atmospheric

Change (NOVAC) project[11], a wireless sensor networks deployed in 15 volcanoes spread across five

continents are connected in a multi-tier configuration to support a global volcano monitoring project. As

another example, the EarthNet Online[3] collects earth observation information such as the worldwide

weather and bird migrations through wireless sensor networks and makes the information available for

thousands of individuals or organizations. This kind of scale upgrade will bring about a proportionate

increase of the number of concurrent queries and the amount of sensor data. Thus, we expect an

increasing importance of processing a large number of queries and a high volume data effectively in

wireless sensor networks. In addition, we expect that building such large scale wireless sensor networks

economically is important as well.

With these regards, in this paper, we consider storage requirement needed to store queries in sensor

nodes and energy consumption (i.e., battery capacity) needed to send the collected data from those nodes
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to the server. There exists a trade-off between these two cost factors. Let us explain this trade-off with

the centralized approach and the distributed approach[15], which are the two naive approaches to build

wireless sensor networks. In the centralized approach, the sensor nodes do not store any query and

simply send all data to the server, which then processes all the queries on the data received. In this

case, there is no storage cost to store queries in individual sensor nodes but the energy cost is very high.

In the distributed approach, on the other hand, individual sensor nodes store all the queries and send

only the results of processing the queries to the server, which then simply collects the received query

results (This scheme is known as in-network query processing[21]). In this case, the energy cost can be

reduced but the storage cost is high.

Neither of these two approaches is suitable for building large scale sensor networks. In the central-

ized approach, since data are accumulated over the course of being relayed toward the server, sensor

nodes near the server should send more data than the nodes farther from the server. As the number of

nodes increases, this phenomenon will become more serious. In other words, sensor nodes closer to the

server consume more energy than other nodes farther from the server – for sending not only the data

generated by themselves but also the data received from other nodes; as a result, those nodes will be

burnt out within a short time. Thus, the centralized approach is not appropriate for large scale sensor

networks. On the other hand, the distributed approach becomes infeasible as the number of queries

increases. A sensor node is not able to process a large number of queries due to the limitation on its

memory and computing power. Consider as an example inexpensive Micamotes[13], which typically

have only 8∼128 Kbyte flash memory and 0.5∼8 Kbyte RAM. Suppose a mote has 64Kbyte flash mem-

ory and 10% of it is available for storing two-dimensional range queries. Additionally, suppose that

each attribute value of a query is a real number of four bytes long and that the selection condition of

a query is expressed as c1 op1 A op2 c2 (A: attribute name; c1 and c2: attribute values; op1 and op2:

binary comparison operators). Then, the size of one query is at least 16 bytes[8]. and, thus at most 400

queries can be stored in one mote. Obviously, these motes are far too short to store thousands of queries

expected of large scale networks. Upgrading the sensor nodes to those with large enough memory will
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raise the expense, which is not acceptable when there are so many sensor nodes to be deployed.

Recently, in order to overcome these large scale problems, building wireless sensor networks in a

hierarchical configuration is considered a practical alternative. A hierarchical wireless sensor network

is organized in a multi-tier architecture[2] configured with sensor nodes having different amounts of

resources and computation power. Nodes closer to the server have more resources and computation

power than those farther from the server, and this makes it possible to carry out the processing that

cannot be done with low-capacity nodes only. In hierarchical wireless sensor networks, nodes with

smaller resources and computing power are recursively connected to nodes with more resources and

computing power[14, 16, 2]; thus, nodes near the server are capable of handling the larger amount

of data accumulated from lower tiers. We think this configuration is suitable for resolving the query

processing problem in large-scale networks mentioned above. Currently, however, the main stream of

research on wireless sensor network query processing is for flat sensor networks (i.e., sensor networks that

consist of nodes with the same capability). Accordingly, research on query processing for hierarchical

sensor networks has been less than adequate.

This paper proposes a method for building large scale hierarchical sensor networks to process

queries effectively with respect to the trade-off between the energy cost and the storage cost. The queries

considered in this paper are continuous range queries. Range queries are an important query type in

many sensor network applications, particularly in monitoring applications[8], and there has been active

research done to improve range query processing performance[6]. The method proposed in this paper is

based on the technique of systematically controlling the trade-off between the energy cost and the storage

cost through controlled merging of queries with similar ranges. There are existing methods proposed to

reduce the energy cost by merging queries to avoid duplicate transmission of query results[10, 19, 20].

They, however, all focus on flat sensor networks and, therefore, cannot utilize the characteristics of

hierarchical sensor networks in which nodes at different tiers have different capabilities. Besides, their

work does not reflect anything about the trade-off because they do not consider the storage cost at all.

In contrast, in this paper, we fully utilize the characteristics by employing a progressive approach, which

merges increasingly more queries as the tier goes from the server toward the lowest tier and, in this
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way, finds the optimal merging at each tier in consideration for the trade-off. More specifically, at lower

tier nodes, which are larger in number, the approach works toward reducing the storage requirement

by reducing the number of queries through more aggressive merging; in contrast, at higher tier nodes,

which are smaller in number, the approach works toward storing more queries through less aggressive

merging and, in return, reducing the energy consumption by increasing the query accuracy by filtering

out more unnecessary data.

In this paper, we first propose the model and algorithms of the progressive query processing method.

This method has two phases: query merging and query processing. The key idea in the query merging

phase is to merge queries progressively as the tier goes from the highest (i.e., the server) to the lowest.

In other words, it merges the input queries to recursively generate queries to be stored at the next tier

nodes, first merging the input queries to generate queries for the second tier nodes, and then merging

them to generate the ones for the third tier nodes, and so on. We say that the queries thus stored at

multiple tiers form the inverted hierarchical query structure1 as a whole.

The Inverted hierarchical query structure is a new structure proposed in this paper. It is built from

a multi-dimensional index storing the query ranges, by partitioning the index into multiple levels and

then storing the root level of the index at the lowest-tier sensor nodes and the leaf level of the index

in the server. This structure is based on the characteristics of hierarchical sensor networks that sensor

nodes at a higher level store more detailed information while sensor nodes at a lower level store more

abstract information. Thus, the structure is an inverse of a general tree-like index structure.

In the query processing phase, the queries are processed progressively, that is, by refining the query

result to be more accurate as data are sent from a lower tier to a higher tier. For this, the inverted

hierarchical query structure is used to retrieve the query result at each tier.

Next, we propose a method that builds an optimal hierarchical sensor network by systematically

controlling the trade-off between the storage cost and the energy cost according to their weights. Since

the relative importance between the two costs may vary depending on the application and environment,

we formulate the cost of building the network as a weighted sum of the two costs and minimize the

1It is a forest structure to be more precise (see Figure 2).
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total cost. As the optimization target parameter, we use the optimal merge rate – the average rate of

merging queries at each tier.

Finally, we show through experiments that the proposed method is useful for building a hierarchical

sensor network in a cost effective manner. Specifically, first we show that there is little difference between

the optimal merge rate obtained from an analytic model and the rate obtained from experiments; second,

we show the superiority of the proposed method over the existing query processing method for flat sensor

networks in terms of the total cost.

The rest of this paper is organized as follows. Section 2 discusses related work. Section 3 describes

the model and the algorithms of the proposed progressive processing method for hierarchical sensor

networks. Section 4 proposes an analytical method for effectively building a hierarchical sensor network.

Section 5 shows the superiority of the proposed method over the existing method through experiments.

Section 6 concludes the paper.

2 Related Work

In this section, we review the existing research on the continuous range query processing in sensor

networks and the state of the art in the hierarchical wireless sensor networks.

2.1 Continuous range query processing in sensor networks

In sensor networks, range query processing can be classified into single range query processing and

multiple range query processing. Single range query processing executes only one range query in a

system. Multiple range query processing concurrently executes many range queries in a system.

Single continuous range query processing

Li et al. [6] apply the data-centric storage to continuous single query processing. The query processing

using the data-centric storage runs as follows. For storing data, each sensor node sends collected data

to sensor nodes, where the target sensor nodes are determined by the value of the data element. For

processing queries, the server sends a query to only those sensor nodes that have the result data of the
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query. In the same work, Li et al. study an index structure using an order-preserving hash function for

distributing data. That is, nodes that are physically adjacent have the adjacent value ranges of data

stored in the nodes.As a result, the method reduces the query processing cost by reducing the average

number of hops for sending queries and query results. Madden et al.[8] consider storing data in local

sensors (unlike the data-centric approach) and propose building an R-tree-like index (called SRTree)

based on the range of sensing values. Both of these works focus on single query processing. Hence,

they are not applicable for recent query processing environments that register many queries and process

them concurrently.

Multiple continuous range query processing

Ratnasamy et al. [15] propose two basic query processing approaches for multiple query processing in

wireless sensor networks. One approach processes queries at the server(called the centralized approach),

and the other approach processes queries at the sensor node(called the distributed approach). In the

former approach, all queries are stored in the server, and the sensor nodes send all sensed data to the

server for query processing. This approach is effective only if the size of the region equivalent to the

union of all query regions is close to the size of the entire domain space and, otherwise, incurs the

overhead of sending unnecessary data to the server. This approach can reduce the memory requirement

of the sensor nodes because it does not store any query in them, but has the disadvantage of incurring

significant energy consumption because all data must be sent to the server. In the latter approach, each

sensor node stores all queries disseminated from the server and sends to the server only the result of

processing the sensor data. Thus, this approach may not have the problem of the former approach,

but has the disadvantage that the sensor nodes may not be able to store all queries due to insufficient

memory if the number of queries is large. From these two basic query processing approaches, we can

observe that there is a trade-off between the memory and the energy which are two important resources

of sensor nodes.

Furthermore, recently, there has been research to complement the centralized approach and the

distributed approach. Specifically, the proposed methods are to share query processing in an overlapping
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region in case there are overlapping query conditions. By identifying the overlapping regions among the

user queries and rewriting the queries accordingly, the proposed methods eliminate duplicate processing

and duplicate data transmission. These methods can be classified into the partitioning method and the

merging method.

In the partitioning method, the server partitions the individual query regions into overlapping

regions and non-overlapping regions. Then, it sends the partitioned regions and the original queries to

sensor nodes, which store them. Query processing is done for each partitioned region, and the query

results are merged in the server or sensor nodes. Trigoni et al. [18] and Yu et al. [22] use this method to

process range queries on the location information of sensor nodes. This method has the advantage that

the result of merging the results of processing each partition is the same as the result of processing the

original queries and, therefore, no “false alarm” will happen. It, however, has the disadvantage that, if

there are a large number of overlapping query conditions, then the number of partitions to be stored in

certain sensor nodes increases and, thus, the necessary storage increases as well.

In the merging method, the server merges the regions of overlapping queries into one merged query

region. The server then sends the merged queries to the sensor nodes that store them. Query processing

results are then “reorganized” into those of the original queries in the server or sensor node. This

method has the advantage that it can process a large number of queries at the same time by reducing

the number of queries stored in a sensor node. It, however, has the disadvantage that a “false alarm”

may happen as a result of merging queries. Muller and Alonso[10] propose a method that compares the

predicates of the range queries to extract those common to all queries and generates one query that has

only the common predicates as the query condition. In this method, if there is no predicate common to

all queries, then one query with no query condition is generated and, thus, has the problem of incurring

a lot of false alarms in that case. Xiang et al. [19, 20] propose a method which incrementally merges

overlapping query regions and processes the resulting merged queries instead of the original queries.

Here, the incremental merging is done until the cost of sending the false alarms occurring when queries

are merged is no larger than the cost of sending duplicate results of overlapping query regions when

queries are not merged. Xiang et al.’s query processing method has the meaning of a hybrid approach
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(i.e., reducing the needed memory amount and the data transmission amount) taking advantage of both

the centralized approach and the distributed approach, but targets “flat” sensor networks in which all

sensor nodes in the network have the same capability and store the same set of merged queries. Thus,

this method has the problem that it cannot utilize the characteristics of hierarchical sensor networks.

Our method in this paper basically uses the same query merging method as Xiang et al.’s, but enhances

it to control the rate of merging queries depending on the capabilities of individual nodes and to build

a hierarchical sensor network. Our method has the advantage that it allows for a systematic control of

the trade-off between the memory amount needed and the amount of data sent.

2.2 Hierarchical wireless sensor networks

As the scale of sensor networks increases, the hierarchical structure is used more in real applications

than the flat structure in which all sensor nodes have the same capability[2].

Representative examples of such hierarchical wireless sensor networks are PASTA(Power Aware

Sensing, Tracking and Analysis)[16] mentioned in COSMOS[16] and SOHAN[4]. PASTA is used in

military applications for enemy movement surveillance and is configured with the server and about 400

intermediate tier nodes each clustering about 20 sensor nodes. SOHAN is used in traffic congestion

monitoring applications to measure the traffic volume using roadside sensor nodes and is configured

with the server and about 50 intermediate tier nodes each clustering about 200 sensor nodes.

We expect that hierarchical sensor networks will be increasingly more utilized in the future as the

scale and the requirement of applications increase. However, there has not been any research done on

processing multiple queries talking advantage of the characteristics that sensor nodes at different tiers

have different capabilities. Srivastava et al. [17] investigated how and on which node to process each

operation during query processing in a hierarchical sensor network. This research, however, mainly

deals with single query processing and, thus, is difficult to apply to multiple query processing. In this

paper, we propose a method for processing multiple queries effectively by utilizing the characteristics of

hierarchical sensor networks, i.e., the multi-tier structure made of sensor nodes with different resources

and computing power.
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3 Progressive processing in hierarchical wireless sensor net-

works

In this section, we present the progressive processing model and algorithms in hierarchical (i.e., multi-

tier) wireless sensor networks.

3.1 Overview

In progressive processing, we systematically control the total processing cost by having the larger number

of lower-capacity nodes (at lower tiers) partially process queries and the smaller number of higher-

capacity nodes (at higher tiers) process the remainder.

Example 1 (Progressive processing in hierarchical wireless sensor networks): Figure 1(a) shows an

example of a hierarchical sensor network organized in three tiers. The nodes at the third (i.e., lowest)

tier are the largest in number but the smallest in capability and are connected to the more capable nodes

at the second tier. All nodes except the server generate data (i.e., partial query results) periodically

and send them to the server relayed via the nodes at higher tiers. The server then provides the final

query result to the user. Figure 1(b) shows the set of queries stored in the nodes at each tier at the

end of the query merging phase. In this figure, the rectangular regions represent range queries, and the

boundary rectangle represents the domain space defined by the attributes specified in the queries. The

server stores six original queries, the second tier nodes store three queries resulting from the merge of

the six original queries, and the third tier stores two queries resulting from further merging them. In the

query processing phase, sensor nodes at the lowest tier process the two queries on the sensed data and

send to the second tier only the data satisfying the conditions (i.e., ranges) of the two queries. Then,

the sensor nodes at the second tier process the three queries on the data sent from nodes at the lower

tier and the data they generate on their own, and send to the server only the data satisfying the query

conditions. Since nodes at a higher tier have queries of finer granularity, they can reduce ”false alarms”

and thereby reduce energy consumption. The server processes the original queries on the data sent from

all nodes at lower tiers and provides the final result to the user.
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This figure shows a three-tier network as an example.

Figure 1. Inverted hierarchical query structure in a hierarchical wireless sensor network.

From Figure 1(b), we can see that the stored queries altogether form an inverted structure of a

multi-dimensional index tree. In contrast to a multi-dimensional index tree structure in which all objects

are stored in the leaf nodes and are merged to become more abstract at a higher level, in the proposed

structure, the root (i.e., server) stores all objects (i.e., queries) and they are merged to become more

abstract at a lower level.

The progressive processing has the query merging phase which generates queries to be stored

at each tier of the hierarchical sensor network to form an inverted hierarchical query structure and

the query processing phase which processes sensed data and sends the result to the server using the

inverted hierarchical query structure. Query merging is performed off-line in batch processing, and

query processing is performed on-line every time data are generated. In query merging, queries are sent

toward the lowest tier while merged “progressively”, and, in query processing, the sensor data are sent

toward the server while being filtered “progressively”.

In the query merging phase, minimum bounding rectangles (MBRs) are obtained from the queries

and expressed as merged queries. In this case, it is important to decide how many MBRs the queries

should be merged into because the number of MBRs affects the trade-off between the energy consumption

and the storage usage. That is, if more queries are merged, then the storage space used by the sensor

nodes to store queries is reduced, but the energy consumption is increased due to more frequent false
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alarms. In this section, we present the model and algorithms under the assumption that the number

of merged queries is known at each tier. Then, in section 4, we present a method for determining the

optimal number of merged queries analytically using a cost model.

In the query processing phase, all sensor nodes except the server process their own sensed data and

the data received from the nodes at lower tiers, and send the results to the nodes at the next higher

tier. Since more queries (of finer granularity) are stored at the higher tier nodes, the accuracy of query

result is higher in them, thus generating the query result progressively.

3.2 Network and data models

In this section, we first define the hierarchical sensor network. Then, we explain data and queries used

in this paper.

The hierarchical sensor network

We make the following assumption about the configuration of a hierarchical sensor network. All sensor

nodes are connected to form a tree rooted at the server, and the nodes at the same depth make one tier.

Data are generated by not only the nodes at the lowest tier but also those at intermediate tiers, and

the sensed data are sent to the server though the nodes at higher tiers. All sensor nodes at the same

tier have the same capability, that is, the same amount of memory and battery power. Nodes closer to

the server have higher capability, that is, a larger amount of memory and battery power. In addition,

all nodes at the same tier store the same set of queries.

There have been various research on the hierarchical sensor network in the literature. However, the

definitions of the hierarchical sensor network vary depending on specific environments. Nevertheless,

it is a common understanding that a hierarchical sensor network consists of multiple tiers and deploys

devices of different capabilities at different tiers[4, 17, 2]. We define the hierarchical sensor network as

in Definition 1.
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Definition 1 (The hierarchical sensor network) The hierarchical sensor network is defined as a

tree T = (V, E) of height h, where V is a set of vertices representing the sensor nodes and the server in

the network (the root represents the server), and E is a set of edges representing the direct connection

between a sensor node and its parent node. Let nodei denote the node at ith tier (1 ≤ i ≤ h). Let si and

ei denote the amount of storage and the amount of energy of nodei, respectively. Then, a hierarchical

sensor network satisfies relationship: sj > sk and ej > ek (1 ≤ j < k ≤ h).

Query and data

In this paper, we focus on the range query as the query type in the hierarchical sensor network since it

is an important query type in sensor networks applications[6, 8, 10, 19]. Consider a multi-dimensional

domain space defined by the query attributes. Then, in the domain space, a query and a data element

are represented as a hyper rectangular region and a point, respectively[7].

3.3 Progressive query merging

3.3.1 The model

Query merging in the first phase of progressive processing is done by finding the MBR enclosing the

queries to be merged. Progressive query merging means that more queries are merged as the merging

progresses to lower tiers. Thus, the size of a query region is larger at a lower tier while the number of

queries is smaller. Let us refer to a query represented by an MBR that encloses certain queries at a

higher tier node as a merged query, and denote the set of queries (or the query set) stored at the ith-tier

node as Qi. Then, we can represent the set of merged queries at each tier as one level in the inverted

hierarchical query structure, as shown in Figure 2. In this figure, an arrow represents the direction of

query merging; queries at the tail of an arrow are merged to the query at the head of the arrow. For

instance, the queries q1,1,q1,2 and q1,3 at the 1st tier are merged to the query q2,1 at the 2nd tier.

The query merging can also be seen as merging the partition of a disjoint set of queries. Figure 3

illustrates it with the same six queries as in Figure 2. The query q2,1 in Figure 2, for example, corresponds

to the subset {q1,1, q1,2, q1,3} of Q2 in Figure 3. The partitioning is coarser at a lower tier.
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Figure 3. An example of progressive partition merging.

3.3.2 The algorithm

For each ith tier, the progressive query merging algorithm generates a merged query set Qi of a given

size Ci. The objective of the algorithm is to minimize the query processing cost in consideration for the

limited memory of sensor nodes. It is difficult to predict the cost of query processing for a given set of

merged queries. The reason for this is that the cost depends not only on the network-specific factors

like routing but also on unknown factors such as the query and data distributions. In this paper, we

use the simplified model proposed by Xiang et al.[19], in which the cost metric is the amount of data

sent during the query processing, as the basis and extend it to fit into the hierarchical sensor network

and take the memory usage into consideration. In Xiang et al.’s model, the size O of the overlapping

region among queries and the size D of the dead region (i.e., the region added in extra to make the

MBR enclosing the merge queries; it causes the false alarms) are calculated for each pair of two queries
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that are candidates to be merged, and the pair that maximizes the difference between the sizes of the

two regions, O − D, are merged. The effect of this is to merge queries with large overlapped regions,

which is a reasonable strategy for reducing the data transmission cost.

The proposed algorithm performs the query merging using a greedy approach based on the same

strategy. Let O(qi, qj) be the size of the overlapping region between two queries qi and qj , and D(qi, qj)

be the size of dead region between them. The algorithm chooses two queries qi and qj with the largest

O(qi, qj) − D(qi, qj) from the set of queries that are either merged queries or the original queries and

merge them first. This strategy is the same as the strategy used by Xiang et al.[19] except that they

consider only the pairs that satisfy O(qi, qj)−D(qi, qj) ≥ 0. Specifically, in consideration of the storage

cost for storing queries and the energy cost for sending query results, our approach determines the fixed

number of queries that are to be stored into a sensor node at each tier. Then, we merge queries using

a greedy method until we reach the number while Xinag et al.’ approach determines the number of

queries to be stored so as to only minimize the amount of data sent.

Figure 4 shows the progressive query merging algorithm. Inputs to this algorithm are the set of

the original queries Q, the height h of the hierarchical sensor network to be built, and the set of the

numbers of merged queries K to be stored in every node at each tier. The output is the sets of merged

queries that are stored in every node at each tier. At each tier t, the algorithm repeats merging two

queries at a time until the number of merged queries falls lower than kt (lines 3-6). In order to find the

pair of queries to be merged, it calculates the difference between the overlapping region and the dead

region over every pair of queries and merges the pair with the maximum difference (lines 4-5).

3.4 Progressive query processing

3.4.1 The model

In the query processing phase, for a given query, it is decided whether a data element falls inside

the query region, that is, whether the attribute values representing the data element satisfy the range

predicates representing the region. Progressive query processing is the process of propagating data
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Figure 4. The progressive query merging algorithm.

elements bottom up in the inverted hierarchical query structure from the lowest tier nodes to the

highest tier node (server), while filtering the data elements depending on the result of evaluating the

range predicates of the queries at each tier. (Precisely speaking, multiple data elements are sent in a

batch for the sake of efficiency.) Figure 5 shows an example of query processing. In this figure an arrow

denotes an upward flow of a data item (v) as it satisfies the range predicate of the query at the arrow

tail. In this example, the query q1,1 at the server retrieves the data element v.

3.4.2 The algorithm

Figure 6 shows the progressive query processing algorithm. The algorithm is run separatively at each

tier of the hierarchical sensor network. The algorithm is designed to run for each query on each data

element, which may not be the most efficient in terms of the query processing time. However, the query
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Figure 5. An example of progressive query processing.

processing time is independent of the energy cost and the storage cost which are the main cost items
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Figure 6. The progressive query processing algorithm.
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In the progressive query processing, a sensor node at the tth tier(t ≥ 2) considers the data Dt

generated by itself and the data Rt+1 resulting from the query processing at the (t + 1)th tier as the

target data for query processing(line 1). The node compares the set of merged queries Qt with the

target data and inserts only the data elements that satisfy the query condition into Rt(lines 2-9). In

order to prevent the node from sending duplicate results of overlapping query regions among merged

queries, the algorithm stops the comparison once it finds a query whose region contains the target data

element(line 6)2. Then, the node sends Rt to its parent node at the (t − 1)th tier. This algorithm is

run separately in every node at each tier to progressively filter the data to arrive at the highest tier

(i.e., server). Finally, the server(i.e., the 1st tier) performs post-processing to select the query results

satisfying the condition of each query.

In this section, we have proposed the algorithms under the assumption that the sensor nodes at

each tier already know the number of the merged queries to be stored. In the next section, we propose

an optimization method for determining the optimal number of merged queries.

4 Determining the Optimal Number of Merged Queries

In this section, we propose an analytic method for determining the optimal number of merged queries to

be stored at each tier when designing the hierarchical sensor network. We first propose the cost model

in Section 4.1 and then the cost optimization method in Section 4.2.

4.1 The cost model

In this paper, we use the weighted sum of the storage cost for storing queries and the energy cost for

sending the query result as the total cost. We use the total amount of memory used in all nodes as the

storage cost and the total amount of data sent during the query processing as the energy cost. We use

byte as the unit of both the storage cost and the energy cost.

2When the algorithm is run at the server, Line 6 should be removed because the server must answer each query.
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Eq.(1) shows the cost model expressed as the function weightd sum.

Weighted Sum = α · the total amount of data sent + the total amount of memory used,

where α(> 0) is the scale factor provided by the user (1)

In this equation, the value of α indicates the relative importance of the energy cost over the storage cost,

and is set by the user based on one’s preference. That is, in the environments where the energy cost is

more important than the storage cost, the user gives a larger value of α, whereas in the environments

where the storage cost is more important than the energy cost, the user gives a smaller value of α. In

this paper, in order to control the trade-off between the two costs, we define the reference value of α,

denoted as α0, which makes the importance of the two costs equal. This α0 is the value for balancing

between the two costs which use different scales, and is used as an example to determine the appropriate

value of α for a given application. Eq.(2) shows the definition of α0:

α0 =
the maximum possible total amount of memory used

the maximum possible total amount of data sent
(2)

In this equation, the denominator represents the total amount of data sent from sensor nodes when

every node stores only one query merged from all the original queries, and the numerator represents

the total amount of memory used for storing queries into sensor nodes when every node stores all the

original queries. That is, α0 is the result of dividing the worst case memory usage amount by the worst

case data transmission amount.

In Eq.(1), the total memory usage amount is determined by the number of queries stored in the

nodes at each tier, and the total data transmission amount is determined by the amount of data sent

at each tier based on the queries. We first introduce the notion of the merge rate in order to formulate

the number of queries stored in sensor nodes at each tier. We use it as the optimization parameter for

the Weighted Sum. The merge rate is defined as the ratio of the memory usage amounts of two nodes

at adjacent tiers, as shown in Eq.(3).
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merge rate =
the number of queries stored at a node at the ith tier

the number of queries stored at a node at the (i − 1)th tier

for all 2 ≤ i ≤ h, where h is the height of the hierarchical sensor network, and

the server is at the first(highest) tier storing all the original queries. (3)

According to the definition above, the merge rate has the value in the range of 0 to 1. If the value

is closer to 0, it means that more queries are merged. On the other hand, if the value is closer to 1, it

means that fewer queries are merged. That is, the number of queries stored in a node at each tier is

determined by the merge rate. For example, if the merge rate is 0, our approach is equivalent to the

centralized approach and if 1, it is equivalent to the distributed approach.

Next, we introduce the notion of cover to formulate the amount of data sent at each tier. The

cover is defined as the ratio of the size of the domain space filled by all query regions over the size of

the entire domain space. In order to obtain the exact amount of data transmission, we need additional

information at each tier such as the selectivity of each merged query and the size of each dead region

caused by query merging. This kind of information, however, is affected significantly by the application

environment including the data and query distributions, making it difficult to obtain exact information

at the time of designing the network. Thus, in this paper, we use an approximate model of the cover

instead. Definition 2 shows the definition of the cover of a query set Q.

Definition 2 (The cover of a query set Q) For a

given query set Q = { q1, q2, · · · , qn }, its cover cover(Q) is defined as:

cover(Q) =
‖ Φ(q1)

⊕
· · ·

⊕
Φ(qn) ‖

‖ D ‖
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for qi, qj ∈ Q(1 ≤ i < j ≤ n),

whereD is the domain space,

Φ(qi) is the region of the query qi,

Φ(qi)
⊕

Φ(qj) represents the union of the two regions

Φ(qi) and Φ(qi), and

‖ · ‖ denotes the size of the given region. (4)

Assuming that queries are uniformly distributed in the domain space, cover(Q) can be approxi-

mated at each tier as follows. Let n denote the number of merged queries, s denote the average selectivity

of the set of the original queries, and c denote the cover of the set of the original queries, then ĉover(n)

in Figure 7 is an approximation of cover(Q).
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Figure 7. The cover model.

ĉover(n) has the following properties: (1) If n = 1, ĉover(n) equals 1; (2) As n increases, ĉover(n)

decreases becoming c when n= c
s
. That is, ĉover(n) ≤ ĉover(n − 1) ≤ · · · ≤ĉover(1) = 1.

These properties are from fact that the proposed merge method is based on MBR. Since the region

of a merged query is represented by an MBR enclosing the regions of queries that are merged, the size of

the region of the merged query is always greater than or equal to the size of the region resulting from the

union of the query regions that are merged. Thus, as the query merging proceeds, the number of merged
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queries n decreases, but the size of the region that is equivalent to the union of merged queries increases.

In this paper we have assumed an environment in which we process a large number of queries with the

uniform distribution, and thus, we assume that the cover of the merged query is 1. Even though this

property does not guarantee the linearity of ĉover(n), in order to make the model simple, we assume

that the cover linearly increases as n decreases, and then, estimate the theoretical number of queries for

which the cover is completely filled without overlap region as
the cover of original queries

the average selectivity of original queries
.

4.2 Optimization

In this subsection, we first formulate Weighted Sum using the merge rate and the cover model explained

in Section 4.1, and then, analytically obtain the optimal merge rate – the merge rate that minimizes

Weighted Sum. Table 1 shows the notation used in this section. For ease of exposition, we assume that

each sensor node generates only one data element per unit time.

Table 1. The notation.

Symbol Definition

NQ The number of original queries

c The cover of original queries

s The average selectivity of original queries

d The dimension of original queries

h The height of a hierarchical sensor network

f The fanout of a hierarchical sensor network

Sizede The size of a data element

m The merge rate

The total transmission(i.e., the total amount of data sent per unit time) is formulated as follows

(refer to Appendix A for details):

total transmission =
h∑

i=2

(Sizede · f i−1 ·
i∑

j=2

(−a · mj−1 · NQ + b))

where a =
s · (1 − c)

c − s
, b = 1 + a (5)
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The total storage(i.e., the total amount of memory used) is formulated as follows (refer to Appendix A

for details):

total storage =

h∑

i=2

( 2 · Sizede · f i−1 · NQ · mi−1) (6)

From Eq.(5) and Eq.(6), Weighted Sum is formulated as follows.

Weighted Sum = α · total transimission + total storage

= α · Sizede ·

h∑

i=2

(f i−1 · [

i∑

j=2

(−a · mj−1 · NQ + b))

+ 2 · NQ · mi−1 ])

where a =
s · (1 − c)

c − s
, b = 1 + a (7)

In order to obtain the optimal merge rate, we take the derivative of the Weighted Sum formula

with respect to m and compute the roots from the derivative formula. Then, we substitute each root

for m in the Weighted Sum formula and find the root that minimizes the computed Weighted Sum. We

use Maple[9], a mathematics software tool, for this computation.

5 Performance evaluation

5.1 Experimental data and environments

We use two sets of experiments. In the first set, we show the accuracy of the proposed cost model

as the parameters are varied. In the second set, we show the merit of our progressive approach over

the iterative approach proposed by Xiang et al.[19] in terms of the total cost (i.e., Weighted Sum) of

query processing as the parameters are varied. A common set of seven parameters are used in both

sets of experiments: the scale factor α for controlling the “importance” between the amount of data

transmission and the amount of memory usage, the cover of original queries c, the average selectivity

of original queries s, the dimension of original queries d, the height of the sensor network h, the fanout

of the sensor network f , and merge rate m. We use Weighted Sum as both the accuracy and the

performance measure.
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We use the same data and query sets in both sets of experiments. We randomly generate synthetic

queries and data with the uniform distribution. Here, “uniform” means that the locations of the queries

(or the data elements) are set randomly in the query space (or the domain space). We generate queries

with the same width in all domains(i.e., hypercubes) in two alternative ways: either by controlling

the number of original queries or by controlling the cover of original queries. The latter is used only

in the experiments for varying the cover of original queries, and the former is used in all the other

experiments. The reason we do not control the number and the cover of the queries together is that

there is a dependency between the two values. That is, given a set of random queries with a uniform

distribution, if the number of queries increases (with the query selectivity fixed) then the cover also

increases. This makes it impossible to generate a query set with a uniform distribution when both

number and cover are controlled at the same time.

In the first set of experiments, we experimentally evaluate the accuracy of our model for estimating

the optimal merge rate that minimizes the weighted sum of the storage cost and the energy cost (i.e.,

Eq.(1)). We first analytically compute the estimated optimal merge rate as explained in Section 4.2.

Next, we experimentally find the actual optimal merge rate. Finally, we compare the two optimal merge

rates. Table 2 summarizes the experiments and the parameters used.

In the second set of experiments, we compare the performance merit of our progressive approach

with the iterative approach proposed by Xiang et al.[19]. We measure Weighted Sum while varying

parameters explained above. Here, in our approach, we use the estimated optimal merge rate measuring

Weighted Sum while varying parameters explained above. Table 3 summarizes the experiments and the

parameters used.

All experiments have been conducted using a Linux-Redhat system with a 4 GHz processor and 1

Gbytes of main memory. Since it is difficult to build an actual large-scale sensor network and change its

configuration as we need, we conduct the experiments using a simulator program as commonly used in

sensor networks-related database research[6, 8, 19]. We have implemented the simulator program using

C. Table 4 summarizes the notation used in the next section to discuss the experimental results.
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Table 2. Experiments and parameters used for showing the accuracy of the cost model.

Experiments Parameters

Experiment 1 accuracy h 4

as α is varied f 8

α α0 · 10−2,α0 · 10−1, α0, α0 · 101, α0 · 102

s 10−4

d 2

Experiment 2 accuracy h 4

as c is varied f 8

α α0

d 2

c 0.01, 0.10, 0.99

Experiment 3 accuracy h 4

as s is varied f 8

α α0

s 10−5,10−4,10−3

d 2

Experiment 4 accuracy h 3, 4, 5

as h is varied f 8

α α0

s 10−4

d 2

Experiment 5 accuracy h 4

as f is varied f 2, 4, 8, 16

α α0

s 10−4

d 2

Experiment 6 accuracy h 4

as d is varied f 8

α α0

s 10−4

d 1, 2, 3

5.2 Experimental results

5.2.1 Accuracy of the cost model

Experiment 0: existence of the trade-off and the optimal merge rate

Figure 8(a) shows the trade-off between the total storage cost and the total transmission cost (i.e., en-

ergy cost) as m is varied. Here, we measure Weighted Sum for 1046 randomly generated queries(i.e.,

NQ=1046). Hereafter, we use NQ=1046 unless we explicitly specify the value. As explained in Sec-
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Table 3. Experiments and parameters used for showing the performance merit of our approach.

Experiments Parameters

Experiment 7 comparison of h 4

the performance f 8

as α is varied α α0 · 10−2,α0 · 10−1, α0, α0 · 101, α0 · 102

s 10−4

d 2

Experiment 8 comparison of h 4

the performance f 8

as c is varied α α0

d 2

c 0.01, 0.10, 0.99

Experiment 9 comparison of h 4

the performance f 8

as s is varied α α0

s 10−3,10−4,10−5

d 2

Experiment 10 comparison of h 3, 4, 5

the performance f 8

as h is varied α α0

s 10−4

d 2

Experiment 11 comparison of h 4

the performance f 2, 4, 8, 16

as f is varied α α0

s 10−4

d 2

Experiment 12 comparison of h 4

the performance f 8

as d is varied α α0

s 10−4

d 1, 2, 3

tion 3.1, the transmission cost (i.e., α0·total transmission) has a tendency to decrease as m increases.

The storage cost has a tendency to increases as m does. Thus, a value of m that minimizes the weighted

sum exists as shown in Figure 8(a). Figure 8(b) shows the trend of the actual optimal merge rate as m

is varied. We observe that the optimal merge rate has a tendency to increase as α does.

Experiment 1: accuracy as α is varied

Figure 9 shows experimental results as α is varied. We have different optimal merge rates for different
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Table 4. Notation for explaining experiments.

Symbol Definition

mopt act The actual optimal merge rate measured

mopt est The estimated optimal merge rate obtained using the analytical model

wopt act Weighted Sum measured using mopt act

wopt est Weighted Sum measured using mopt est

ratiom The ratio of mopt act to mopt est =
mopt act

mopt est

ratiow The ratio of wopt act to wopt est =
wopt act

wopt est

gainw
Weighted Sum measured using Xiang et al.’s interative approach

wopt est
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Figure 8. The existence of trade off and the optimal merge rate.

scale factors as shown in this figure. From Figure 9, we see that ratiom is 0.905 to 2.619. Other than the

value of 2.619 when α is α0 ·10−1, ratiom is approximately 1.0 for all the other values of α. That is, the

optimal merge rate measured from the experimental data is almost the same as that obtained from the

analysis. Besides, we see that the value of ratiow is 0.929 to 1.0. That is, the values of Weighted Sum

measured from the experimental data are very close to those obtained from the analysis. As we see from

the result of this experiment, as α increases, the weight of the total transmission cost increases relative

to the weight of the total storage cost and, thus, the optimal value is determined toward reducing the

total transmission cost – toward making the optimal merge rate close to 1.
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Figure 9. Optimal merge rate as α is varied(s=10−4, h=4, f=8, d=2, and NQ=1046).

Experiment 2: accuracy as c is varied

Figure 10 shows the experimental results as the cover is varied. We use different query sets for different

covers (we use NQ=101 when c=0.01, NQ=1046 when c=0.1, and NQ=52685 when c=0.99). From

Figure 10, we see that ratiom is 0.00092 to 1.008. Other than the value 0.00092 when the cover is 0.99,

ratiow is approximately 1.0 for all the other values of the cover. Besides, we see that the value of ratiow

is 0.995 to 1.0. That is, the Weighted Sum measured from the experiments is similar to that obtained

from the analysis. As the cover increases, the difference between the maximum and the minimum

amounts of data transmission should decrease. Thus, reduction of total data transmission cost have

no significant influence on the total cost if the cover increases. Hence, the optimal value is determined

toward reducing the total storage cost – toward making the optimal merge rate close to 0.
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Figure 10. Optimal merge rate as c is varied(α = α0, s = 10−4, h=4, f=8, and d=2).
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Experiment 3: accuracy as s is varied

Figure 11 shows the experimental results as the selectivity is varied. From Figure 11, we see that ratiom

is 0.958 to 1.183 and ratiow is 0.983 to 1.0. The increase of the selectivity is closely related to the

increase of the cover. That is, if the selectivity increases while the number of queries is fixed, then the

cover of the original queries increases as well, and, thus, like the case of varying the cover, the optimal

value moves toward reducing the total storage cost – toward making the optimal merge rate close to 0.
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Figure 11. Optimal merge rate as s is varied(α = α0, h=4, f=8, d=2, and NQ=1046).

Experiment 4: accuracy as h is varied

Figure 12 shows the experimental results as the height is varied. We see that ratiom is 0.993 to 1.088

and ratiow is 0.993 to 1.0. When the height of the sensor network increases, the data transmission

cost increases faster than the memory usage cost. This stems from the fact that the data sent are

accumulated at each tier. Thus, the optimal value moves toward reducing the total data transmission

cost – toward making the optimal merge rate close to 1.

Experiment 5: accuracy as f is varied

Figure 13 shows the experimental results as the fanout is varied. We see that ratiom is 0.993 to 1.088

and ratiow is 0.994 to 1.0.

Experiment 6: accuracy as d is varied

Figure 14 shows the experimental results as the dimension is varied. We see that ratiom is 0.993 to

1.088 and ratiow is 0.997 to 1.0.
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Figure 12. Optimal merge rate as h is varied(α = α0, s = 10−4, f=8, d=2, and NQ=1046).
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Figure 13. Optimal merge rate as f is varied(α = α0, s = 10−4, h=4, d=2, and NQ=1046).
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Figure 14. Optimal merge rate as d is varied(α = α0, s = 10−4, h=4, f=8, and NQ=1046).
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5.2.2 Performance merit of our approach

Experiment 7: performance as α is varied

Figure 15 shows the experimental result as α is varied. Here, we have different merge rates estimated for

different scale factors (we use mopt est=0.00096 when α=α0 · 10−2, mopt est=0.062 when α=α0 · 10−1,

mopt est=0.563 when α=α0, mopt est=0.985 when α=α0 · 101, and mopt est=0.985 when α=α0 · 102)).

From this figure, we can see that gainw is 0.989 to 84.995. Except for the value 0.989 when α equals

α0 · 10, gainw is 1.004 to 84.995, that is, Weighted Sum in the progressive approach is smaller than

Weighted Sum in the iterative approach. The exception happens due to the fact that the cover model

used in this paper (see Figure 7) is an approximation of the cover in the real environment, and this

introduces some error between the actual cost and the estimated cost. From these results, we see that

our approach greatly improves the performance over the approach proposed by Xiang et al.[19] when

memory usage is the prevailing cost(i.e., α is small), while giving a competitive performance when data

transmission is the prevailing cost(i.e., α is large).
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Figure 15. The performance of progressive approach and iterative approach as α is varied(s = 10−4,

h=4, f=8, d=2, and NQ=1046).

Experiment 8: performance as c is varied

Figure 16 shows the experimental result as the cover is varied. Here, we have different merge rates

estimated for different covers (we use mopt est=0.602 when c=0.01, mopt est=0.562 when c=0.1, and

mopt est=0.021 when c=0.99). We have different query sets for different covers (we use NQ=101 when
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c=0.01, NQ=1046 when c=0.1, and NQ=52685 when c=0.99). We see that gainw ranges from 1.019 to

2.498. This result shows that our approach outperforms Xiang et al.’s approach in the entire range of

the cover. It also shows that, as the cover increases, the performance benefit of our approach over Xiang

et al.’s approach decreases. The benefit of query merge with respect to the storage amount becomes

maximum when the cover approaches 1.0. In this case, all the original queries are merged into one query

in both our approach and the Xiang et al.’s approach; as a result, the total transmission amounts and

the total storage amounts of the two approaches become similar and, therefore, the weighted sums of the

two approaches become similar as well. Our proposed approach shows more performance benefit when

the cover of the original queries is smaller. The case is more likely to happen in a real environment.

0.01 0.10 0.99

c

Progressive approach Iterative approach

Cover c

gainw

= 2.498

gainw

= 2.080

gainw

= 1.019

109

108

107

106

105

W
ei

gh
te

d_
Su

m

Progressive approach Iterative approach

0.01 0.1 0.990.01 0.10 0.99

c

Progressive approach Iterative approach

Cover c

gainw

= 2.498

gainw

= 2.080

gainw

= 1.019

109

108

107

106

105

W
ei

gh
te

d_
Su

m

Progressive approach Iterative approach

0.01 0.1 0.99

Figure 16. The performance of progressive approach and iterative approach as c is varied(α = α0,

s = 10−4, h=4, f=8, and d=2).

Experiment 9: performance as s is varied

Figure 17 shows the experimental result as the average selectivity is varied. We have different merge

rates estimated for different selectivities (we use mopt est=0.604 when s=10−5, mopt est=0.563 when

s=10−4, and mopt est=0.355 when s=10−3). We see that gainw ranges from 1.262 to 2.666. This result

shows that our approach outperforms Xiang et al.’s approach in the entire range of selectivity. It also

shows that, as the selectivity increases, the performance benefit of our approach decreases. As already

mentioned in the experiment that compares the optimal merge rates obtained from the experimental
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data with those obtained from the analysis, if the selectivity increases, then the cover increases as well

causing the decrease of performance benefit as we see in Figure 17. Thus, our proposed approach shows

more performance benefit when the selectivity of the original queries is smaller.
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Figure 17. The performance of progressive approach and iterative approach as s is varied(α = α0, h=4,

f=8, d=2, and NQ=1046).

Experiment 10: performance as h is varied

Figure 18 shows the experimental result as height of the hierarchical sensor network is varied. We have

different merge rates estimated for different heights (we use mopt est=0.437 when h=3, mopt est=0.563

when h=4, and mopt est=0.643 when h=5). We see that gainw ranges from 1.973 to 2.220. This result

shows that our approach outperforms Xiang et al.’s approach in the entire range of the height. It also

shows that as the height increases, the performance benefit of our approach increases slightly. The

reason for this increase is that the total storage amount in the iterative approach increases faster than

in the progressive approach as the height increases. That is, in the iterative approach the same set of

merged queries are stored in all sensor nodes regardless of the tier whereas, in our progressive approach, a

smaller number of queries are stored as the tier goes lower. Thus, our approach shows more performance

benefit when the height of the sensor network is larger.

Experiment 11: performance as f is varied

Figure 19 shows the experimental result as the fanout of the sensor network is varied. We have different

merge rates estimated for different fanouts (we use mopt est=0.531 when f=2, mopt est=0.553 when f=4,
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Figure 18. The performance of progressive approach and iterative approach as h is varied(α = α0,

s = 10−4, f=8, d=2, and NQ=1046).

mopt est=0.563 when f=8, and mopt est=0.568 when f=16). In the result, gainw ranges from 2.103 to

2.159. We observe that for all ranges of f , the performance of our approach is better than that of the

iterative approach.
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Figure 19. The performance of progressive approach and iterative approach as f is varied(α = α0,

s = 10−4, h=4, d=2, and NQ=1046).

Experiment 12: performance as d is varied

Figure 20 shows the experimental result as the dimension of a query is varied. We have different merge

rates estimated for different dimensions (we use mopt est=0.558 when d=1, mopt est=0.563 when d=2,

and mopt est=0.572 when d=3). In the result, gainw ranges from 1.842 to 2.157. We observe that for
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all ranges of f , the performance of our approach is better than that of the iterative approach.
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Figure 20. The performance of progressive approach and iterative approach as d is varied(α = α0,

s = 10−4, h=4, f=8, and NQ=1046).

In summary, the experimental results show that our approach outperforms Xiang et al.’s approach

by up to 84.995 times as α is varied except when α is equal to α0 · 10. The results also show that our

approach outperforms Xiang et al.’s approach by up to 2.666 times as the following other parameters

are varied: the cover, average selectivity, dimension of original queries, and the height, fanout of the

hierarchical sensor network.

6 Conclusions

In this paper, we have proposed progressive processing as a new approach to processing continuous range

queries in hierarchical sensor networks. The contribution of this paper are summarized as follows.

First, we have proposed a progressive processing model that considers the trade-off between energy

and storage. This model takes advantage of the characteristics of the hierarchical sensor networks in

which higher capability sensor nodes are deployed at a tier closer to the server. It also has the advantage

of reducing the cost of building the network by reducing the storage cost at lower tier nodes, which are

larger in number. We also have presented query merging and query processing algorithms for this model.

Second, based on the proposed model, we have proposed a method for optimizing the total cost
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(formulated as the weighted sum of the energy and storage costs) according to the given weight, and

have proposed a method for systematically building a hierarchical sensor network that minimizes the

total cost.

Third, we have verified the merit of the proposed approach through extensive experiments. In the

experiments for evaluating the accuracy of the proposed cost model, the results show that the ratio

of the optimal cost measured over that obtained from the analytical cost model is 0.929 to 1.0. From

these results we see that a hierarchical sensor network with near-optimal total cost can be built using

the proposed model. In the experiments for evaluating the query processing performance, the results

show that our approach outperforms the approach proposed by Xiang et al.[19] by up to 84.995 times.

Moreover, if the height of the sensor network increases, our approach shows a better performance than

Xiang et al.’s approach. Thus, we can see that our approach is suitable for a large-scale sensor network.

In conclusion, our approach provides a new framework for building a large-scale hierarchical sensor

network that efficiently processes a large number of queries while considering the trade-off between the

energy consumed and the storage required.

For further work, we plan to improve the query processing model and algorithms to consider

different data and query distributions as well as different query types such as aggregate queries.
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Appendix-A Derivation of Formula for Total Transmission and

Total Storage

Derivation of total transmission

The total amount of data sent, denoted as total transmission, is the sum of the amounts of data sent

by all nodes at each tier while they are relayed to the server. Eq.(8) shows the formula for computing

total transmission.

total transmission =

h∑

i=2

(Amt datai ·

i∑

j=2

(cj))

where cj = the cover of merged queries stored at the jth tier, and

Amt datai = the amount of data generated by the sensor nodes at the ith tier (8)

In Eq.(8), cj is formulated as follows using the definition of the cover model (see Figure 7) and the

merge rate.

cj = ĉover(NQ · mj−1) (9)

where NQ · mi−1 is the number of queries stored at the jth tier (note NQ is the number of queries

stored in the server (at the 1st tier) and m is the merge rate between two nodes in adjacent tiers (see

Table 4.2)). In the same Eq.(8), Amt datai is formulated as follows, based on the assumption that each

sensor node generates only one data element per unit time.

Amt datai = (the number of sensor nodes at the ith tier) · (the size of a data element)

= f i−1 · Sizede (10)
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By substituting cj and Amt datai in Eq.(8) with those from Eq.(9) and Eq.(10), we can rewrite the

formula for total transmission as follows.

total transmission =

h∑

i=2

(Amt datai ·

i∑

j=2

(cj))

=

h∑

i=2

(Sizede · f i−1 ·

i∑

j=2

(cj))

=

h∑

i=2

(Sizede · f i−1 ·

i∑

j=2

(ĉover(NQ · mj−1)))

=
h∑

i=2

(Sizede · f i−1 ·
i∑

j=2

(−a · mj−1 · NQ + b))

where a =
s · (1 − c)

c − s
and b = 1 + a (11)

Derivation of total storage

The total amount of memory used, denoted as total storage, is the sum of the amounts of memory used

by all nodes at all tiers. Eq.(12) shows the formula for computing total storage.

total storage =

h∑

i=2

(Amt memi)

where Amt memi = the amount of memory needed to store

the merged queries in all sensor nodes at the ith tier (12)

The number of merged queries stored in a sensor node at the ith tier is formulated as NQ · mi−1

using Eq.(12) and Eq.(9). Thus, Amt memi is formulated as in Eq.(13).

Amt memi = (the number of merged queries stored in all sensor nodes at the ith tier)

· (the amount of memory needed for storing one query)

= f i−1 · NQ · mi−1 · 2 · Sizede (13)
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By substituting Amt memi from Eq.(13) into Eq.(12), the formula for total storage can be rewritten as

follows.

total storage =

h∑

i=2

(Amt memi)

=

h∑

i=2

(f i−1 · NQ · mi−1 · 2 · Sizede)

=
h∑

i=2

( 2 · Sizede · f i−1 · NQ · mi−1) (14)
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