
Index Interpolation: An Approach to Subsequence Matching
Supporting Normalization Transform in Time-Series Databases�

Woong-Kee Lohy, Sang-Wook Kimz, and Kyu-Young Whangy
yDepartment of Electrical Engineering & Computer Science, Division of Computer Science

Advanced Information Technology Research Center (AITrc)
Korea Advanced Institute of Science and Technology (KAIST)

zDivision of Computer, Information, and Communications, Kangwon National University
E-mail: fw oong,kywhangg@mozart.kaist.ac.kr, wook@cc.kangwon.ac.kr

Abstract

In this paper, w epropose a subsequence matching al-
gorithm that supports normalization transform in time-
series databases. Normalization transform enables �nd-
ing sequences with similar uctuation patterns although
they are not close to each other before the normalization
transform. Application of the existing whole match-
ing algorithm supporting normalization transform to
the subsequence matching is feasible, but requires an
index for ev ery possible length of the query sequence
causing serious overhead on both storage space and up-
date time. The proposed algorithm generates indexes
only for a small number of di�erent lengths of query se-
quences. F or subsequence matching it selects the most
appropriate index among them. We can obtain better
searc h performance by using more indexes. We call our
approach index interp olation. We formally pro ve that
the proposed algorithm does not cause false dismissal.
F or performance evaluation, we have conducted exper-
iments using the indexes for only �ve di�erent lengths
out of the lengths 256 � 512 of the query sequence. The
results show that the proposed algorithm outperforms
the sequential scan by up to 14.6 times on the average
when the selectivity of the query is 10�5.

1 Introduction

Time-series data are sequences of real numbers sam-
pled at a �xed time interval [6]. The examples are stock
prices, exchange rates, weather data, product sales data,
and medical measurements [2, 9]. Finding similar time-

� This work has been supported by Korea Science and Engineering
Foundation (KOSEF) through Advanced Information Technology
Research Center (AITrc).

series data is one of the most challenging problems in
the new database researc h areas suc h as data mining
and data warehousing [2, 3]. Examples of such a prob-
lem are �nding stock items with similar trends in prices,
�nding periods with similar temperature patterns, and
�nding products with similar sales trends [9, 15]. The
time-series data stored in a database are called data se-

quences , and �nding data sequences similar to a given
query sequence from the database is called similar se-

quence matching [1, 2, 3, 9, 15].

Similar sequence matching algorithms are classi�ed
in to whole matching and subsequence matching algo-
rithms [9]. Whole matching �nds data sequences that
are similar to a query sequence, where the lengths of
data sequences and the query sequence are all identical.
Subsequence matching �nds subsequences, contained in
data sequences, that are similar to a query sequence of
an arbitrary length. In general, subsequence matching
is applicable to a wider range of applications than whole
matching.

Existing similar sequence matching algorithms map
a data sequence of length n to a point in an n-dimen-
sional space. Most of the algorithms de�ne similarity
betw een tw odata sequences using the Euclidean dis-
tance between the two corresponding points [1, 7, 9, 10,
15, 18], although some use di�erent similarity measures
[2]. They use multidimensional index structures such
as the R-tree [12], R+-tree [16], and R*-tree [4] to ef-
�ciently store and retrieve n-dimensional points. Since
the search performance degrades exponentially as the
dimensionality of the index structures increases [5, 17],
most of the existing algorithms reduce the dimensional-
ity by mapping n-dimensional points into f -dimensional
ones (f < n). Mapping functions such as the Discrete
F ourierT ransform (DFT)[14], Discrete Cosine Trans-
form (DCT) [14], and Haar Wavelet Transform [11] are
used to reduce dimensionality [1, 7, 9, 10 , 15].

In this paper, w epropose an e�cient subsequence
matching algorithm that supports normalization trans-
form [10, 15]. The proposed algorithm enables �nding
a data sequence that has a uctuation pattern similar

Permission to make digital or hard copies of part or all of this work or
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee.

CIKM 2000, McLean, VA USA
© ACM 2000 1-58113-320-0/00/11 . . .$5.00

480

Some text in this electronic article is rendered in Type 3 or bitmapped fonts, and may display poorly on screen in Adobe Acrobat v. 4.0 and later. However, printouts of this file are unaffected by this problem. We recommend that you print the file for best legibility.

to the query sequence even though they are not close
to each other before the normalization transform. For
example, it is useful to �nd a stock item whose price
increase/decrease pattern is similar to the given stock
item regardless of their absolute prices.

Existing algorithms supporting normalization trans-
form handles only query sequences or windows of �xed
lengths, while the proposed one does those of arbitrary
lengths. To solve the problem, we may attempt simple
application of the existing subsequence matching algo-
rithms [2, 9]. However, it is not feasible since these
algorithms do not have information for normalization
transform of the arbitrary length subsequences. We ex-
plain the reason in detail in Section 3. We may also
attempt application of the existing whole matching al-
gorithm to support normalization transform [10]. How-
ever, since the whole matching algorithm supports query
sequences of a �xed length, to support query sequences
of arbitrary lengths, they must generate an index for
each possible length of the query sequence. This would
cause serious overhead on both storage space and time
when inserting or deleting data sequences.

In this paper, we propose an e�cient algorithm that
overcomes those problems. The proposed algorithm gen-
erates indexes for only a few di�erent lengths of the
query sequences with some proper intervals and per-
forms subsequence matching for every possible length
of the query sequences. To show the correctness of the
proposed algorithm, we prove that the algorithm does
not cause false dismissal. We call this approach index

interpolation. We can trade-o� the search performance
with storage space by adjusting the number of indexes.
In this paper, we call the case with the indexes for the
selected lengths of query sequences as the selectively-

indexed case and the one for all the lengths as the fully-
indexed case.

This paper is organized as follows. In Section 2, we
formally de�ne the problem of subsequence matching
that supports normalization transform. In Section 3,
we briey introduce the existing subsequence matching
algorithms [2, 9] and the whole matching algorithm that
support normalization transform [10]. We also discuss
the problems in applying them to normalization trans-
form subsequence matching. In Section 4, we explain in
detail the proposed indexing and searching algorithms.
In Section 5, we evaluate the performance of the pro-
posed algorithm by experiments. Finally, we summarize
and conclude the paper in Section 6.

2 Problem De�nition

In this section we formally de�ne the normalization trans-
form and the problem of subsequence matching that
supports normalization transform. Table 1 summarizes

150.0

200.0

250.0

300.0

350.0

400.0

450.0

500.0

0 1 2 3 4 5 6 7 8 9

Sequence X
Sequence Y
Sequence Z

(a) Original sequences.

-2.0

-1.0

0.0

1.0

2.0

3.0

0 1 2 3 4 5 6 7 8 9

Normalized sequence (X)ν
Normalized sequence (Y)ν
Normalized sequence (Z)ν

(b) Normalized sequences.

Figure 1: An example of original and normalized se-
quences.

the notation used in this paper.

De�nition 1 Given a sequence ~X = (xi) (0 � i < n)

of length n (� 1), the normalized sequence �(~X) = (~xi)
is de�ned as follows [10, 15]:

~xi =
xi � �(~X)

�(~X)

where �(~X) and �(~X) are the mean and standard devi-

ation of the sequence ~X, respectively. �

Figure 1 shows an example of normalization trans-
form: Figure 1(a) shows original sequences ~X, ~Y , and
~Z; Figure 1(b) normalized sequences �(~X), �(~Y), and

�(~Z). Let us assume that we use the Euclidean distance
as the similarity measure. Before transform in Figure
1(a), ~X and ~Z are considered to be similar, but, after

transform in Figure 1(b), �(~X) and �(~Y) are considered
to be similar. That is, normalization transform is useful

481

Table 1: Summary of notation.

Notation De�nition
~S = (si) a data sequence. ~S = (s0; : : : ; sN�1) (0 � i < N)
~X = (xi) a subsequence contained in the data sequence ~S. ~X = (x0; : : : ; xn�1) (0 � i < n � N)
~T = (ti) the query sequence. ~T = (t0; : : : ; tn�1) (0 � i < n)

d(~X; ~T) Euclidean distance between two sequences ~X and ~T (Len(~X) = Len(~T))

d(~X; ~T) =
�P

(xi � ti)
2
	1=2

~X[s; f] a window consisting of values xs, : : :, xf in the sequence ~X (0 � s � f < n)
~Z = a ~X + b a sequence obtained by multiplying each consisting value in ~X by a and then adding b.

~Z = (zi) = (axi + b)
� search range (tolerance)

in �nding data sequences that have similar uctuation
patterns.

We now de�ne the problem of subsequence matching
that supports normalization transform. Given a query
sequence ~T and a search range �, the search is performed
using the normalized query sequence �(~T). For each

data sequence ~S stored in the database, if ~S contains a
subsequence ~X that has the same length as that of ~T
and that satis�es Eq. (1), ~S and the o�set of ~X in ~S are
returned.

d
�
�(~X); �(~T)

�
� � (1)

3 Related Work

In this section, we introduce the whole matching algo-
rithm supporting normalization transform [2, 10] and
the existing subsequence matching algorithms [9]. We
also explain the problems in simply applying these algo-
rithms to normalization transform subsequence match-
ing.

3.1 Subsequence Matching Algorithms

Faloutsos et al. [9] and Agrawal et al. [2] proposed sub-
sequence matching algorithms. The algorithm by Falout-
sos et al. is an extension of an earlier work on the whole
matching algorithm by Agrawal et al. [1]. The algo-

rithm is performed using a given query sequence ~T of
an arbitrary length n and a search range �. For com-
paring the subsequence ~X of length n in the database
with the query sequence ~T , ~X and ~T are partitioned
into p windows ~�0, : : :, ~�(p�1) and ~�0, : : :, ~�(p�1) of the
�xed length w (n = pw) as shown in Figure 2. Faloutsos

et al. [9] proved that, if the distance between ~X and ~T
is within �, there exists at least one pair of windows ~�i
and ~�i (0 � i < p) that satis�es Eq. (2):

d (~�i; ~�i) � �p
p

(2)

Faloutsos et al. also proposed an algorithm that e�-
ciently searches windows ~�i satisfying Eq. (2) using a
multidimensional index.

The algorithm by Faloutsos et al. supports no pre-
processing transforms. We cannot simply apply the
algorithm to the normalization transform subsequence
matching problem because information needed for nor-
malization transform of subsequence ~X is not available
from the windows ~�0, : : :, ~�(p�1). The main reason is
that each window is stored and processed independently
of one another. The algorithm extracts sliding windows
~�i of the �xed length w from the data sequence ~S as
shown in Figure 3 and performs indexing and search-
ing. Thus, sliding windows are the unit of indexing
and searching. There exist (n�w+1) subsequences ~X
of length n (� w), each subsequence having mean and
standard deviation values di�erent from one another.
However, a window ~�i, a part of the subsequence ~X,
stored in the index does not contain such information
for normalization transform, and there does not exist
yet a simple method to make the window contain such
information.

The algorithm by Agrawal et al. [2] retrieves pairs
of data sequences that contain similar normalized sub-
sequences. The normalization transform subsequence
matching algorithm proposed in this paper compares
the whole normalized subsequences, while the algorithm
by Agrawal et al. [2] compares the normalized windows,
each window being only a part of the subsequence. More-
over, the proposed algorithm compares the normalized
subsequences of arbitrary lengths, while the algorithm
by Agrawal et al. [2] compares normalized windows of
only a �xed length w. Like the algorithm by Falout-
sos et al., the algorithm by Agrawal et al. [2] cannot
be simply applied to the normalization transform sub-
sequence matching problem because a sliding window

482

… …

… …

p windows

X
&

T
&

0χ&)1(−pχ&1χ& iχ&

0τ&)1(−pτ&1τ& iτ&

Figure 2: Partitioning the subsequence ~X and the query sequence ~T into p windows.

Sequence S
&

0χ&
1χ&

2χ&

… …iχ&)(wN −χ&

Figure 3: Sliding windows ~�i extracted from a data sequence ~S.

�(~�i) stored in the index has no information for normal-

ization transform of a subsequence ~X of length n (� w)
that contains ~�i.

3.2 Whole Matching Algorithm Support-

ing Normalization Transform

Goldin and Kanellakis [10] proposed a whole match-
ing algorithm that supports normalization transform.
Goldin and Kanellakis de�ned that two sequences ~X and
~T of length n are similar if Eq. (3) is satis�ed. They also
proposed an algorithm that e�ciently retrieves data se-
quences ~X satisfying Eq. (3), given a query sequence ~T
and a search range �.

9a; b(2 R); d
�
~T ; a ~X + b

�
� � (3)

Here, R is a set of all real numbers. It is totally ine�-
cient to try to assign arbitrary real numbers a and b to
see if a data sequence ~X satis�es the similarity condi-
tion of Eq. (3). Therefore, Goldin and Kanellakis [10]
presented new search range �0 such that normalized se-
quences �(~X) and �(~T) satisfy Eq. (4).

9a; b(2 R); d
�
~T ; a ~X + b

�
� �)

d
�
�(~T); �(~X)

�
� �0 (4)

Since the set of data sequences obtained using the con-
sequent of Eq. (4) is a superset of those satisfying the
antecedent of Eq. (4), the algorithm causes no false dis-
missal.

Goldin and Kanellakis discussed only whole match-
ing algorithm, which processes data and query sequences
of a �xed length, but presented no extension that applies

to subsequence matching. If the algorithm by Goldin
and Kanellakis were applied to subsequence matching
without any extension, the following problem would oc-
cur. In general, for any sequences ~X and ~T of length n
and windows ~X[s; f] and ~T [s; f] (0 � s � f < n), Eq.
(5) holds [14]:

d
�
~X; ~T

�
� �) d

�
~X[s; f]; ~T [s; f]

�
� � (5)

However, for normalized sequences and windows, Eq.
(5) does not hold. That is,

d
�
�(~X); �(~T)

�
� � 6)

d
�
�(~X [s; f]); �(~T [s; f])

�
� � (6)

Thus, the set of data sequences satisfying the conse-
quent of Eq. (6) is not a superset of those satisfying
the antecedent. That is, if normalization transform
subsequence matching for query sequences of length n
were performed using the index generated for query se-
quences of length n0 = f � s+ 1 (< n), false dismissal
would occur.

4 The Proposed Method

In this section we propose new indexing and search algo-
rithms for subsequence matching supporting normaliza-
tion transform. Section 4.1 explains the basic ideas for
solving the problem. Section 4.2 presents the detailed
indexing and search algorithms.

4.1 Basic Ideas

We solve the problem by extending the algorithm by
Goldin and Kanellakis [10]. The only method to apply

483

the algorithm by Goldin and Kanellakis [10] to normal-
ization transform subsequence matching without any
extension is to generate an index for each possible query
sequence length. It is because, as explained in Section
3.2, an index for the length n0 (< n) cannot be used
for a query sequence of length n. However, the method
causes serious overhead on storage space and insertion
or deletion of data sequences.

To overcome the problem, we propose a new search-
ing method that generates indexes only for a few se-
lected query sequence lengths w and, using them, per-
forms subsequence matching for query sequences of ar-
bitrary lengths n (� w). We call the index generated
for the selected length w s-index (w). Given a query se-
quence of length n, if there exists s-index(n), s-index(n)
is used for subsequence matching. Otherwise, we select
one of the s-index(w) according to Eq. (7):

! = maxfwjw < ng (7)

We need Theorem 1 to search when the query se-
quence length n is not equal to !. Theorem 1 presents
a new search range �0 that replaces search range � and
guarantees that false dismissal does not occur in the �-
nal search result1. We omit the proof due to the page
limit.

Theorem 1 For the two sequences ~X = (xi) and ~T =
(ti) (0 � i < n) of length n (� 1), the following holds
(0 � s � f < n):

d
�
�(~X); �(~T)

�
� �)

d
�
�(~X[s; f]); �(~T [s; f])

�
� �0 (8)

where �0 is de�ned as in Eq. (9), and ! is the length of

window ~T [s; f] (! = f � s+ 1).

�0 =

vuut2! � 2

s
!2 � ! � �2 � �2(~T)

�2(~T [s; f])
(9)

�

In Eq. (9), the value in the inner square root must be
greater than or equal to 0. Therefore, when �0 is com-
puted, the condition of Eq. (10) should be �rst exam-
ined. If the condition of Eq. (10) is not satis�ed, we
should perform the sequential scan since it is not possi-
ble to use s-indexes. The value in the outer square root
is always greater than or equal to 0.

! > �2 � �2(~T)

�2(~T [s; f])
(10)

1
�
0 can be either greater or less than �.

When the query sequence length n is not equal to
! obtained by Eq. (7), we make a candidate set con-
sisting of all the subsequences that satisfy Eq. (11), the
consequent part of Eq. (8), using s-index(!).

d
�
�(~X [s; f]); �(~T [s; f])

�
� �0 (11)

Since the length of the window ~T [s; f] is !, there exist
(n�!+1) windows that can be extracted from the query

sequence ~T to perform subsequence matching using Eq.
(11). We select one of the windows ~T [s; f] using Eq.
(12) (0 � s0 � f 0 < n; ! = f 0 � s0 + 1).

~T [s; f] =
n
~T [s0; f 0]

��� �(~T [s0; f 0]) is maximum.o (12)

Eq. (12) maximizes the performance of the search using
the new search range �0.

Theorem 1 guarantees that the algorithm will not
generate any false dismissal. For every subsequence
�(~X) that satis�es the antecedent part of Eq. (8), the

window �(~X [s; f]) always satis�es the consequent part.

That is, the set of pairs
�
�(~X [s; f]) , �(~T [s; f])

�
sat-

isfying the consequent part of Eq. (8) is a superset of

that of corresponding pairs
�
�(~X) , �(~T)

�
satisfying the

antecedent part. Thus, the search performed using the
consequent part does not cause false dismissal.

4.2 Indexing and Searching Algorithms

In this section we explain the algorithms for generating
s-index(w) and for searching using it. The s-index(w) is
generated in the same way as in the algorithm by Goldin
and Kanellakis [10], except that normalized sliding win-
dows are stored in the index. As shown in Figure 3,
from a data sequence ~S of length N , (N �w+1) sliding

windows ~�i = ~X [i; i+w�1] (0 � i � N�w; 0 � j < w)
of length w are extracted. For each normalized sliding
window �(~�i), a record

�
�i0; � � � ; �i(f�1)

�
is stored in

an f -dimensional index structure. Here, the values �i0,
� � �, �i(f�1) are the �rst f (< w) non-zero coe�cients
obtained through the DFT transform on the component
values ~�i0, � � �, ~�i(w�1) of a normalized sliding window
�(~�i) [1, 9, 10].

The search algorithm using s-index(w) is as follows.
If there exists w of s-index(w) that is equal to the query
sequence length n, we perform the same search algo-
rithm as the one by Goldin and Kanellakis [10]. In this
section we are devoted to the case when there exists
no w that is equal to n. The algorithm Normalized-

Search(~T , �) in Figure 4 retrieves subsequences ~X that

satisfy Eq. (1) given query sequence ~T and search range
�. The algorithm can use any kind of multidimensional
index structure.

484

Procedure NormalizedSearch(Sequence ~T , Range �)

// Passed parameters

Sequence ~T ; // query sequence

Range �; // search range

(1) Find ! and ~T [s; f];

(2) if Eq. (10) is satis�ed then

(3) Compute �0;

(4) Perform range search using �(~T [s; f]) and �0;

(5) Make a candidate set C
consisting of the windows returned;

(6) else

(7) Make a candidate set C

consisting of all the windows in database;

(8) endif

(9) for each window �(~X [s; f]) in C do

(10) Read the subsequence ~X from disk;

(11) if d
�
�(~X); �(~T)

�
� � then return ~X;

(12) end for

Figure 4: Normalization Transform Subsequence
Matching Algorithm

5 Performance Evaluation

In this section we present the experimental results of
the proposed algorithm. The result shows that the per-
formance for the selectively-indexed case is comparable
to that for the fully-indexed case and that the search
performance gets better as the number of s-index(w)
increases. The result also shows that the proposed algo-
rithm outperforms the sequential scan algorithm. The
search algorithm for the fully-indexed case is identical
to the algorithm by Goldin and Kanellakis [10]. We
present the environment for experiments in Section 5.1
and the experimental results and analyses in Section 5.2.

5.1 Environments for Experiments

The time-series database used in the experiments con-
sists of 620 data sequences of Korean stock items of
length 1024 dated from November 1, 1994 to May 30,
1998. We have generated, for the fully-indexed case, the
indexes for the query sequence lengths n = 256 + 32i
(i = 0; : : : ; 8) and n = n0 � 1 (n0 = 256, 320, 384,
448, and 512). For the selectively-indexed case, we have
used only those of the lengths n0. We have used the
indexes for n = n0 � 1 to observe how the search per-
formance changes as the query sequence length changes
from n = n0 � 1 to n = n0 + 1. We have used the
DFT transform to reduce the dimension of s-index(w),

and set the dimensionality f of the index to 6, which
shows the best search performance. To generate the
query sequences ~T , we have randomly chosen 128 out of
620 data sequences, and from them, randomly extracted
subsequences ~Q = (qi) (0 � i < 256) of length 256 as
in the reference [9]. We then have generated the query

sequences ~T = (ti) (0 � i < 256) by perturbing each qi
as in Eq. (13) [1].

ti = qi + zi; zi 2 (�50; 50) (13)

Here, zi is an arbitrary value in the range (�50; 50), and
50 represents 5 % of the average of jqi+1 � qij (0 � i <

255) for all ~Q. We set search ranges � so that the �nal
search result using � should satisfy the selectivity de-
�ned in Eq. (14). We use the selectivity values 0.00001,
0.0001, 0.001, and 0.01.

Selectivity = (14)

subsequences in the �nal result

all the possible subsequences in the database

We have used the R*-tree [4] as the multidimensional
index structure to store sliding windows. The hardware
platform for the experiment is a PC equipped with an
Intel Celeron 400 MHz CPU, 128 MB RAM, and a 2.0
GB Hard Disk. The software platform is Microsoft Ko-
rean Windows NT Workstation 4.0 Operating System
(OS). To avoid bu�ering e�ects of OS and to guaran-
tee actual disk I/Os, we have used OS functions for raw
disk access of data and index �les [13].

5.2 Experimental Results and Analyses

The �rst experiment compares the elapsed times of the
algorithm execution for selectively-indexed and fully-
indexed cases. The purpose of the experiment is to show
that the performance of the proposed algorithm does not
degrade much even in selectively-indexed cases. Figure
5 shows the result of the experiment. Figure 5(a) shows
the result using two s-indexes (w = 256, 512); Figure
5(b) using �ve s-indexes (w = 256, 320, 384, 448, 512).
The vertical axis represents the ratio of the execution
time for the selectively-indexed case, tselective , divided
by that for the fully-indexed case, tfull . Each value has
been averaged for 128 queries. The result shows that
a better search performance is obtained with more s-
indexes and that there is no signi�cant degradation of
the ratio in selectively-indexed case when using �ve s-
indexes (The maximum ratio is less than 1.70.).

The second experiment compares the elapsed times
for the proposed algorithm and the sequential scan algo-
rithm. Figure 6(a) shows the result using two s-indexes
(w = 256, 512); Figure 6(b) using �ve s-indexes (w =
256, 320, 384, 448, 512). The vertical axis represents the

485

1.0

1.5

2.0

2.5

3.0

3.5

4.0

256 288 320 352 384 416 448 480 512

R
at

io
 o

f e
la

ps
ed

 e
xe

cu
tio

n
tim

e
(t

_s
el

ec
tiv

e
/ t

_f
ul

l)

Query sequence length (n)

0.01
0.001

0.0001
0.00001

(a) Using two s-indexes.

1.0

1.2

1.4

1.6

1.8

2.0

256 288 320 352 384 416 448 480 512

R
at

io
 o

f e
la

ps
ed

 e
xe

cu
tio

n
tim

e
(t

_s
el

ec
tiv

e
/ t

_f
ul

l)

Query sequence length (n)

0.01
0.001

0.0001
0.00001

(b) Using �ve s-indexes.

Figure 5: The ratio of the execution time for the
selectively-indexed case divided by that of the fully-
indexed case (tselective=tfull).

ratio of the execution time of the proposed algorithm us-
ing s-index(w), tselective , divided by that of the sequen-
tial scan algorithm, tscan . Each value has been averaged
for 128 queries. When using �ve s-indexes, the average
ratio of search performance by the proposed algorithm
compared with that of the sequential scan algorithm
is 2.40

�
1

0:42

�
, 3.49

�
1

0:29

�
, 4.97

�
1

0:20

�
, and 14.6

�
1

0:07

�
times for selectivities 0.01, 0.001, 0.0001, and 0.00001,
respectively.

In general, the queries with smaller selectivities are
much more frequent than those with larger ones in most
of database applications. As shown in Figures 5 and 6,
the search performance of the proposed algorithm gets
better as the selectivity decreases. This makes the pro-
posed algorithm more useful in practical database appli-
cation environments, where small selectivities prevail.

0.0

0.2

0.4

0.6

0.8

1.0

256 288 320 352 384 416 448 480 512

R
at

io
 o

f e
la

ps
ed

 e
xe

cu
tio

n
tim

e
(t

_s
el

ec
tiv

e
/ t

_s
ca

n)

Query sequence length (n)

0.01
0.001

0.0001
0.00001

(a) Using two s-indexes.

0.0

0.2

0.4

0.6

0.8

1.0

256 288 320 352 384 416 448 480 512

R
at

io
 o

f e
la

ps
ed

 e
xe

cu
tio

n
tim

e
(t

_s
el

ec
tiv

e
/ t

_s
ca

n)

Query sequence length (n)

0.01
0.001

0.0001
0.00001

(b) Using �ve s-indexes.

Figure 6: The ratio of the execution time of the pro-
posed algorithm divided by that of the sequential scan
algorithm (tselective=tscan).

6 Conclusions

In this paper, we have proposed an e�cient subsequence
matching algorithm that supports normalization trans-
form. We have discussed that the existing subsequence
matching algorithms [2, 9] cannot simply be applied
to the normalization transform subsequence matching
problem because the algorithms do not have informa-
tion for normalization transform of the arbitrary length
subsequences. We have also discussed that, to use the
existing whole matching algorithm supporting normal-
ization transform [10], we need to generate an index for
each possible query sequence length and that this would
cause serious overhead on storage space and insertion or
deletion of data sequences.

The proposed algorithm solves the problem by us-

486

ing index interpolation. Given a search range �, we
have presented the distance boundary �0 between two
windows each extracted from the query sequence and
a data sequence, respectively, and have shown that �0

is a function of only the query sequence instead of the
data sequence stored in the index. The proposed al-
gorithm generates s-indexes only for a few pre-selected
query sequence lengths w with some proper intervals,
and using them, performs subsequence matching for ar-
bitrary lengths n of query sequences. We have proved
that the proposed algorithm is correct in that it does
not cause false dismissal.

We have evaluated the performance of the proposed
algorithm by experiments. The results show that the
performance of the proposed algorithm for selectively-
indexed cases is comparable to that for fully-indexed
cases and that better search performance is obtained
when more s-indexes are used. When s-indexes for �ve
query sequence lengths chosen among the lengths 256 �
512 are used, the proposed algorithm outperforms the
sequential scan algorithm on the average by up to 2.4
times when the selectivity is 10�2 and by up to 14.6
times when the selectivity is 10�5. The performance
is enhanced by using more s-indexes. The performance
also gets better when the selectivity is smaller. This
makes the algorithm more useful in practical database
applications.

References

[1] Agrawal, R. et al., \E�cient Similarity Search in
Sequence Databases," In Proc. Int'l Conf. on Foun-

dations of Data Organization and Algorithms , pp.
69-84, Chicago, Illinois, Oct. 1993.

[2] Agrawal, R. et al., \Fast Similarity Search in
the Presence of Noise, Scaling, and Translation
in Time-Series Databases," In Proc. Int'l Conf.

on Very Large Data Bases , pp. 490-501, Zurich,
Switzerland, Sept. 1995.

[3] Agrawal, R. et al., \Querying Shapes of Histories,"
In Proc. Int'l Conf. on Very Large Data Bases , pp.
502-514, Zurich, Switzerland, Sept. 1995.

[4] Beckmann, N. et al., \The R*-Tree: An E�cient
and Robust Access Method for Points and Rect-
angles," In Proc. Int'l Conf. on Management of

Data, ACM SIGMOD, pp. 322-331, Atlantic City,
NJ, June 1990.

[5] Berchtold, S. et al., \The X-tree: An Index Struc-
ture for High-Dimensional Data," In Proc. Int'l

Conf. on Very Large Data Bases , pp. 28-39, Mum-
bai, India, Sept. 1996.

[6] Chat�eld, C., The Analysis of Time Series: An

Introduction, 3rd Ed., Chapman and Hall, 1984.

[7] Chan, K.-P. and Fu, W.-C., \E�cient Time Se-
ries Matching by Wavelets," In Proc. Int'l Conf.

on Data Engineering , IEEE, pp. 126-133, Sydney,
Australia, Mar. 1999.

[8] Chu, K. K. W. and Wong, M. H., \Fast Time-
Series Searching with Scaling and Shifting," In
Proc. ACM SIGACT-SIGMOD-SIGART Sympo-

sium on Principles of Database Systems , pp. 237-
248, Philadelphia, Pennsylvania, May 1999.

[9] Faloutsos, C. et al., \Fast Subsequence Matching
in Time-Series Databases," In Proc. Int'l Conf. on

Management of Data, ACM SIGMOD, pp. 419-
429, Minneapolis, Minnesota, June 1994.

[10] Goldin, D. Q. and Kanellakis, P. C., \On Similar-
ity Queries for Time-Series Data: Constraint Spec-
i�cation and Implementation," In Proc. Int'l Conf.

on Principles and Practices of Constraint Program-

ming , pp. 137-153, Cassis, France, Sept. 1995.

[11] Gonzalez, R. C. and Woods, R. E., Digital Image
Processing , Addison-Wesley, 1993.

[12] Guttman, A., \R-trees: A Dynamic Index Struc-
ture for Spatial Searching," In Proc. Int'l Conf. on

Management of Data, ACM SIGMOD, pp. 47-57,
Boston, Massachusetts, June 1984.

[13] Hart, J. M., Win32 System Programming ,
Addison-Wesley Developers Press, 1997.

[14] Press, W. H. et al., Numerical Recipes in C { The

Art of Scienti�c Computing , 2nd Ed., Cambridge
University Press, 1992.

[15] Ra�ei, D. and Mendelzon, A., \Similarity-Based
Queries for Time Series Data," In Proc. Int'l Conf.

on Management of Data, ACM SIGMOD, pp. 13-
25, Tucson, Arizona, June 1997.

[16] Sellis, T. et al., \The R+-tree: A Dynamic Index
for Multidimensional Objects," In Proc. Int'l Conf.
on Very Large Data Bases , pp. 507-518, Brighton,
England, Sept. 1987.

[17] Weber, R. et al., \A Quantitative Analysis and Per-
formance Study for Similarity-Search Methods in
High-Dimensional Spaces," In Proc. Int'l Conf. on

Very Large Data Bases , pp. 194-205, New York,
New York, Aug. 1998.

[18] Yi, B.-K. et al., \E�cient Retrieval of Similar Time
Sequences Under Time Warping," In Proc. Int'l

Conf. on Data Engineering , IEEE, pp. 201-208, Or-
lando, Florida, Feb. 1998.

487

