
Data & Knowledge Engineering 11 (1993) 171-202 171 
North-Holland 

DATAK 179 

GRAQULA: A graphical query 
language for entity-relationship or 
relational databases 

Gary H. Sockut a*, Luanne M. Burns b, Ashok  Malhotra b and Kyu-Young 
W h a n g  c 

alBM Santa Teresa Laboratory, P. 0.  Box 49023, San Jose, CA 95161-9023, USA 
bIBM Research Division, T.J. Watson Research Center, P.O. Box 704, Yorktown Heights, N Y  10598, 
USA 
CComputer Science Department and Center for Artificial Intelligence Research, Korea Advanced Institute of 
Science and Technology, 373-1 Koo-Sung Dong, Yoo-Sung Ku, Daejeon, South Korea 

Abstract 

GRAQULA is a graphical language for querying and updating a database. One version of GRAQULA 
provides a user interface for the entity-relationship data model, and another version (with almost identical 
syntax) provides a user interface for the relational model. Each version is relationally complete, and each 
depicts relationships (or expected joins) graphically. GRAQULA provides logical operations (e.g. negation) 
on graphical objects; these operations have user-specified scopes, allow nesting, and can involve existential or 
universal quantification. Aggregates (e.g. average) also have user-specified scopes. Queries can invoke other 
queries, and users and queries can pass parameters to queries. The design reflects a specified set of goals, 
including expressive power, consistency, and limitation of required memorization. 

Keywords. Database query languages; graphical interfaces; scope of logical operations; universal quantifica- 
tion; existential quantification; human factors; entity-relationship data model; relational data model. 

I. Introduction 

The intended purposes of many textual languages for databases include interactive 
queries, but end users often find such languages hard to use. Difficulties involve memoriza- 
tion of syntax, memorization of schemas (database definitions), complexity in recognizing 
relationships, and inconvenience in specifying and modifying queries; these difficulties can 
lead to users' errors. We conducted an experiment [6] involving 19 undergraduates who were 
n o t  computer scientists or database experts; they had introductory experience with a 
relational database system on a personal computer. We showed them textual definitions of 
tables, and we asked them to write relational queries (based on our English queries) in a 
textual query language of their choice. Nine subjects spontaneously drew diagrams with arcs 
for relationships during their work, and these subjects scored considerably higher than the 
other subjects (for correctness and speed of writing), especially for complex queries (e.g. for 
queries with 3 or more joins, 82% correct vs. 32%). Such observations motivate the use of a 
graphical interface that shows relationships. We believe that such an interface can increase 
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comprehension, reduce required memorization and analysis, and thus improve correctness 
and speed. 

This paper describes GRAQULA (GRAphical QUery LAnguage), a graphical language 
for querying and updating a database. Most of our discussions about queries also apply to 
updates. We designed GRAQULA for a workstation with a mouse, but the database need 
not reside at the workstation. One version of GRAQULA provides a user interface for the 
entity-relationship (E-R) data model [9]; another version provides a user interface for the 
relational model [10]. Most of our discussions describe the E -R  version, but the same 
constructs apply to the relational version; we will describe the differences between our E - R  
and relational diagrams. The intended set of users includes database specialists and 
nonspecialists who issue unpredictable queries, e.g. accountants and statisticians; they see a 
database's organization into entity and relationship types. We do not define application- 
specific interfaces that are more appropriate for database nonspecialists who issue more 
predictable queries, e.g. bank tellers; they do not see the organization. 

We have implemented part of GRAQULA's capabilities in a relational query language 
(GARP) [8], and we implemented two E - R  browsers [5, 7] before designing GRAQULA. 
These implementations and a related implementation for E -R  schema definition and query 
(RMGraph) [18] have graphical features resembling those of full GRAQULA, e.g. database 
diagrams that users can tailor and a framework of windows, action bars, and menus. We will 
describe the implementation status and users' experience. We will also define a mapping 
from GRAQULA's E - R  queries into relational queries, as a way to process E -R  queries. 
GRAQULA is not part of RMGraph or any other IBM product. 

GRAQULA's  design reflects a set of goals (many of which come from well-known 
principles in human factors, e.g. Shneiderman's guidelines [27]): 
• Sufficient expressive power and functions, including relational completeness; rarity of 

restrictions 
• Ability to learn a database's structure without extensive time, effort, or memorization 
• Ease of use, including learning, remembering, writing, and reading the language's 

constructs 
• Consistency, predictability, and naturalness (in both syntax and function); rarity of 

exceptions 
• Simplicity of features and conciseness of work required of the user, especially for frequent 

or conceptually simple tasks; ability to ignore language features that are irrelevant to a 
particular query 

• A high probability that users will write error-free queries 
• Clarity of definition; lack of ambiguity 
• Ability to modify queries to form new queries incrementally. 

GRAQULA's principal contribution is its combination of the features listed below. We 
sketch the features here and describe them in more detail later. 

(1) GRAQULA provides a graphical interface that uses popular, convenient techniques 
(e.g. windows, action bars, and menus) for manipulating the graphical objects that form 
a query. 

(2) As we will demonstrate, the operations in the relational version and the operations on 
entities in the E - R  version are relationally complete; each version includes ad hoc joins 
and the other required functions. Of course, the E - R  version also supports relation- 
ships. 

(3) Users can specify the nature and scope of logical operations (conjunction, disjunction, 
and negation) on sets of graphical objects, including objects involving existential 
quantification, via frames (rectangles that enclose scopes). Nesting of frames graphically 
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shows nesting of operations and scopes. Expressive power requires specification of 
scopes and nesting of logical operations. No other graphical language, to our knowl- 
edge, provides such thorough capabilities for logical operations on graphical objects. 

(4) Frames also support direct specification of implication with an arbitrary consequent and 
universal quantification; users need not specify it indirectly via set operations or nested 
negation. We allow nesting, and we allow any number of tuple variables per scope of 
universal quantification. This paper also provides a guideline to ease the writing of 
universally quantified graphical queries, based on English queries. Thomas [30] de- 
scribes an experiment (not involving GRAQULA) showing that universal quantification 
can be a difficult concept for users; we believe that our direct specification and 
guideline can help. Again, no other graphical language, to our knowledge, provides 
such thorough capabilities. 

(5) Frames also support user-specified scopes for aggregates (e.g. average). Expressive 
power requires specification of scopes of aggregates. 

(6) Queries can involve cyclic patterns of relationships; users need not restrict queries to 
trees. 

(7) G R A Q U L A  includes updates. 
(8) In the graphical depictions of schemas and queries, the relational version draws arcs for 

expected joins (with automatic drawing in schemas when referential integrity con- 
straints exist), and the E - R  version draws arcs for relationships. Our experiment 
showed the value of such arcs in improving users' correctness and speed in writing 
queries. 

(9) A construct (called an execution regulator) lets queries invoke other queries, and users 
and queries can pass parameters to queries. 

(10) We define a mapping from E - R  queries into relational queries, for clarity of definition 
and as an implementation technique. 

(11) G R A Q U L A  provides conveniences like ordering of results, saving of results, and 
saving of queries. 

Here we compare G R A Q U L A  with other graphical query languages (in the research 
literature) for E - R  or relational databases. For each language, we note which of features 
2-8 above are not fully present. Many languages appear in the surveys by Kim [19] and 
Batini et al. [3]. 

CUPID [24] is a relational language. The user writes a query by choosing tables and 
placing icons for operations next to tables' column names. CUPID minimizes typing and uses 
graphical notations for almost all features, including arithmetic expressions and scopes of 
aggregates. It prompts the user with ways to correct invalid queries. Missing features include 
logical operations with scopes, implication with universal quantification, and arcs for 
expected joins in schemas. 

Office-by-Example (OBE) [32] includes a relational language resembling its predecessor, 
Query-by-Example (QBE) [39]. The user chooses tables and types operators and conditions 
under column names; example elements (symbols) denote connections (e.g. joins). A 
directory lists the available tables. Negation (of existential quantification) lacks nesting and 
always has a scope of one table. Missing features include graphical disjunction, direct 
specification of implication with universal quantification, scopes of aggregates, and arcs for 
expected joins, although a version of QBE for a hierarchical data model [40] draws arcs for 
relationships. Summary-Table-by-Example [25] includes scopes of aggregates. 

GUIDE [36] is an E - R  language. A user chooses a subset of a schema diagram and 
specifies conditions, which appear textually at the bottom. GUIDE emphasize exploration of 
a database; it provides zooming, a directory, and commands to find the relevant parts of a 
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large schema. Missing features include ad hoc joins, logical operations with scopes, 
implication with universal quantification, scopes of aggregates, cycles of relationships in 
queries, and updates. 

In gql/ER [38], the user adds conditions in OBE-like forms that appear separately from 
the E - R  diagram. The user can request a default connection between user-chosen entity 
types. The paper does not mention logical operations with scopes, implication with universal 
quantification, scopes of aggregates, or updates. 

In the language of Elmasri and Larson [14], a query uses a hierarchical view of an E - R  
schema, with a user-identified root. Attributes can migrate among a query's entity types to 
reflect the hierarchy. The paper discusses translation from graphics into English. It does not 
mention ad hoc joins, logical operations with scopes, direct specification of implication with 
universal quantification, scopes of aggregates, cycles of relationships in queries, or updates. 

The relational language of Embley et al. [15] has a corresponding algebraic textual 
language and a formal description. It allows definition of connectors between tables, and a 
connector to a temporary constant table provides a selection. The language lacks logical 
operations with scopes, implication with universal quantification, scopes of aggregates, and 
updates. 

The relational language PICASSO [20] displays tables and their columns, and the user 
draws conditions next to the columns. Joins are graphical, with arcs that connect a 
comparison operator to two columns. A multiple-step method specifies scopes of aggregates. 
PICASSO's universal relation data model automatically exhibits most of the expected joins; 
PICASSO does not draw arcs for the remaining expected joins between the universal 
relation and itself. Other missing features include logical operations with scopes, implication 
with universal quantification, and updates. 

Pasta-3 [21] is an E - R  language with inheritance and deductive rules. It provides a 
directory to find a schema's relevant parts, and the user can let the system connect 
user-chosen entity types. The user specifies conditions under attribute names. Pasta-3 has a 
multiple-step method for disjunction, and its negation lacks nesting and user-specified 
scopes. Its implication with universal quantification does not support nesting or more than 
one tuple variable immediately inside a scope of universal quantification. It uses text for 
scopes of aggregates, and it uses replication and joins to provide the effect of cycles of 
relationships in queries. It does not draw arcs for relationships in queries. 

The language of Czejdo et al. [12] emphasizes operations to edit an E - R  diagram (and its 
displayed attribute names) to form a query. Conditions appear next to attributes. The 
language has a formal description, and it supports subtypes of entity types. It lacks logical 
operations with scopes and implication with universal quantification. 

QBD* [2] is an E - R  language with transitive closure. It has a corresponding textual 
language and a formal description. After choosing parts of the schema, the user can request 
the display of related parts. The user draws conditions on attribute lists. QBD* lacks logical 
operations with scopes, implication with universal quantification, and updates. 

Finally, DFQL [37] is a relational algebra-based language using a data flow paradigm. It is 
relationally complete and includes aggregates with scopes. We do not explicitly compare it 
with other specific features of GRAQULA, since its paradigm differs so much from 
paradigms of GRAQULA and other languages. 

Our description of GRAQULA begins with an overview. We then describe schema 
diagrams, query diagrams, and additional contents that a user builds in queries. We describe 
the facilities to control queries, and we demonstrate relational completeness. We describe 
implementations (including some actual screens) and discuss users' experience. Finally, we 
summarize our work. An introductory knowledge of database management should suffice for 



Graqula 175 

understanding the paper. An earlier version of this paper [28] covers more details of 
relationships, aggregates, updates, and a few other topics. 

2. Overview of GRAQULA 

We envision G R A Q U L A  as a query facility in a set of graphical facilities for databases. 
Other  facilities can define schemas, restructure schemas, browse, and generate reports. We 
have implemented browsing [7] and part of G R A Q U L A ' s  capabilities [8], and we have 
sketched a design of the other facilities [22]. 

Information appears in windows on a workstation. For G R A Q U L A  and most of the other  
facilities above, the user starts by identifying the database (and thus the schema) during 
creation of a schema window, which contains a schema diagram. For brevity, we will discuss 
only schemas, not subschemas, but use of G R A Q U L A  from a subschema is identical. The 
G R A Q U L A  user views the entity and relationship types in the schema diagram and then 
creates any number of query windows; each can contain a user-specified query diagram, 
which signals the participation of entity and relationship types in a query. In a query 
window, the user adds details, e.g. projections (specifications of data to list) and conditions. 
A condition is anything whose instantiation returns 'TRU E '  or 'FALSE' ,  e.g. ' sa la ry> 
50000.' We also execute a query in a query window, and G R A Q U L A  displays the result as a 
table in a result window or sends it to a user-specified file or printer. The user can switch 
between the windows' activities at any time. Some variations on these activities, e.g. 
retrieval of a saved query, are possible. 

For later reference,  Fig. 1 shows the generic hierarchy of types of graphical objects; we 
describe the objects briefly here and in more detail later. We mentioned most of the windows 
above; a SQL window displays a generated query in SQL [1]. A schema element (entity or 
relationship type) is part of the schema diagram in the schema window. A query element 
appears in a query window and involves a condition. An image (entity or relationship image) 
is part of a query diagram and signals participation of an entity or relationship type in that 
query. A comparison (e.g. a join) can be graphical or textual. A condition box specifies a 
combination of logical operations on textual conditions. A frame (parentheses,  negation, 
implication, or consequent frame) specifies a logical operation and quantification for query 
elements. A regulator (duplicate, order,  destination, comment,  set operation, or execution 
regulator) appears in a query window and controls an aspect of the query's format or 
execution. Images suffice for most queries that we consider common; only more complex 
queries need other query elements or regulators. 

Some types of objects have an action bar (a list of actions, each invoked by mouse- 

GRAPHICAL- 
OBJECT 

-WINDOW 

-SCHEMA ELEMENT (in schema window; part of schema diagram)-------~F-ENTITY TYPE 
L - R E L A T I O N S H I P  TYPE 

I 
IMAGE (part of query diagram) IENTITY IMAGE 

L-RELATIONSHIP IMAGE 
-QUERY ELEMENT GRAPHICAL COMPARISON (e.g., join) 
(in query window; IPARENTHESES FRAME 
involves a CONDITION BOX ~-NEGATIOR FRAME 
condition) ~IMPLICATION FRAME 

~FRAME ~CONSEOUENT FRAME 

REGULATOR (in query window; controls format or execution) 

I 
SCHEMA WINDOW 
SUBSCHEMA WINDOW 
QUERY WINDOW 
RESULT WINDOW 
SOL WINDOW 

I 
DUPLICATE REGULATOR 
ORDER REGULATOR 
DESTINATION REGULATOR 
COHHENT REGULATOR 
SET OPERATION REGULATOR 
EXECUTION REGULATOR 

Fig. 1. Generic hierarchy of types of graphical objects. 
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clicking) and scroll bars. To create most text, both typing and clicking are available; for the 
user's convenience, we interpret upper and lower case identically in names and keywords. 
For  brevity, we will concentrate on queries' contents, not on the well-known techniques [4] 
to manipulate those contents (e.g. dragging and zooming). 

3. Data models and diagrams in GRAQULA 

Here  we describe G R A Q U L A ' s  E - R  data model, schema diagrams, query diagrams, and 
the relational version of G R A Q U L A .  

3.1. G R A Q U L A ' s  entity-relationship data model 

The E - R  model has become popular for modeling information, and it has many proposed 
versions. G R A Q U L A ' s  version, which we describe now, is similar but not identical to the 
version in Repository Manager [26]. We use schema element as a generic term for entity type 
and relationship type. For brevity, we often omit the words ' type' ,  ' instance', and 'image' (a 
query's use of a schema element) after the word 'entity' or 'relationship' when the meaning 
is obvious from the context. 
• An  entity type represents a collection of things, e.g. employees. It has a name and 

attributes; an attribute (e.g. salary) has a name and a data type. Each entity type has a 
key, which is one or more attributes. 

• A relationship type represents an association, e.g. departments '  employment of em- 
ployees. It has a name, e.g. 'EMPLOYS, '  and optionally has an inverse name, e.g. 
'WORKS_IN. '  Relationships are binary; each connects two schema elements (entities 
and /o r  relationships), which we call its ends. A relationship's definition labels one end as 
the source and the other as the target; the labels are necessary to prevent ambiguity when 
the two ends are the same element. Each relationship type has an instance control of 
one-to-one,  one-to-many, or many-to-many. In a one-to-many relationship type, either 
end (source or target) can be the many-end; for brevity, we do not use the additional term 
'many-to-one. '  
We define a mapping from E - R  into relational for G R A Q U L A  schemas and queries. One 

purpose is to define our constructs clearly; however, an E - R  user who is not trying to map 
between data models need not be aware of the mapping. Another  purpose is to show 
feasibility of implementation on relational systems; however, we do not require this 
particular mapping or even a relational system as G R A Q U L A ' s  implementation. Earlier 
papers on universal quantification [33, 34] describe the mapping more formally. 

We begin by defining three concepts that the mapping uses. A one-to-many or one-to-one 
relationship's domestic end is the many-end for a one-to-many relationship or the target end 
for a one-to-one relationship; the foreign end is the other end. Many-to-many relationships 
do not use those two concepts. Any schema element's identifier is the set of attributes whose 
values uniquely identify the element's instances: 
• An entity's identifier includes its key attributes. 
• A many-to-many relationship's identifier includes both ends' identifiers. 
• A one-to-many or one-to-one relationship's identifier is the domestic end's identifier. 

Now we define the relational mapping of schemas; later we map queries: 
• An entity and its attributes (key and nonkey) map into a table and columns (primary key 

and nonkey).  
• A many-to-many relationship and its identifier map into a table and primary key columns. 
• For a one-to-many or one-to-one relationship, the foreign end's identifier maps into more 
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columns (a foreign key). They become part of the table that the domestic end uses; this 
table-choosing algorithm recurses if the domestic end is a one-to-many or one-to-one 
relationship. 

In an environment where users can issue relational updates directly (i.e. without using E - R  
updates), the relational schema should include some integrity constraints [23], which we omit 
here for brevity. 

3.2. Schema diagrams 

A schema diagram depicts the schema elements. An entity type appears as a node 
containing the entity name; a relationship type appears as an arc (or, in this paper's figures, 
line segments) with an adjacent relationship name. Each end has an 'm' (for many) or a '1,' 
and the target has an arrowhead. Schema and query diagrams need not be planar. Users can 
tailor the positions of schema elements; query diagrams have the same flexibility. Figure 2 
shows the schema that our example queries use. For example, CONTAINS is a one-to-many 
relationship between the DIVISION and DEPARTMENT entities. 

In the schema window, the user can expand entity types to show scrollable lists of 
attributes and their data types. In our schema, the DIVISION entity has NAME (key), 
BUDGET, and YEAR_FORMED attributes; DEPARTMENT has NAME (key) and 
BUDGET; EMPLOYEE has NAME (key), SALARY, and YEAR_HIRED; TITLE has 
TITLE (key); and SKILL has SKILL (key). A real database might use some different keys 
(e.g. employee number), but we kept our example simple. 

Here we show the relational mapping of our example relationships, including one possible 
set of names for tables and foreign key columns. The CONTAINS relationship type maps 
into the DIVISION_NAME column in the DEPARTMENT table. EMPLOYS, PAYS, and 
H A S T I T L E  map into the E_DEPARTMENT_NAME, PDEPARTMENT_NAME,  and 
TITLE columns in the EMPLOYEE table. HAS_SKILL maps into the H A S S K I L L  table 
with NAME and SKILL columns. 

3.3. Query diagrams 

Even with a large schema, most queries use few entity and relationship types. For 
example, a query to list the Toy department's employees uses only EMPLOYEE, EM- 
PLOYS, and DEPARTMENT. A query diagram contains images (pictures) of one or more 
entity types (as nodes) and zero or more relationship types (as arcs), to signal their 
participation in the query. Diagram A in Fig. 3 is a diagram (not a complete query) for 
listing the Toy department's employees. A query diagram contains several images of a 
particular schema element if the query uses that element in several ways. For example, to list 
the employees in Ann Smith's department, we use EMPLOYEE to list employees and to 
specify Ann Smith, as in diagram B. An image's name is the schema element's name, with 

CONTAINS 

i 'I PAYS EMPLOYS 

m m 

TITLE 15 "IE, LOY   " "SKI.L i 
HAS T[TLE HAS_SKILL 

Fig. 2. A schema diagram. 
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Fig. 3. Query diagrams. 

system-generated suffixes like '{1}' and '{2}' if the schema element has several images. We 
show later how to specify projections, conditions, and updates. 

A query window's query diagram is initially empty; dragging a schema element from the 
schema window to a query window adds an image to the query diagram (without changing 
the schema diagram). In adding a relationship image, G R A Q U L A  chooses its source image 
(and then its target) as follows: 
• If no images of the source exist yet, G R A Q U L A  adds one. If the missing source is a 

relationship, the strategy for addition recurses, as if the user had dragged the source 
relationship from the schema. 

• If exactly one image of the source exists, it becomes the relationship image's source. 
• If several images of the source exist, G R A Q U L A  highlights them, prompts the user to 

choose one (or to cancel the addition of the relationship image), and removes the 
highlighting after the choice. 

Dragging an image from a query window deletes the image; deletion recurses if a deleted 
image is an end of a relationship image. To track progress, G R A Q U L A  highlights the 
schema window's schema elements that have images in the active query window; G U I D E  
and G A R P  also highlight a schema's chosen subset. To help construct the rare queries that 
use the majority of the schema elements, an action creates a query diagram by copying the 
entire schema diagram. Another  action deletes an entire query diagram. 

The user can also add images via a directory; its sections list entity types, relationship 
types, and attributes. For each attribute, the attribute section lists the entity types containing 
that attribute. An action (in the schema window or a query window) displays the directory. 
The directory's first entry is initially blank; the user can type a name there. Choosing an 
entry (possibly the first) can add or delete an image or can scroll the schema or query 
diagram to center it on that type or image; this is especially helpful for a large schema. OBE,  
G U I D E ,  Pasta-3, and G A R P  also use directories to find a schema's relevant parts. 

Suppose that a query diagram contains two or more sets of entity images, but no joins or 
relationship images connect those sets. If the user requests execution, G R A Q U L A  requests 
confirmation and displays the relevant part of the relationship section of the directory; the 
user optionally adds relationship images to connect the entity images. This feature deters 
inadvertent specification of a Cartesian product (which we do allow) when the user wants a 
join [21]. Similarly, in gql /ER,  Pasta-3, and QBD*,  the user can let the system connect 
user-chosen entity images. G A R P  informs the user when no connections exist. 

We now introduce the relational mapping of queries; we will expand the mapping as we 
define more G R A Q U L A  constructs. A query maps into a SELECT statement in SQL [1]. 
• An entity image in a query maps into use of a table in a FROM clause in SQL. More 
formally, in relational calculus [11], it maps into an atomic formula of the form 'R(s), '  where 
R is a table and s is a tuple variable. For images that are not inside frames (described later), 
the F R O M  clause is part of the SELECT statement in SQL, and we bind the images' tuple 
variables to existential quantifiers (as in '3s3t') whose scope (range of effect) is the entire 
query in calculus. We later generalize the quantification to allow smaller scopes (subqueries) 
and universal quantification. 
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• A one-to-one or one-to-many relationship image maps into a join between the foreign key 
columns in the domestic end's table and the primary key columns in the foreign end's table. 1 
• A many-to-many relationship image maps into use of a table and two joins. 
• Projections and conditions map into relational projections and conditions. 

Using separate diagrams for a schema and a query (instead of a single diagram that 
highlights schema elements that participate in a query) has two advantages. One is reduced 
cognitive complexity via obvious omission of nonparticipants. The other  advantage is ease of 
expressing queries with several uses for a schema element.  If relationships or graphical 
logical operators involve an element with several uses, then with one diagram, duplication of 
elements or of OBE-like query rows could produce clutter and confusion. 

3.4. The relational version of GRAQULA 

Most of our discussions describe G R A Q U L A  in terms of a user interface for the E - R  
model (with a possible underlying mapping into relational queries), but the same constructs 
apply to a version of G R A Q U L A  with a user interface for the relational model. A relational 
schema diagram contains nodes for tables and arcs for referential integrity [13] constraints 
(with an arrowhead at the end containing the foreign key). In addition, or for a relational 
system with no referential integrity, a user (perhaps the schema designer) optionally tells 
G R A Q U L A  which joins are expected to occur frequently, and G R A Q U L A  draws arcs for 
them in the schema diagram. A query diagram contains nodes for uses of tables and arcs for 
expected joins; G R A Q U L A  also allows ad hoc joins. Similarly, Wiederhold and Elmasri 
[35] use a notation with arcs for relationships. Besides interactive queries, another  applica- 
tion for the relational version of G R A Q U L A  is generation of SQL queries for execution 
outside G R A Q U L A .  A user of the relational version can also display a generated SQL 
query in a SQL window. 

4. Contents of queries 

Query elements (e.g. a query diagram's images) are graphical objects that involve 
conditions. After  specifying a query diagram, the user can expand images (e.g. to show 
attributes); add other  query elements; modify the diagram at any time; add projections, 
conditions, and updates in expanded images; and add expressions (e.g. aggregates), logical 
operations,  and quantification. 

4.1. Expanded images 

For each image, the user can switch between a compact format (the initial format)  and an 
expanded format. For  example, if we expand all three images in query diagram A in Fig. 3, 
we produce the diagram in Fig. 4. Expanded entity images include rows, a heading for rows, 
and scroll bars. We use 'row' to mean horizontal text, not a tuple of data in a table. A row in 
an expanded entity image contains an attribute name (e.g. 'SALARY' ) ,  space for a 
condition's operator  (e.g. ' > ' ) ,  and space for a condition's right operand (most commonly a 
simple value). The ' (AND) '  at the right shows the image's logical operation,  which we 

1 GRAQULA is definable with either two- or three-valued logic. For simplicity, this paper uses two-valued logic, 
and we treat SQL as if it used two-valued logic. With SQL's three-valued logic, a one-to-one or one-to-many 
relationship image maps into a join and a test that the foreign key columns are not null; this makes negation 
intuitive. 
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Options ROWS Instances Help 

ATTRIBUTE ~ VALUE (ANO) 

I I  NAME 
SALARY Options Help 

Options Rows Instances Help 

~ V A L U E  (AND) DATA TYPE 

CHARACTER (32) 
DECIMAL (11, 2) 

Fig. 4. A query diagram with expanded images. 

discuss later. G R A Q U L A  highlights key attributes'  names. We discuss the images '  action 
bars and the D E P A R T M E N T  image's  D A T A  TYPE column below. 

Besides help, an expanded entity image's  action bar includes these actions: 
• The Options action creates a pull-down menu with entries for Rename,  Expression, 

Update ,  and Data  type; each entry switches between absence (the initial setting) and 
presence of a column. In a R E N A M E  column, the user can type alternative names for any 
of the attributes. We explain E X P R E S S I O N  and U P D A T E  columns later. A D A T A  
T Y P E  column shows each attribute 's  data type, as in the D E P A R T M E N T  image. The 
menu  for a relationship image's  Options action contains just Update .  

• The  Rows action's menu copies, reorders,  adds, or deletes rows, e.g. to specify many  
conditions or expressions. An added row does not represent  an attribute, but any row can 
contain an expression. 

• The Instances action's menu shows the current set of values in the database for all 
attributes, as in GARP,  or for a chosen attribute, as in the IBM Data  Interpretat ion 
System (DIS)  [17]; the user can then use those values (or other values) in conditions in a 
query. 

To  save space in this paper,  later figures omit the action and scroll bars. 
We define a related textual construct that we use later: an attribute specification is a 

reference to an attribute. In the most general case, it contains an entity image name,  a 
period,  and an attribute name. However ,  an attribute name alone suffices when it appears  in 
the expanded image of an entity that includes that attribute or when the attribute name is 
unique among the query 's  attributes. 

4.2. Projection 

We use projection to mean specification of data to include in a query's  result. Clicking an 
attr ibute name in an expanded entity image switches between projection and no projection 
(the initial setting) of the attribute. Projected attributes'  names appear  in reverse video. 
Clicking the image's  name (which can also appear  in reverse video) switches projection of all 
attributes. Our  first complete query, at the left of Fig. 5, lists each employee ' s  name and 

I-iii~iiii~i~i~i~i~ EMPLOYEE ~iii~i~ii~ii::~iii~1 

ATTRIBUTE OP VALUE (AND) 

A~E R 
YEARHIRED 

I- i::~i~::~i~i~ RESULT: J[i::~i~iii~iii~ 

NAME SALARY 

Jones, Edward 4500B 
Smith, Ann 5BODB 
Mi l l e r ,  Louis SBO0O 

Fig. 5. A query and its result. 
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salary; a corresponding SQL query is 'SELECT DISTINCT NAME, SALARY FROM 
E M P L O Y E E . '  By default, the execution creates and displays a result window to show the 
result, as in the right part of Fig. 5. The figure omits the widow's action and scroll bars. If 
several images have projections, the one result includes all projected attributes; i.e. we 
calculate the images' Cartesian product (or, if specified, their join). 

The user's steps to create this query are 
(1) viewing the schema diagram in the schema window, 
(2) dragging to create a query diagram (containing only an EMPLOYEE image) in the 

query window, 
(3) clicking to expand the image, 
(4) clicking to project NAME and SALARY in the image, and 
(5) clicking the query window's execution action to execute the query and create the result 

window. 
For several options, a query window has regulators, which users can ignore for most 

queries. Actions switch between hiding (the initial setting) and displaying regulators. We 
discuss four of the regulators now: 
• The duplicate regulator specifies removal (the initial setting) or retention of the result's 

duplicate rows. 
• The order regulator specifies the order of appearance of the result's rows. For example, 

'SALARY, NAME'  means a major sort on SALARY and a minor sort on NAME. 
Specifications of any number of projected attributes (from any number of entity images) 
can appear. 'ASCENDING'  (or 'ASC') or 'DESCENDING'  (or 'DESC')  optionally 
follows each attribute specification; the default is ascending. An empty regulator (the 
initial setting) implies no user-specified order. 

• The destination regulator specifies (before query execution) the result window's destina- 
tion. The choices are 'SCREEN'  (the initial setting), 'FILE name, '  and 'PRINTER name. '  
If the choice is 'SCREEN, '  an action in the result window (after execution) can copy the 
result to a file or printer. 

• The comment regulator contains a comment to document the query; it is initially empty. 
We will describe how to save queries between G R A Q U L A  sessions. 

4.3. Conditions and expressions 

The user limits a query's result through conditions. Each type of query element involves a 
graphical condition; for example, images represent joins and/or  uses of tables. The user can 
add any number of textual conditions inside expanded entity images and condition boxes. A 
textual condition is a textual comparison (e.g. a selection) or any of various tests (e.g. for a 
null value). In an expanded entity image, a textual condition on an attribute involves an 
operator in the OP entry of the attribute's row and a right operand in the VALUE entry. A 
right operand with a blank operator implies that the operator is ' = , '  and blanks in both 
entries mean lack of a condition. An expanded entity image represents two graphical 
conditions: 
(1) use of a table, and 
(2) the conjunction or disjunction of any textual conditions inside. 
By default, an expanded entity image's second graphical condition is the conjunction of its 
textual conditions, and a query's condition is the conjunction of its query elements' graphical 
conditions; we discuss disjunction later. An expanded relationship image contains no textual 
conditions. 

A textual comparison (e.g. a selection) uses a comparison operator (e.g. '>  = ' ) .  A selection 
compares an attribute and a constant; a constant is a number, quoted string, or unquoted 
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hyphen (null). A join compares attributes of different entity images. A restriction [11] 
compares attributes of the same entity image. For example, the query in Fig. 6 lists the name 
and salary of each employee whose salary exceeds 50000 (a selection) and whose year of 
hiring equals the Research division's year of formation (a join). 

A condition's right operand can be an expression, which can involve attribute specifica- 
tions, constants, aggregates, parentheses, arithmetic operators, and string operators. For 
projecting an expression or using it as a condition's left operand, an expanded entity image 
can have an EXPRESSION column. For example, the query in Fig. 7 lists the name and 
twice the salary of Edward Jones. Any projection and any condition in a row apply to the 
expression if the row has a nonblank EXPRESSION entry; they apply to the attribute if the 
row has a blank EXPRESSION entry or if the image has no EXPRESSION column. 

The 'IS' operator signals any of several types of tests (textual conditions); the right 
operand determines which type. The possible right operands (optionally preceded by 'NOT') 
are 'NULL,'  'BETWEEN expression, expression,' 'IN expression . . . . .  expression' (a mem- 
ber of the set of values), and 'LIKE expression' (as in SQL's pattern matching). 

G R A Q U L A  also supports graphical comparisons. For example, the query in Fig. 8 lists 
the names of the departments whose budgets exceed the Research division's budget. The 'L' 
and 'R' indicate which entity images supply the left and right operands. If such an image is 
expanded, and the operand's row is not scrolled off the image, then the comparison's arc 
connects to the row in the image, as in the language of Embley et al., PICASSO, GARP, 
and DIS [17]; otherwise it connects to any part of the image. In the relational version of 
GRAQULA,  this also applies to arcs in schema and query diagrams. 

I- iiiii~i~iii~iiii~)i~iii~ EMPLOYEE iiii~iii)~i)iiiii)iii~i!i~I 

ATTRIBUTE OP VALUE (AND) 

;AME 

ALAR' A ~ R J  • Booed 
YEAR_MIRED DIVISION.YEAR_FORMED 

ATTRIBUTE OP VALUE (AND) 

NANE ' Research ' 
BUDGET 
YEAR FORMED 

Fig. 6. Selections and a join. 

I- [UUIUIUIIUUIUUUUUUU l EMPLOYEE JlIU~IU~UUUUUIII~UII~Ii~IUI 
ATTRIBUTE EXPRESSION OP VALUE (AND) 

~ ~ ' Jones ,  Edward' 

YEAR HIRED 

Fig. 7. An expression. 

l-i~i[[~i~ii~ii[i[ DEPARTMENT [ii~[i[i[ii~ii~[I '-iiUUUUUIiI~I~[~ DIVISION iiiiiUiiiii~ilUUUi' 
ATTRIBUTE OP VALUE (AND) ATTRIBUTE OP VALUE (AND) 

T . . . . . . . .  l 
L BUDGET > BUDGET R NAME ' R e s e a r c h '  

BUDGET . . . . . . . . . .  I . . . . . . . .  I . . . . . . . . .  BUDGET 
YEAR FORMED 

Fig. 8. A graphical comparison. 
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4.4. Relationship images 

Figure 9 shows queries with relationship images. Query A lists the names of the Toy 
department's employees. Images can form a cycle (nonhierarchical pattern), as in query B, 
which lists the name of each employee who works in the department that pays that 
employee. Query C uses two EMPLOYEE images and two EMPLOYS images to list the 
names of the employees in Ann Smith's department. 

4.5. Logical operations for textual conditions 

The user switches between conjunction and disjunction of an expanded entity image's 
textual conditions by clicking the displayed '(AND)' (the initial setting) or '(OR)'. For more 
complex combinations of conditions, the user creates any number of condition boxes. A 
condition box, as in Fig. 10, contains a graphical tree; each nonleaf node is a conjunction or 
disjunction, optionally negated. Each leaf node can be a textual condition (like 'SALARY > 
50000'), optionally negated. Trees are horizontal, because a vertical tree with several 
collinear long textual conditions would be much wider. Our figure omits the action and scroll 
bars. CUPID and Pasta-3 also use trees. A tree should help the user understand a large or 
deeply nested combination. To accommodate users who prefer textual logical operators 
(perhaps to type a small combination quickly), a leaf can contain a combination of ANDs, 

IITPTm 

C. 

I I I I 
in 

I -  i[iii::::iii::iiiiill EMPLOYEE i~i~i~iiiii~::ii[~iii~[4 

ATTRIBUTE OR VALUE (AND) 

SALARY 
YEAR HIRED 

EMPLOYS 1 
DEPARTMENT 

PAYS [1 

I-iiii~iiiiilH~ii I EMPLOYEE{I} [i[iiiiiiii]i~i]i~l 
1 1 

ATTR[BUTE OP VALUE (AND) • [DEPARTMENT ] 
EMPLOYS{I} EMPLOYS{Z} 

IAb41 

SALARY 
YEAR_HIRED 

Fig. 9. Queries with relationship images. 

EMPLOYEE{21 iii~iiiiiiii~iii 

up VALUE (AND) 

'Smith, Ann' 

- ~iiii~iii~[iiiiiii~ii~i~iiii~::ii~i~ CONDITION: ~i~[~ii~iiiii~i~[~i[~[~[~[[i]i[i 

~ -EMPLOYEE{I}.SALARY • 5oeoB 

OR FEHPLOYEE{1}.HAME = 'Smith, Ann' 

-NOT ANDTDEPARTHENT.NAME = 'Toy' 

~DEPARTMENT.BUDBET - DIVISION.BUDGET 

Fig. 10. A condition box. 



184  G . H .  S o c k u t  et al. 

ORs, and NOTs of textual conditions and parentheses; here a tree with one node suffices, 
and the condition box resembles OBE's. 

4.6. Logical operations and quantification for query elements 

We have shown the constructs for logical operations (conjunction, disjunction, and 
negation) for textual conditions. We now discuss the constructs for logical operations and 
quantification for query elements. 

We begin by discussing an operation's scope (the set of operands). Many textual languages 
delimit scopes via parentheses. For examples, 'NOT(A = B) AND C = D' and 'NOT(A = B 
AND C = D)'  have different meanings; the most general case requires parentheses. 

To specify the nature and scope of a logical operation for query elements, G R A Q U L A  
uses a frame (a rectangle enclosing a scope). The operations are identity (with conjunction or 
disjunction), negation (with conjunction or disjunction), and implication. To nest operations, 
we nest frames. We say that a query element (possibly a frame) is at the outermost level if it 
is not inside any frame, and it is immediately inside a frame if it is inside that frame but not 
inside any more deeply nested frame. Besides specifying an operation, a frame has other 
important functions. It determines the type of quantification (existential or universal) for the 
tuple variables for the entity and many-to-many relationship images (if any) immediately 
inside the frame, and it limits the scope of that quantification and of any aggregates. 

This paper's figures use repetition of a character, e.g. ' ~ , '  for a frame's sides; possible 
alternative implementations include colors, line styles, and fill patterns. G R A Q U L A  has 
four types of frames. We list here each frame's full name (and abbreviated name below), 
logical operation, English word that appears in the upper right corner, character for drawing 
the sides, and type of quantification: 

Name Logical operation Word in corner Sides Quantification 

• Parentheses frame identity (with conjunction or 'AND'  or "OR' "(" existential 

(P-frame) disjunction 

• Negation frame negation (with conjunction or 'AND'  or 'OR" "~' existential 

(N-frame) disjunction) 

• Implication frame implication 'IMPLIES' "*' universal 

(1-frame) 
• Consequent frame implication's consequent (wit h ' A N D ' o r ' O R '  ~:' existential 

(C-frame) conjunction or disiunction ) 

In each P-, N-, or C-frame, the user can click the word to switch between 'AND'  (the initial 
setting) and 'OR. '  First we will discuss P- and N-frames and some issues that apply to all 
four types; then we will discuss I- and C-frames. An appendix discusses considerations that 
led to our design of frames. 

4.6.1 Parentheses and negation frames 
A P-frame means ' ( . . . ) '  in a textual language and 'it is true t h a t . . . '  in English; the 

ellipsis represents the scope, with 'AND'  or 'OR'  separating any operands. An N-frame 
means ' N O T ( . . . ) '  and 'it is false that .... ' Before defining the division into operands, we 
show example queries that use P- and N-frames. 

We start with simple examples. The N-frames with 'AND' in Fig. 11 each have one 
operand and thus represent simply negation, not negated conjunction: 
(A) List the names of the departments that pay an employee with a salary over 50000 and do 
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A .  

B. 

- ~::~i~::~::::~i::~i DEPARTMENT i~i~::::~i~::~ I 

OP VALUE (ANO) 

BUDGET 1 

. . . . . .  (AND) 

EMPLOYS I -  ii~ii~i~iii~ii~ I EMPLOYEE ~i~i~ii~iii~iiii~ii~1 

m ATTRIBUTE OP VALUE (AND) 

NAME 
PAYS SALARY • 56000 

YEAR HIRED 
m 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (AND) 

EMPLOYS J- iiiiiiii~iiiii~iii EMPLOYEE i i i i i i~iii i i i i i i i i i i i i l  

ATTRIBUTE OP VALUE (AND) 
m 

NAME 
SALARY • sooe8 
YEAR HIRED 

Fig. 11. Negation frames with one operand. 

not employ that employee. An alternative wording is ' . . .  50000 for whom it is false that 
the department employs that employee.' A corresponding SQL query is: 
SELECT DISTINCT D.NAME FROM DEPARTMENT D, EMPLOYEE E 

WHERE E.SALARY > 50000 AND E.P_DEPARTMENT_NAME = D.NAME 
AND NOT(E.E_DEPARTMENT_NAME = D.NAME) 

Removing the frame would remove 'not' or change 'false' to 'true' in the English. 
(B) List the names of the departments that do not employ any employees with a salary over 

50000. An alternative wording is ' . . .  departments for which it is false that there is an 
employee with a salary over 50000 whom the department employs.' Typically, a query 
element belongs inside a frame if the element depicts a word that appears only inside 
the corresponding phrase in the English query. For example, 'employ(s)' and 'em- 
ployee(s)' appear only inside the negated phrase, but 'department(s)' appears outside. 
However, we believe that the general problem of translation from natural language into 
a query language (graphical or textual) has not been completely solved. 

Figure 12 shows examples of queries that use frames with two operands: 
(A) List the names of the employees whom the Toy department employs or pays. We use a 

disjunctive P-frame. 

l-iii~iiii~ii~iiii EMPLOYEE ~iii~iii~iiii~i~i~ii~1 

ATTRIBUTE OP VALUE (AND) ~, 
m 

AMI 
SALARY 4 

m YEARHIRED 

~ OP VALUE (AND) 

SALARY I I YEAR-HIREDI I 

( ( ( ( ( ( ( ( ( ( ( ( ( (OR) 

EMPLOYS ( ( ~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

" "  ' I I 
( 1 '  ' ' 

(((((((((((1(((((  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (AND) 
ItAS_SKILL 

, li iii i   iii i ii   il TITLE 
HAS_TITLE 

ATTRIBUTE OR VALUE (AND) 
I 

TITLE 'Programmer' 

l -  iiii::i::iiiiiiii::i]ii::i SKILL ::::::::::::::::::::::::::::::::::::: " 

ATTRIBUTE OP VALUE (AND) 

SKILL 'C programming' 

Fig. 12. Frames with two operands. 
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(B) List the names of the employees for whom it is false that the employee has a title of 
P rogrammer  and has a skill of C programming.  We use a conjunctive N-frame.  

To explain the division of a P- or N-frame's  scope into operands,  we first define the 
concept  of connection of query elements. A graphical comparison,  relationship image,  
expanded entity image, or condition box connects with all images it references. 2 A frame 
connects with an element  outside the frame if at least one element inside the f rame connects 
with that outside element.  Connection is reflexive, symmetric,  and transitive; we can speak 
of a set of connected elements. We also define another  concept; two elements inside a f rame 
connect inside the frame if they can meet  the definition of connection without using 
transitivity through any elements outside the frame. For example,  in query B in Fig. 12, 
T I T L E  and HAS T I T L E  are a set of elements that connect inside the frame. SKILL and 
H A S _ S K I L L  are another  such set. Those two sets do not connect inside the frame,  since 
their connection requires transitivity through E M P L O Y E E .  

Now we define a P- or N-frame's  operands.  Each set of elements that are immediately 
inside the f rame and connect inside the frame forms an operand of that frame. Thus each 
f rame in Fig. 11 has one operand,  while each in Fig. 12 has two. Within an operand that 
contains several elements that are immediately inside the frame,  we use the conjunction of 
those elements '  conditions (inside the appropriate  scope of quantification, explained 
shortly),  even if the frame is disjunctive. This produces the desired intuitive meanings of the 
operands,  e.g. 'has a title of Programmer '  in query B in Fig. 12. Adding a nested P-frame 
around several operands of an outer  frame would merge them into one operand of the outer  
frame.  We expect that a typical frame will have one or two operands. 

The  syntax that signals the introduction of a quantified tuple variable inside a f rame is 
identical to the syntax that signals it outside, i.e. an entity or many- to-many relationship 
image. If  an operand of a P- or N-frame contains any such images that are immediately 
inside the frame,  then the operand immediately contains, and is a scope of, existential 
quantification. For example,  the f rame's  one operand in query B in Fig. 11 and each of the 
two operands in query B in Fig. 12 are scopes of quantification. 

The relational mapping of such an operand uses 'EXISTS subquery '  in SQL or existential 
quantification in calculus. The subquery is ' ( S E L E C T  1 F R O M  t a b l e . . . ) ' ;  ' table '  occurs 
(with separating commas) for each entity or many- to-many relationship image immediately 
inside the operand.  For example,  a SQL query for query B in Fig. 12 is: 

S E L E C T  D I S T I N C T  N A M E  F R O M  E M P L O Y E E  E W H E R E  NOT(  
EXISTS ( S E L E C T  1 F R O M  T I T L E  T 

W H E R E  T . T I T L E  = 'P rogrammer '  A N D  T . T I T L E  = E . T I T L E )  
A N D  EXISTS (S ELEC T 1 F R O M  SKILL S, H A S _ S K I L L  H 

W H E R E  S.SKILL = 'C programming '  A N D  S.SKILL = H . S K I L L  
A N D  E . N A M E  = H . N A M E ) )  

If an operand contains no quantification, as in query A in Fig. 11, we do not use 'EXISTS '  
subquery '  or quantification. A P- or N-frame's  meaning (i.e. ' ( . . . ) '  or ' N O T ( . . . ) ' )  covers 
f rames that contain quantification and frames that do not, with no need for any exceptional 
cases of a f rame 's  meaning. 

A scope can contain another  scope. The queries in Fig. 13 use nested negation frames: 
(A) List the names of the depar tments  that employ an employee for whom it is false that 

there is a skill other than sales that the employee does not have. Each frame has one 
operand.  

(B) List the names of the departments  that do not employ any employees who do not have a 

2 We say that a graphical comparison or relationship image references the images at its ends; an expanded entity 
image or condition box references the entity images of the attributes that it mentions. 
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EMPLOYS EMPLOYEE HAS_SKILL ' ATTRIBUTE OP VALUE (AND) - - 

I SKILL -= 'Sales' - - 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (AND) 

EMPLOYEE i~ii~i~iiii~iiiill ~ . . . . . . . . .  (AND) " 1 _jiiii~iiiiiii:~i: l DEPARTMENT iii~iiiiii:iiiiiii 

" (AND) - EMPLOYS - ~ UTE 
i I 

Fig. 13. Nested negation frames. 

skill other  than sales. An alternative wording is ' . . .  departments for which it is false 
that there is an employee whom the department employs who does not have a skill 
other  than sales.' Each frame has one operand. 

(C) List the names of the employees where there is a Toy department  and it is false that the 
Toy  department  does not employ and does not pay the employee. The outer  f lame has 
two operands,  i.e., the inner frames, each of which has one operand. The equivalence 
of this query and query A in Fig. 12 comes from the fact that a conjunctive N-flame 
represents the NAND of any operands; nested NANDs suffice for the power of all four 
types of frames. We provide those other types of frames (instead of requiring use of 
nested NANDs) to meet our goal of ease of use. 

Our  set operations (union, intersection, and difference) involve flames. A query window's 
set operation regulator, which is initially empty, applies any combination of set operations to 
sets of projections. For set operations, all projections are immediately inside outermost  
f lames,  and no query elements are outside those flames. All those frames contain the same 
number  of projections and are conjunctive P-flames; G R A Q U L A  considers each such f lame 
to have one operand. The set operation regulator, like a condition box, contains a tree. Each 
nonleaf  node is a set operator.  For  each outermost frame, the set of specifications of all its 
projected rows appears in at least one leaf. For example, to project the union of depart- 
ments '  names and budgets with divisions' names and budgets, we use a P-flame around 
D E P A R T M E N T  (with projected N A M E  and B U D G E T ) ,  a P-frame around DIVISION 
(with the same projections), and a regulator with a root of 'UNION, '  a leaf of ' (DE-  
P A R T M E N T . N A M E ,  D E P A R T M E N T . B U D G E T ) , '  and a leaf of ' (DIVISION.NAME,  
DIVISION.  B U D G E T ) . '  A regulator with only unions maps directly into SQL, which does 
not use 'EXISTS subquery'  immediately inside a union's outermost frames. 

We specify and justify a few constraints for flames: 
• Two flames'  sides cannot intersect; this resembles textual languages' standard conventions 

for nesting. 
• A f lame (other than an outermost f lame of a query with set operations) cannot contain a 
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projected entity image or an image whose attributes appear in a projected expression. This 
constraint is for safety; a query is safe [31] if it always has a finite result. Projection in a 
disjunctive P-frame (with two or more operands) or in an N-, I-, or C-frame would 
unsafely list data that might not exist. 

• A frame that contains an image must also contain any condition boxes, expanded entity 
images, relationship images, and graphical comparisons that reference the image. Infor- 
mally, this constraint forbids a nonsensical assertion that an instance's properties exist 
while the instance itself might not exist. In calculus, it forbids use of a quantified tuple 
variable outside the quantification's scope, as in this illegal expression: ( s . B U D G E T >  
500000) A 7(3s(DEPARTMENT(s)) )  

We believe that these constraints do not restrict the class of meaningful queries that we can 
express. 

4.6.2 Implication and consequent frames 
We now turn from identity, negation, conjunction, and disjunction (and existential 

quantification) to implication (and universal quantification). Implication has two operands; 
the antecedent implies the consequent. Implication uses a pair of frames; a consequent frame 
encloses the consequent, and an implication frame encloses both operands. Thus the 
antecedent includes everything inside the I-frame but outside the C-frame. The pair means 
' ( . . . - - -~ . . . ) '  in a textual language and 'if . . . .  t h e n . . . '  in English. As in P- and N-frames' 
operands, within an antecedent that contains several query elements immediately inside the 
I-frame, we use the conjunction of the elements' conditions. P- and C-frames have identical 
properties inside. 

If an I-frame immediately contains any entity or many-to-many relationship images, we 
bind their tuple variables to universal quantifiers (as in 'VsVt') in calculus. The scope of 
quantification is the I-frame, which contains the C-frame. SQL has no general equivalent. 
The meaning of the pair of frames and their contents together has the form 'VsVt( . . .  - -~ . . . ) '  
in calculus; the meaning is 'for all . . . . . . .  ' in English. A C-frame contains zero or more 
scopes of existential quantification. 

Fig. 14 shows examples of graphical queries that use implication and consequent frames. 
Each English query here has a bold antecedent and an italicized consequent: 
(A) List the names of the departments that employ an employee where for all the skills other 

than sales, the employee has the skill. Another wording is ' . . .  an employee who has all 
the skills other than sales.' 

(B) List the names of the departments for which all the employees they employ have a skill 
other than sales. An alternative is ' . . .  departments employing only employees with a skill 
other than sales.' 

(C) List the skills that only all the employees with a salary over 50000 have. An alternative 
is ' . . .  skills for which all the employees with a salary over 50000 have the skill and all the 
employees who have the skill have a salary over 50000.' The second wording shows the 
two implications; each has a pair of I- and C-frames. The nesting of each C-frame inside 
its 1-frame matches each consequent with its antecedent. 

Properties of implication and universal quantification lead to these properties of I- and 
C-frames: 

• A C-frame, not connection, divides the operands, because the number of sets of connected 
elements might not be two, and the operands do not commute, unlike operands of 
conjunction or disjunction. 

• Implications and consequents have a one-to-one correspondence; one I-frame immediately 
contains one C-frame. Within this constraint, G R A Q U L A  can nest any combination of P-, 
N-, and I-frames inside any frame. The use of two frames (I- and C-) permits the nesting 
of implication. 
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Fig. 14. Implication and consequent frames. 

• If an I-frame immediately contains quantification of tuple variables, that quantification's 
scope must include the consequent, which can mention the tuple variables. Thus the scope 
is the entire I-frame. 

Within the constraints of these properties, I- and C-frames are consistent with P- and 
N-frames; earlier we described properties that apply to all four types of frames. 

We consider implication and universal quantification to be inherently more complex than 
some other concepts in query languages; Thomas [30] describes an experiment (not involving 
GRAQULA)  showing that universal quantification can be difficult for users. Also, flexi- 
bilities of English (e.g. with words like 'all') can give a misleading impression that a query 
contains universal quantification. Therefore, we provide a guideline to ease the writing of 
universally quantified graphical queries, based on English queries: 
(1) In the English query, eliminate any instances of what we call inclusive terms (e.g. 'all,' 

'each,' 'every,' 'at least,' and 'whenever') or exclusive terms (e.g. 'only,' 'just,' 'solely,' 
and 'exclusively') where the elimination preserves the query's meaning. For example, 
eliminate the first 'all' and keep the second in 'List the names of all the employees who 
have all skills.' 

(2) Reword the English query to replace exclusive terms. For example, replace the 
alternative wording in query B by the first wording. The rewording sometimes leads to 
two implications, as in query C. 

(3) For each inclusive term, identify the noun phrase that the term modifies, and identify the 
claim that must be true for each instance of the noun phrase. For example, the noun 
phrase and the claim in query B are the bold and italicized words, respectively. 

(4) Construct an interim graphical query, based on articles (e.g. 'a') instead of inclusive 
terms. For example, for query B, construct the figure's query B without its frames. 

(5) For each inclusive term, add a C-frame (with 'AND') that encloses each query element 
that depicts the claim but does not also depict anything outside the claim. This produces 
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the C-frame in query B, since 'have a sk i l l . . . '  appears only inside the claim. As an 
optional simplification, if the C-frame's only operand is a P-frame, copy the P-frame's 
English word to the C-frame, and remove the P-frame. 

(6) For each inclusive term, add an I-frame that encloses the C-frame and encloses each 
query element that depicts the noun phrase but does not also depict anything outside the 
phrase and claim. This produces the I-frame in query B, since 'employee(s)' and 
'employ(s)' appear only inside the phrase. 

Users need not know relational calculus. The guideline handles the patterns of universally 
quantified English queries that we consider common. Of course, flexibilities of English 
prevent any claim that the guideline handles all possible queries, and we do not propose an 
automated mapping from English. 

Equalities in logic can map implication (and universal quantification) into negation and 
conjunction (and existential quantification). 'A---~C' maps into ' ~ ( A A ~ C ) , '  and 
'Vs(A---~ C)' maps into '-q(3s(A ^ ~C)). '  The mapping has a simple graphical description; 
an I-frame maps into a conjunctive N-frame, and a conjunctive or disjunctive C-frame maps 
into a corresponding N-frame. Thus we might process queries A and B in Fig. 14 as if the 
user had written those in Fig. 13. This mapping allows implementation on current database 
systems; they typically have negation, conjunction, disjunction, and existential quantification 
but not implication with both an arbitrary consequent and universal quantification. SQL's 
consequent is always a comparison, although Fratarcangeli [16] has designed a generali- 
zation. 

The universally quantified queries that we found in the research literature are expressible 
directly via I- and C-frames. We believe that I- and C-frames are easier to use than set 
operations or nested negation, since the system, not the user, maps from the user's 
perspective into the system's capabilities. Frames concisely specify operations, scopes, and 
quantification. 

4.7. Aggregates 

An expression can include aggregates, which calculate a value from a set of values. 
GRAQULA's  aggregate operators are 'MINIMUM' (or, synonymously, 'MIN'), 'MAXI- 
MUM' or 'MAX,' 'COUNT, '3 'SUM,' 'AVERAGE' or 'AVG,' 'MEDIAN' or 'MED,' 
'VARIANCE' or 'VAR,' and 'STANDARD DEVIATION' or 'STD.' A query can project 
an aggregate or use it in a condition. An aggregate's syntax includes 
(1) the aggregate operator; 
(2) 'DISTINCT,' 'ALL,'  or neither; and 
(3) a parenthesized operand (an expression involving attributes). 
'DISTINCT' signals calculation from the set of distinct values in the operand; otherwise, an 
operation calculates without merging duplicate values. In an attribute's row in an expanded 
entity image, the operand is optional; the default is that attribute. Most details of semantics 
of GRAQULA's  aggregates resemble those of SQL; we will not repeat them here. 

We define an aggregate's images as the entity images whose attributes are in the 
aggregate's operand. An aggregate's scope is the portion of the query used for computing the 
aggregate. The scope contains the aggregate's images and contains the portion of the query 
that can mention the aggregate. In SQL, an aggregate's scope is the SELECT statement or 
subquery whose FROM clause contains the tables whose columns are in the aggregate's 
operand. Similarly, in GRAQULA, an aggregate's scope is the entire query (if the images 
are at the outermost level) or an operand of a frame (if the images are immediately inside 

3 We resisted the temptation to call this operator 'COUNT GRAQULA.' 
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that operand of the frame). The query in Fig. 15 uses one scope to list the average salary of 
the Toy department's employees hired in 1980. 

Any number of attributes in a scope of aggregates can be grouping attributes; their 
EXPRESSION entries contain 'GROUP BY.' If all the attributes in an entity image's key 
have grouping, then the image's other attributes automatically have grouping. With group- 
ing, GRAQULA calculates a value for each aggregate for each selected value of the 
grouping attribute (or each selected value of the grouping attributes' Cartesian product if 
several attributes have grouping). As in SQL, if a condition involves an aggregate whose 
scope has no grouping attributes, the scope has one group. 

Fig. 16 shows aggregates with grouping. Query A lists each department's name and the 
average salary of its employees where the department has employees and their average 
salary exceeds 50000. Query B uses two scopes of aggregates to list the hiring years for which 
the average salary of the employees hired in that year exceeds one tenth of the average 
budget of all the departments. A SQL query for query B is: 

SELECT DISTINCT YEAR HIRED FROM EMPLOYEE E 
GROUP BY YEAR HIRED 
H A V I N G  (EXISTS (SELECT 1 FROM DEPARTMENT D 

HAVING AVG(E.SALARY) > 0.1 * AVG(D.BUDGET))) 
This is equivalent to: 

SELECT DISTINCT YEAR HIRED FROM EMPLOYEE E 
GROUP BY YEAR HIRED 
HAVING AVG(E.SALARY) > 
(SELECT 0.1 * AVG(D.BUDGET) FROM DEPARTMENT D) 

............................................................ DEPARTMENT 

ATTRIBUTE EXPRESSION OP VALUE (AND) ~ UTE OP VALUE (AND) 

NAME 'Toy' 

YEAR_HIRED 1988 

Fig. 15. An  aggregate. 
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Fig. 16. Aggregates with grouping. 
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ATTRIBUTE OP VALUE (AND) UPDATE: INSERT 
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Fig. 17. Updates on entities. 
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Fig. 18. Updates on relationships. 

4.8. Updates 

We now turn from queries to updates, i.e. insertion, deletion, and modification; they use 
an U P D A T E  column in an expanded image. Figure 17 shows updates on entities. Update A 
inserts an employee named Joe King with a salary of 50000 and a year of hiring of 1990. 
Update B deletes the employees hired in 1980. Update C is a modification that gives a 10% 
raise to the Architecture department's employees hired after 1960. In any update, 
G R A Q U L A  displays the number of updated instances. This is useful feedback because, for 
example, no change takes place if no instances satisfy an update's condition. By default, 
G R A Q U L A  does not commit updates immediately; an action for commitment is available. 

Fig. 18 shows updates on relationships. Update A deletes the current employment 
relationship for Edward Jones; update B inserts one between him and the Toy department. 
Modification does not apply to relationships. Deleting an end of a relationship instance 
automatically deletes the relationship instance. 

5. Control of queries 

We have described what queries can contain; we now discuss facilities to control them. 
A user can name query windows and can save them in files; an action creates a menu to 
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list, retrieve, delete,  save, or replace them. The menu can also save the query window as a 
view, which will then appear in the schema window as a node (entity type) with 'VIEW: '  
preceding the name. Another  action creates a menu to list the query windows that already 
exist in the working area and to copy one of them into the window whose action created the 
menu. 

A user might want to cascade a query's result into a later activity (e.g. another  query or an 
update) instead of sending it to a result window. Temporary  entity and relationship types, 
which do not persist in storage, serve this purpose. Typically, the user inserts into 
temporaries,  uses the results, and optionally deletes. For example, a user might create the 
union of divisions' budgets and departments '  budgets by inserting them into the same 
attribute of a temporary entity. An action in a query window creates a menu to create and 
delete temporary entity and relationship types and their images; their names begin with an 
ampersand. Also, an action in a result window can copy a result into a temporary entity. 

An action in a query window executes the window; another action commits or undoes all 
uncommit ted updates. The window's execution regulator contains lines of text to identify the 
tasks that execution will perform. 'QUERY '  identifies a task as this window's graphical 
query,  'COMMIT'  identifies commitment of updates, and 'CALL'  plus a different query 
window's name identifies that window's execution regulator. For most queries, users can 
ignore the regulator, since it initially contains one 'QUERY, '  i.e. no commitment  or 
invocation of other  queries. An action allows switching between hiding (the initial setting) 
and displaying the regulator and allows modification of the regulator. Use of execution 
regulators provides the effect of subroutines. It also permits an update and a subsequent 
query of the result. It also lets a user split a large query into smaller queries that pass data 
via temporary  (or regular) entities and relationships. 

Queries (but not users) can pass sets of values to other queries in temporary entities and 
relationships. Queries and users can also pass individual values as parameters, which are 
alphanumeric strings with a preceding ' # '  (e.g. ' # T A X ' ) .  Query Management  Facility [29] 
has a comparable method. A user who is writing a query can generalize it by replacing a 
name or constant by a parameter.  G R A Q U L A  retains parameter  values between query 
window executions. The execution action's menu has two entries; either entry causes 
G R A Q U L A  to scan the query to find all parameters before execution. For one entry, 
G R A Q U L A  prompts the user to supply only the parameter  values that do not yet exist. For 
the other  entry, G R A Q U L A  displays the current values (if any) of all the parameters;  the 
user supplies that ones that do not yet exist and optionally changes the others. G R A Q U L A  
stores the values in temporary entities. A query can supply parameter  values for a later 
query by updating the entities or by including a parenthesized sequence of 'parameter  = 
constant '  after a query window's name in the execution regulator. 

6. Relational completeness 

Codd introduced relational completeness [11] as a relational language's ability to express 
certain expressions. He also defined a relational algebra and showed its completeness. Its 
operations include projection, selection (which his paper mentioned only implicitly), Car- 
tesian product,  join, difference, union, intersection, division, and restriction. We will not 
discuss intersection, division, and restriction, since they are definable in terms of the other  
operations. We show below that the operations on entities in the E - R  version of 
G R A Q U L A  suffice to express all the algebraic operations and thus are relationally 
complete.  Of course, our discussions also apply to the relational version of G R A Q U L A .  

We expect that most queries will not use insertion into temporaries. However ,  users 
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Fig. 19. Difference. 

sometimes want to cascade a result into a later activity, so our discussions include 
temporaries,  which allow closure. 

Projection and selection are straightforward. We specify Codd's projection by projecting 
the desired attributes or by inserting them into temporaries. Similarly, we specify selection 
(which Codd showed as joining with a constant) by using a selection for the desired 
attributes and then projecting or inserting appropriately. More generally, a condition box 
can express any combination of conjunction, disjunction, and negation of textual conditions 
that involve expressions of attributes and /or  constants. 

Codd defined Cartesian product with projection of all attributes and with no selection. To 
specify it, we simply project (or insert into temporaries) all the attributes of the two entity 
images. Join resembles Cartesian product, but it compares attributes to limit the result. We 
simply add the comparison to the Cartesian product. Of course, relationship images also 
have the effect of joins. 

We can specify difference or union by projecting with a set operation regulator or by using 
a join and negation. In Fig. 19, we insert DIVISION's  N A ME and B U D G E T  minus 
D E P A R T M E N T ' s  into a &D_D temporary entity image. We can specify a union by writing 
two queries that insert the second entity type and the difference of the two entity types, 
respectively, into a temporary entity image. If the two entity types might have instances in 
common,  we need the difference (instead of simply the first entity type) to avoid an at tempt 
to insert the common instances twice. 

7. Implementations and users' experience 

We have implemented part of the capabilities of the relational version of G R A Q U L A  in a 
relational query language (GARP)  [8], and many graphical features that G R A Q U L A  uses 
also appear in two E - R  implementations: a browser (AERIAL)  [7] and a facility for schema 
definition and query (RMGraph)  [18]. Table 1 shows (with 'G, '  'A, '  and 'R ' )  whether 
GARP,  A E R I A L ,  and RMGraph implement certain features of full G R A Q U L A .  We show 
sample screens from the three languages and describe the languages very briefly below; the 

Table 1 
Implementation of some GRAQULA features in GARP (G), AERIAL (A), and RMGraph (R) 

Languages Feature 

G A R 
G A R 
G A R 
G R 

R 
G A R 
G 

Framework of windows, action bars, and menus 
Database diagrams that user can tailor, with arcs for relationships or expected joins 
Scrollable list of attributes 
Directory of schema elements 
Clicking and highlighting of attributes for projection 
Result window 
User's addition of arcs for ad hoc joins 
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references give more details. We also describe users' comments on G A R P  and RMGraph;  
the A E R I A L  prototype has no user community. 

G A R P  is a relational query language that draws arcs for expected joins. In the G A R P  
screen in Fig. 20, the user has prepared a query involving students'  class grades and has 
requested a window showing the generated SQL statement. We obtained comments from 
users of the G A R P  prototype.  They liked GARP, especially the use of diagrams and arcs. 
One user considered GARP ' s  function to suffice, while others wanted more function. One 
noted that GARP ' s  extensive use of clicking on positions within objects can be confusing; 
she preferred action bar entries. One user suggested letting users specify that some tables are 
closely interrelated and thus should be near each other  when G A R P  chooses a schema 
layout. One wanted to save the user's tailoring of diagrams. One wanted the ability to 
display columns' data types. 

A E R I A L  is an E - R  browser. Users who are unfamiliar with the database definition or 
instances can explore to find parts that relate to parts they have already seen. In the 
A E R I A L  screen in Fig. 21, the user has found all the product groups and is about to make 
'cakes'  the current product group of interest. 

RMGraph ,  which is part of the Repository Manager [26] product,  is a facility for E - R  
schema definition, schema viewing, and query. It evolved from the A E R I A L  work. In the 
RMGraph  screen in Fig. 22, the user has prepared a query involving students. We obtained 
comments from users and from people who just saw a demonstration. Most people liked the 
graphical approach in general, for its ease of use. Several suggested showing instance control 
on relationships. One person preferred straight lines (with no bends) for relationships. 
Another  preferred grid-based diagrams with relationship lines limited to horizontal, vertical, 
and 45 degrees, but G A R P  users whom we asked about this issue preferred a flexible layout. 

Our  design of G R A Q U L A  also reflects the experience of users of other languages: 
• The design of a graphical interface involves trade-offs in the choice between graphical and 

textual notations and in the amount  of prompting and outlines to display near areas for 
obtaining the user's input. Graphics and displayed information can ease understanding, 
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Fig. 20. Part of a Screen from GARP. 
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Fig. 22. Part of a screen from RMGraph. 

and they reduce the opportunities to make errors, but they occupy space, of course, and 
construction of graphics can also require more  work by the user. For example,  in one 
language that used almost exclusively graphical notations, the necessary activity with the 
mouse sometimes annoyed users. Therefore ,  G R A Q U L A  offers a choice between graphi- 
cal and textual notations for some operations,  e.g. logical operations in a condition box. 
One G A R P  user wanted a choice between graphics and text for entering queries. 

• The  developers of Pasta-3 [21] found that users sometimes inadvertently specify a 
Cartesian product  (two entity images with no relationship image) when they want a join 
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(inclusion of a relationship image). Therefore, Pasta-3 and GRAQULA warn the user and 
offer to connect the entity images; GARP warns the user about unconnected tables. A few 
GARP users noted that its red message seems to imply an error, so we learned that we 
should clearly identify it as just a warning, since a Cartesian product is legal. One GARP 
user also wanted feedback to suggest connections. 

8. Summary 

We have described GRAQULA, a graphical language for querying and updating a 
database. One version of GRAQULA provides a user interface for the entity-relationship 
data model, and another version (with almost identical syntax) provides a user interface for 
the relational model. The operations in the relational version and the operations on entities 
in the E - R  version are relationally complete. The relational version draws arcs for expected 
joins (with automatic drawing in schemas when referential integrity constraints exist), and 
the E - R  version draws arcs for relationships. Queries can involve cyclic patterns of 
relationships. Frames provide logical operations that have user-specified scopes, allow 
nesting, and can involve existential or universal quantification. We supply a guideline for 
writing universally quantified queries, and users do not need set operations or nested 
negation for such queries. Aggregates also have user-specified scopes. Execution regulators 
let queries invoke other queries, and users and queries can pass parameters to queries. E - R  
queries can map into relational queries, for clarity of definition and for implementation. 
GRAQULA uses popular, convenient techniques (e.g. windows, action bars, and menus) for 
manipulating graphical objects that form a query. The design reflects a specified set of goals, 
including expressive power, consistency, and limitation of required memorization. 
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Appendix: Considerations for the design of frames 

We explain below some considerations that led to our design of GRAQULA's frames. We 
discuss negation, N-frames, and P-frames first; then we discuss I- and C-frames. 

Negation (of existential quantification) is an important ability in a query language. For 
example, we use it to list the divisions that do not contain any departments. QBE (the 
predecessor of OBE) was perhaps the first graphical query language to include such 
negation; we will show how GRAQULA improves upon OBE's negation. Query A in Fig. 
23 (involving the DIVISION and DEPARTMENT tables) shows the above query in OBE. 
The 'P.' means projection of all columns of DIVISION, the ' 7 '  means OBE's row negation 
(negation of existential quantification) applied to DEPARTMENT, and the two uses of the 
example element '_T' below column names mean a join of those columns. Here is that query 
in SQL: 
• SELECT * FROM DIVISION V WHERE 
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P. 

NAME BUDGET 

T 
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YEAR_FORMED DEPARTMENT NAME BUDGET DIVISION NAME 

T 

DIVISION NAME 

T P. 

NAME BUDGET 

T 

YEAR FORMED 

M 

DEPARTMENT NAME BUDGET 

EMPLOYEE NAME SALARY YEAR_HIRED E DEPARTMENT NAME 

M 

Fig. 23. Two queries in OBE. 

P_DEPARTMENT_NAHE TITLE 

NOT ( EXISTS (SELECT 1 FROM DEPARTMENT T 
WHERE T.DIVISION_NAME = V.NAME)) 

The following SQL expression (a subset of the complete SQL query above) corresponds to 
the negated row in DEPARTMENT (a subset of the OBE query): 
• NOT ( EXISTS (SELECT 1 FROM DEPARTMENT T 

WHERE T.DIVISION_NAME = V.NAME)) 
In SQL and in relational calculus, every negation has a scope, usually delimited by 
parentheses. For example, 'NOT(A = B) and C = D' and 'NOT(A = B AND C = D)' have 
different meanings. In some cases (e.g. negation of one 'EXISTS subquery'), the syntax 
allows omission of the parentheses for negation. However, the most general case requires 
parentheses for negation, so we included them above. 

Query B (involving DIVISION, DEPARTMENT, and EMPLOYEE) shows a problem 
that arises when an OBE query has two or more uses of row negation. In our discussion, we 
will assume that the database contains the following instances of divisions, departments, and 
employees: 

DIVISION: 
NAME: YEAR_FORMED: 
D 1990 
B 1991 
E 1992 
N 1993 

DEPARTMENT: EMPLOYEE: 
NAME: DIVISION_NAME: NAME: YEAR_HIRED: 
X D Adams, AI 1991 
Y B King, Ken 1992 

Without a specification of OBE that states what such a query means, there are three possible 
SOL expressions (which we label 1A, 1B, and 2 below) for the combination of the two 
negated rows in query B. For each such SQL expression, we show here our label, the 
expression (where 'V' represents 'DIVISION'), the number of scopes of negation, the 
number of scopes of existential quantification in the expression, and the divisions that the 
query's result includes: 
1A: NOT ( EXISTS (SELECT 1 FROM DEPARTMENT T, EMPLOYEE M WHERE 

T.DIVISION NAME =V.NAME 
AND M. YEAR_HIRED =V.YEAR_FORMED) ) 

1 scope of negation; 1 scope of existential quantification; result includes D, E, and N. 
1B: NOT ( EXISTS (SELECT 1 FROM DEPARTMENT T 

WHERE T. DIVISION_NAME =V.NAME) AND 
EXISTS (SELECT 1 FROM EMPLOYEE M 

WHERE M.YEAR_HIRED =V.YEAR_FORMED) ) 
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1 scope of negation; 2 scopes of existential quantification; result includes D, E, and N. 
2. NOT ( EXISTS (SELECT 1 FROM DEPARTMENT T 

WHERE T.DIVISION_NAME =V.NAME) ) AND 
NOT ( EXISTS(SELECT 1 FROM EMPLOYEE M 

WHERE M.YEAR_HIRED =V.YEAR_FORMED) ) 
2 scopes of negation; 2 scopes of existential quantification; result includes just N. 

The result includes D and E if and only if there is 1 scope of negation. Specification of the 
number of scopes of negation is necessary and sufficient to evaluate the query; specification 
of the number of scopes of existential quantification is not necessary and not sufficient. 
Expressions 1A and 1B are equivalent. 

If a specification of a language like OBE does not state what such a query means, it is easy 
to eliminate the ambiguity (without adding a graphical construct) by just adding a sentence 
to the specification. For example, the OBE implementation used expression 2; negation's 
scope is always just one table. In contrast, GRAQULA gives users more power: Two 
N-frames specify expression 2, while one N-frame specifies 1B, which is equivalent to 1A. If 
we wish to provide the ability to specify 1A directly, a possible extension to GRAQULA 
(not discussed in the main body of this paper) is to allow an English word of 'ONE' in an 
N-frame; this merges all contained query elements into one operand (as in 1A). In the 
graphical description of mapping from implication into negation and conjunction, the outer 
N-frame can use 'ONE.' 

Of course, an N-frame need not involve existential quantification (since it might contain 
just a one-to-many relationship image, for example), but it always involves negation; an 
N-frame consistently means 'NOT(. . . ) , '  with no exceptions. GRAQULA can also nest 
negation, as we showed earlier, and the use of P-frames and the use of 'OR' in a frame 
increase GRAQULA's  convenience by obviating the use of nested negation in many cases. 
In summary, QBE introduced the important concept of graphical negation (of existential 
quantification); GRAQULA improves upon QBE's negation by allowing user-specified 
scopes (and thus more power), nesting, and a larger set of logical operations (conjunction 
and disjunction with or without negation and with or without existential quantification). 

We now turn from P- and N-frames to I- and C-flames. Specifically, we sketch a possible 
alternative syntax for implication with universal quantification, using a single frame instead 
of a pair of I- and C-frames, and we will explain the advantages of using a pair of frames. We 
call the alternative's single frame an antecedent frame (A-frame); it encloses the antecedent. 
The consequent consists of all the unprojected query elements that connect with the A-frame 
without using transitivity through any projected query element; here we treat an updated 
image (or an image whose attributes appear in an UPDATE column) as a projected query 
element. Earlier papers [33, 34] called an A-flame a universal quantification box (U-box). 
Here an A-frame uses an English word of 'IMPLIES:'; it uses '%' for its sides. For example, 
the query in Fig. 24 uses an A-frame; it is equivalent to query B in Fig. 14. 

I- and C-frames have several advantages over A-frames, in expressive power, consistency, 
and ease of use (besides consistency). These are the advantages in expressive power: 
(1) An A-frame cannot directly express some simple queries like query A in Fig. 14. Placing 

an A-frame around SKILL would imply that the consequent includes not only HAS_ 

~ ' ~ ¢ ' - ¢ - s ~ ( I H P L I E S : )  

Fig. 24. An antecedent frame. 
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SKILL (the desired consequent) but also E M P L O Y E E  and EMPLOYS (which we 
desire to be outside the implication). 

(2) I- and C-frames (but not A-frames) can nest an implication inside an antecedent.  
(3) I- and C-frames (but not A-frames) can nest an implication inside a consequent. 
(4) When a query contains two or more implications that are peers (i.e. they are not 

nested),  I- and C-frames (but not A-frames) let the user specify which consequent 
matches which antecedent. 

These are the advantages in consistency: 
(5) Consistently, a P-, N-, I-, or C-frame limits the scope of quantification of the tuple 

variables for the entity or many-to-many relationship images immediately inside the 
frame. This is not true for an A-frame, since the scope of universal quantification 
includes the consequent,  not just the antecedent. An antecedent frame does not enclose 
the entire scope of universal quantification. 

(6) To forbid the use of a quantified tuple variable outside the quantification's scope, earlier 
we specified this constraint: 
• A frame that contains an image must also contain any condition boxes, expanded 

entity images, relationship images, and graphical comparisons that reference the 
image. 

This one constraint applies consistently to P-, N-, I-, and C-frames. However,  the scope 
constraint for A-frames is not consistent with the constraint for P- and N-frames; here is the 
constraint for A-frames: 
• If an A-frame contains any condition boxes, expanded entity images, relationship 

images, or graphical comparisons, it must also contain any unprojected images that 
those contained elements reference. 

For a tuple variable whose image is in the consequent,  this constraint forbids the 
antecedent from using the tuple variable, since the variable's scope of existential 
quantification is just the consequent. 

These are the advantages in ease of use (besides consistency): 
(7) With A-frames, a user who is constructing a query with implication and universal 

quantification must understand the pattern of query A in Fig.  14 (see advantage 1 above) 
and must use either nested negation (instead of an A-frame) or a two-step procedure of 
insertion from several images (e.g. D E P A R T M E N T  and E M P L O Y E E )  followed by 
projection of a subset (e.g. DEPARTMENT's  NAME).  Besides that simple pattern,  
queries with two or more implications (whether or not nested) also require use of nested 
negation instead of A-frames. 

(8) After  a user constructs a query, that user or another user might examine the query 
(perhaps on a later day) and try to understand the query, perhaps by translating it to 
English. With an A-frame, the user must follow a chain of connection to identify the 
consequent;  a C-frame identifies it immediately. 

An advantage of A-frames (in ease of use) is that constructing an A-frame query requires 
identification of just the antecedent,  not the consequent, since identification of the con- 
sequent is automatic. In summary, A-frames have 1 advantage (in ease of use), and I- and 
C-frames have 8 advantages (in expressive power, consistency, and ease of use besides 
consistency). 
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