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AbstractÐSpatial join finds pairs of spatial objects having a specific spatial

relationship in spatial database systems. Since spatial join is a fairly expensive

operation, we need an efficient algorithm taking advantage of the characteristics of

available spatial access methods. In this paper, we propose a spatial join algorithm

using corner transformation and show its excellence through experiments. To

the extent of authors' knowledge, the spatial join processing using corner

transformation is new. In corner transformation, two regions in one file joined with

two adjacent regions in the other file share a large common area. The proposed

algorithm utilizes this property in order to reduce the number of disk accesses for

spatial join. Experimental results show that the performance of the algorithm is

generally better than that of the R*-tree based algorithm proposed by Brinkhoff

et al. This is a strong indication that corner transformation is a promising category

of spatial access methods and that spatial operations can be performed better in

the transform space than in the original space. This reverses the common belief

that transformation will adversely effect the clustering. We also briefly mention that

the join algorithm based on corner transformation has a nice property of being

amenable to parallel processing. We believe that our result will provide a new

insight towards transformation-based processing of spatial operations.

Index TermsÐSpatial join, GIS, spatial databases, corner transformation.
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1 INTRODUCTION

NEW database applications such as geographic information
systems (GISs) require efficient management of spatial objects
(hereafter, we simply call them objects). Recently, there have been a
number of research efforts on spatial database systems for
managing these objects [4]. An excellent survey on spatial database
systems is presented in [5].

In spatial database systems, an efficient spatial join operation

should be provided [5]. Spatial join (we simply call it join) of two

files R and S is defined as R �i�j S where i and j are columns of R

and S having spatial data types, and � is a spatial operator [4].

Since spatial join is very costly [2], [4], spatial join algorithms

should be carefully designed by taking advantage of the

characteristics of the underlying spatial access methods (SAMs).
Spatial join algorithms recently developed have focused on the

cases where both files are indexed by SAMs [5]. Orenstein [10]

proposed an algorithm for joining two object sets transformed by

the z-order and then indexed by one-dimensional access methods

such as the B-tree. Gunther [4] presented an algorithm using the

generalization tree, an abstraction of the R-tree, and derived its cost

model. Brinkhoff et al. [2], [3] proposed algorithms using the

R*- tree [1]. Lo and Ravishankar [8] proposed an algorithm that

constructs a SAM called the seeded tree on the fly in case one object

set is not indexed by a SAM. Huang and Jing [7] proposed another

R-tree based algorithm that adopts the breadth-first tree traversal

technique. Their Combo 1 strategy performs better than the

Brinkhoff's algorithm for small buffers, but worse for large buffers;

Combo 2 strategy the other way around.
Some algorithms are not SAM-based. Examples are Partition

Based Spatial-Merge Join [12] and Spatial Hash-Join [9]. These

methods are best used when there are no pre-existing indexes

for the spatial data. When indexes exist for both files, however,

the Parition Based Spatial-Merge Join is slower than the

Brinkhoff's algorithm [12]. Spatial Hash-Join is claimed to be

faster than the Brinkhoff's algorithm in terms of the weighted

I/O cost, which assumes that the random disk access cost is

five times the sequential access cost. If this ratio were one,

however, the algorithm would be at least three times slower

than the Brinkhoff's algorithm [9].
The transformation technique [14], a category of SAMs,

transforms objects in the original space (o-space) into points in

the transform space (t-space) using parameters that represent the

shape of each object. The transformed points are then managed

by a multidimensional point access method (PAM). A typical

transformation technique is corner transformation [14]. In this

technique, the minimum bounding rectangle (MBR) of each

object is used for the key of the object. The MBR of an object in

the o-space is the rectangle having sides parallel to the axes

that minimally encloses the object. Corner transformation

transforms each object in the two-dimensional o-space into a

single point in the four-dimensional t-space by using the four

parameters that are the coordinates of the MBR's lower-left and

upper-right points.
It has been believed that transformation techniques degrade

the performance of spatial query processing since they cannot

retain o-space's spatial proximity among objects in the t-space

[16]. However, a recent study [11] have refuted the belief, and we

also provide a positive result in this direction. In this paper, we

propose an efficient spatial join algorithm using corner transfor-

mation and show its excellence through experiments. We also

show that corner transformation is a promising category of SAMs

by comparing its performance for join with that of the R*-tree. In

our spatial join algorithm using corner transformation, the two

regions of the file S that are to be joined with two adjacent

regions of the file R have considerably overlapping areas. The

algorithm exploits this property to speed up the join processing

by determining the order of accessing data pages in the

overlapping area assuming LRU buffer replacement. Since most

algorithms published have certain advantages and disadvantages

compared with the R-tree based algorithm by Brinkhoff et al., in

this paper, we use the Brinkhoff's algorithm as the standard one

with which we compare the performance of our algorithm.
The rest of this paper is organized as follows. Section 2

describes the characteristics of corner transformation. Section 3

explains how corner transformation can be used for spatial join

processing and proposes a new spatial join algorithm based on

corner transformation. Section 4 defines the MBR-MLGF, an

enhancement of the Multi-Level Grid File [18], [19] and presents

the experimental results for performance evaluation of our

algorithm that uses the MBR-MLGF as the underlying PAM. In

Section 5, we summarize and conclude the paper.
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2 CORNER TRANSFORMATION

We introduce corner transformation in this section. For simpli-

city, we first discuss the case of the two-dimensional t-space

transformed from a one-dimensional normalized o-space whose

size is one.
Corner transformation maps an object in the one-dimensional

o-space into a point in the two-dimensional t-space. The left end

of an object is mapped to the horizontal (lx) axis and the right

end to the vertical (rx) axis in the t-space. We define the area in the

t-space where the objects can be mapped as the Transformed Objects

Placing Area (TOPA). Transformed objects are placed in the upper

part of the diagonal in the t-space since the rx-value (the coordinate

of the right end) of an object is larger than the lx-value (that of the

left end). Therefore, the TOPA is contained in the upper half

triangle of the t-space.
Since most objects managed by a GIS are much smaller than the

o-space, transformed objects are typically distributed in the narrow

strip above the diagonal. Therefore, the distribution of the

transformed objects is skewed with high correlation between the

lx and rx axes [11]. Thus, to use corner transformation, we need a

robust PAM that can handle the skewed distribution efficiently.
The Multilevel Grid File (MLGF) [18], [19], LSD-tree [6], and

Buddy-tree [15] are examples of such PAMs. Due to their local

splitting strategy [20], their directory sizes increase almost linearly

in the data file size regardless of data distribution. In Section 4, we

use the MBR-MLGF, an enhancement of the MLGF, as the

underlying PAM for performance evaluation.
We now describe a method of transforming region queries in

the o-space into range queries in the t-space. A region query selects

the objects that have a specific spatial relationship, such as

containment and intersection, with the given query region. To

process a region query we should identify the area in the t-space

containing the objects that have a specific spatial relationship with

the given query region in the o-space. Fig. 1a and Fig. 2b show a

query region q1 in the o-space and its corresponding point q10 in

the t-space. The upper triangle, which includes all the transformed

objects, is partitioned into six areas A to F according to the spatial

relationships with respect to the query region. Boundary values of

these areas are determined by the coordinates of q10. These areas

have the following characteristics:

. Area A contains all the objects that enclose q1 in the
o-space since their lx-values are less than that of q10�lx0)
and the rx-values greater than that of q10�lx0).
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Fig. 1. Partitioning areas according to spatial relationships: (a) query region q1 in
the o-space; (b) area partition of the t-space.

Fig. 2. A spatial join window: (a) objects in the o-space; (b) region P1 in the file R and SJW�P1) in file S; (c) SJW�P1) restricted by the TOPA, k being the size of the
largest object in the o-space.



. Area B contains all the objects that are enclosed by q1 since
their lx-values are greater than lx0 and the rx-values less
than rx0.

. Area C contains all the objects that only intersect with the
left end of q1 since their lx-values are less than lx0 and the
rx-values between lx0 and rx0.

. Area D contains all the objects that only intersect with the
right end of q1 since their lx-values are between lx0 and rx0

and the rx-values greater than rx0.
. Area E contains all the objects that reside to the left of q1

since their rx-values are less than lx0.
. Area F contains all the objects that reside to the right of q1

since their lx-values are greater than rx0.

Region queries can be transformed into range queries in the
t-space using this area partition. For example, a region intersec-
tion query selects all the objects that intersect with any part of a
given query region. This query with the query region q1 in the
o-space can be processed by accessing the union of the areas A,
B, C, and D in the t-space. These areas can be accessed by
processing the range query �lx � rx 0 and rx � lx 0) in the upper
triangle of the t-space.

The space partition introduced here is a variation of the scheme
proposed by Seeger and Kriegel. Seeger and Kriegel [14] parti-
tioned the t-space for center transformation into six areas. The
result is identical to Fig. 1b except it is rotated by �=4. The
boundaries of the partitioned areas in corner transformation are
parallel to the axes, whereas those in center transformation are
parallel to the diagonals [14]. Since region splitting in most PAMs
is done parallel to the axes, we can reduce the number of regions
that cause false-drops if the boundaries of the search region are
parallel to the axes. Corner transformation has the advantage for
spatial join processing in this regard.

3 SPATIAL JOIN ALGORITHM

We now propose a new spatial join algorithm using corner
transformation. For the convenience of explanation, we tentatively
assume that the TOPA consists of grid-like cells of the same size, each
of which corresponds to a data page of the PAM. However, the
proposed algorithm is applicable to all PAMs regardless of their
space partition strategies. We also assume LRU buffer replacement.

We first introduce a new notion of the spatial join window
and then identify relationships among spatial join windows for
adjacent regions. The algorithm takes advantage of these
relationships to optimize the join in the number of disk
accesses. We then propose a join algorithm for the one-
dimensional o-space and extend it for the two-dimensional
o-space. The algorithm only considers intersectionÐthe most
commonly used operator for spatial join. However, the basic
ideas of the algorithm can be applied to other spatial operators
such as enclosure and containment.

3.1 Spatial Join Window

Let the t-spaces of files R and S be TS(R) and TS(S), respectively.
We define the Spatial Join Window for a rectangular region P1 in
TS(R), SJW(P1), as the minimum region in TS(S) where all the
objects intersecting with the objects in P1 can reside. We define the
Spatial Join Window Pages for P1, SJWP �P1), as the set of pages
corresponding to SJW�P1).

Fig. 2a shows the objects O1, O2, O3, and O4, which have
end points of the range A as the lx-values and those of the
range B as the rx-values. Fig. 2b shows the transformed objects
represented as four corner points of P1. We know that O2,
representing the upper-left point of P1, is the largest object in
P1. If the lx-value of an object is in A and the rx-value in B,
the transformed object is located in P1.

In Fig. 2, SJW�P1) can be obtained as follows. To intersect
with some objects in P1, objects in the file S must intersect
with the object O2 since it is the largest object enclosing all the
other objects in P1. Fig. 2b shows SJW�P1) (here, the P1 in
TS(R) and SJW�P1) in TS(S) are depicted together). If the
coordinates of O2 are (lx0, rx0), SJW�P1) is the intersection area
between the range `(lx � rx0 and rx � lx0)' that is above the
diagonal of the t-space. Since the TOPA has a narrow
trapezoid shape as explained in Section 2, SJW�P1) becomes
smaller than the one shown in Fig. 2b. Fig. 2c shows SJW�P1)
in the TOPA when the size of the largest object is k.

3.2 Relationships Among Spatial Join Windows

A strip STR in the TOPA is defined as the minimum rectangle that
contains all the grid cells with the same projection range for an
axis. A horizontal strip has the same projection range for the rx
axis, and a vertical strip for the lx axis. The set of pages
c o r r e s p o n d i n g t o t h e c e l l s i n a s t r i p STRl�l �
1; 2; :::;N;N : the number of strips� are defined as strip pages,
SP �STRl). In Fig. 3a, the strip consisting of cells R1, R2, and R3
is a horizontal strip, and the one consisting of cells R7, R5, and R3 a
vertical strip. We now identify relationships among SJWs in TS(S)
for adjacent regions in TS(R).

First, the SJWs for two adjacent strips have a large common area
since the upper-left points of the strips are also adjacently placed.
Fig. 3b represents the relationship between two adjacent horizontal
strips HSTR1 and HSTR2. Here, SJW�HSTR1) is the union of
regions A and B, and SJW�HSTR2) the union of B and C. Hence,
the common area between the SJWs for the two adjacent strips is B.
The dashed line parallel to the diagonal line denotes the upper
boundary of the TOPA.

Second, the SJW for a cell farer from the diagonal in a strip
contains the SJW for a cell nearer since one of the coordinate values
for the upper-left point of the former is farther from the diagonal
than that of the latter, and the other is the same. For example,
in Fig. 3b, SJW(R1), the union of A and B, contains SJW(R2),
which is B.

A c o m m o n - SJW�STRl; STRl�1� a n d a n a d d e d -
SJW�STRl;STRl�1) are common and added areas of the SJW for
STRl�1 compared with the one for STRl. Likewise, SJWPs
c o r r e s p o n d i n g t o t h e s e t y p e s o f S J W s a r e c o m m o n -
SJWP �STRl;STRl�1� and added-SJWP �STRl; STRl�1). In Fig. 3b,
c o m m o n - SJW�HSTR1;HSTR2� i s B , a n d a d d e d -
SJW�HSTR1;HSTR2� i s C . I n F i g . 3 c , c o m m o n -
SJWP�HSTR1;HSTR2� is {S5, ..., S15, S17, S18, S20}, and added-
SJWP�HSTR1;HSTR2) is {S22, S21, S19, S16}.

3.3 Join Algorithm for One-Dimensional O-Space

Here, we first introduce a skeleton join algorithm and then propose
the complete algorithm that further optimizes page accesses by
using the relationships among SJWs identified above.

The skeleton algorithm performs a join by partitioning the
TOPA of the file R into N disjoint strips and doing all the subjoins
between strips STRl�l � 1; 2; :::;N ; where N is the number of
strips) and SJW�STRl�. Fig. 4 shows the skeleton join algorithm
s_join1. We assume that the TOPA is partitioned into horizontal
strips and the strips are processed bottom up, i.e., in the upward
order.1 The algorithm consists of three loops: The outer loop (loop
(1)) that selects a strip STRl, the middle loop (loop (2)) that
selects a page in SJWP(STRl), and the inner loop (loop (3)) that
selects a page in SP(STRl). A subjoin of STRl finds all the pairs

690 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 11, NO. 4, JULY/AUGUST 1999

1. There may be four different processing orders: The upward order and
downward orders based on horizontal strips, and the rightward order and
leftward orders based on vertical strips. We simply choose the upward
order because these methods have the same performance if the objects are
uniformly distributed in the TOPA.



of intersecting objects from SP(STRl) of the file R and
SJWP(STRl) of the file S. The outer loop first selects a strip.
Since the number of pages in an SP is usually smaller than
that in the corresponding SJWP, the inner loop selects a page
of the SP after the middle loop selects a page of the SJWP. As
a result, each page in SP(STRl) is accessed only once for the
subjoin if SP(STRl) can be retained in the buffer. Since a page
in an SP of the file R is selected in the inner loop and a page
in an SJWP of the file S in the middle loop, we define the file
R as the inner file and the file S as the outer file.

All the pages in SP(STRl) do not join with all the pages in
SJWP(STRl) since some page of SJWP(STRl) may not belong to
the SJWP that corresponds to a page of SP(STRl). If o_page is a
page in the SJWP for a page i_page in the SP, the two pages
are joined by using join_pages(). Here, we omit detailed
description of join_pages() since the refinement algorithms in
[2], [3], [12] are directly applicable to this algorithm.

For the example in Fig. 3, s_join1 is processed as follows.
During the subjoin for the strip HSTR1, each page in
SJWP(HSTR1) ({S1, S2, ..., S15, S17, S18, S20}) and each page in
SP(HSTR1) ({R1, R2, R3}) are joined in the inner loop using
join_pages () if Si(i = 1, 2, ..., 15, 17, 18, 20) is a page in the SJWP
for Rj(j = 1, 2, 3). Doing subjoins for all the remaining strips in the
same manner completes the join.

If the given buffer size is not large enough to retain all the
pages of common-SJWP(STRl, STRl�1) or all the pages of SP(STRl),
we need to use specific orders for accessing the pages in the SJWP
or SP to reduce the number of disk accesses. Our strategy is to

access first the pages of common-SJWP or SP that remain in the

buffer. We will explain how this strategy is implemented in the

complete algorithm.
The complete algorithm accesses pages in SJWP(STRl�1) in the

reverse order of of accessing those in SJWP(STRl). This reduces the

number of disk accesses since we first process the pages of

common-SJWP(STRl, STRl�1) remaining in the buffer. Similarly,

during a subjoin for STRl, we access pages in SP(STRl) to join with

a page in SJWP(STRl) in the reverse order of accessing them to join

with the prior page in SJWP(STRl). This order allows utilizing the

pages in SP(STRl) remaining in the buffer.
Fig. 5 shows the complete algorithm s_join2. As in s_join1, we

assume that horizontal strips are processed in the upward order.

The algorithm consists of the initialization part and three loops. In

initialization (step (1)), i_order and o_order are initialized. The

i_order controls the access order of pages in an SP, and the o_order

in an SJWP. In s_join2, the initial order of accessing the pages in an

SP is the far-near order,2 and that of accessing the pages in an

SJWP is the row-major order. The far-near order accesses pages from

the furthest cell to the nearest one in a strip. In the row-major order,

the SJWP is divided into multiple rows; the pages in each row are

accessed in the far-near order, and the rows in the upward order.

The remaining parts of the algorithm is the same as s_join1.
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Fig. 4. The skeleton algorithm s_join1.

Fig. 3. Relationships among the SJWs: (a) strips of file R; (b) SJWs of file S; (c) SJWPs of file S.

2. Since the performance of the algorithm is independent of any initial
access order for pages in an SP, we simply use the far-near order.



3.4 Extension for Two-Dimensional O-Spaces

We now extend the algorithm for the two-dimensional o-space
since many real applications such as GISs typically process objects
in the two-dimensional o-space. The basic structure of the
extended algorithm is similar to that of the one-dimensional
algorithm. The important issues to be addressed for the extended
algorithm are: 1. how to define strips in the four-dimensional
t-space, 2. how to determine the order of processing the strips,
3. how to determine the order of accessing the pages in an SJWP,
and 4. how to determine the order of accessing the pages in an SP.

Let the two-dimensional o-space x-y be transformed into the
four-dimensional t-space lx-rx-ly-ry. Fig. 6a and Fig. 6b show the
lx-rx and ly-ry planes that are t-spaces of x and y axes, respectively.
We assume that horizontal strips are selected in the lx-rx plane and
the ly-ry plane of the inner file as in Fig. 6a and Fig. 6b. Then, when
the four-dimensional t-space is projected onto ry-rx plane, the
plane has a grid-like partition as in Fig. 6c. A grid cell in Fig. 6c
represents the projected region of a hyperstrip, which consists of a
pair of horizontal strips in the lx-rx and ly-ry planes. Each

hyperstrip has adjacent hyperstrips in two directions along the ry
and rx axes. For example, in Fig. 6c, a hyperstrip STRi;j consists of a
pair of two horizontal strips (HSTRxi, HSTRyj).

Now, we need to determine the order of processing subjoins for
these hyperstrips. This order has a major effect on the performance
of the join. Suppose we process the subjoins for hyperstrips in the
row-major order. Then, we have the following performance
problem. In Fig. 6c, if subjoins for hyperstrips in each row
of ry-rx plane are processed from left to right, the size of the
added-SJW is very small since the SJWs for the two adjacent
hyperstrips have different range values only in the ly-ry plane.
However, processing a subjoin for the first hyperstrip of a row
right after the last hyperstrip of the previous row incurs a sudden
jump in the added-SJW since the SJWs for the two distant
hyperstrips have different range values for both the lx-rx and
ly-ry planes. As a result, the performance of the join degrades.

To resolve this problem, we use the order such that the
hyperstrips to be processed consecutively change the range values
only in one of the lx-rx or ly-ry planes. Space filling curves that
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Fig. 5. The complete algorithm s_join2.



change the direction only in one axis at a time can be used for this
order; some examples are the row-prime order and the Peano-
Hilbert order [13]. We use the Peano-Hilbert order in the extended
algorithm since it can be recursively applied to all levels of the
MBR-MLGF that is used for our experiment.

For the orders of accessing pages in an SJWP and these in a
hyperstrip in four-dimensional t-space, we directly extend the
row-major order and far-near order used in the one-dimensional
algorithm. The row index of a plane, rx of the lx-rx plane or ry of
the ly-ry plane, changes first initializing the outer loop, and then
the row index of the other plane changes initializing the inner loop.
Let the coordinates of the upper-left point of a hyperstrip STRi;j be
(lxi; rxi; lyj; ryj) in the inner file R. SJW(STRi;j) can be obtained as
the range (lx � rxi and rx � lxi and ly � ryj and ry � lyj) in TS(S)
by extending the one-dimensional case. Similarly, for accessing
pages in a hyperstrip, we extend the one-dimensional case by
using an inner loop and an outer loop.

4 PERFORMANCE EVALUATION

We have described the algorithm assuming a grid-like partition of
the space. However, in practice, a specific PAM with its own space
partitioning strategy should be used for the algorithm. Such a
PAM should be able to handle skewed data efficiently. For this
purpose, we use the MBR-MLGF. We now explain the character-
istics of the MLGF, extend it to the MBR-MLGF, and present
experimental results.

The MLGF is a balanced tree and consists of a multilevel
directory and data pages. Each directory level reflects the status of
space partition. A directory entry consists of a region vector and a
pointer to a data page or to a lower-level directory page. A region
vector in an n-dimensional MLGF consists of n-hash values that
uniquely identify the region. The position, shape, and size of a
region are reflected in the region vector. The ith hash value of a
region vector is the common prefix of the hash values for the ith
attribute of all the possible records that belong to the region. A
region corresponding to a higher-level directory entry contains
all the regions in the subtree whose root is the page pointed
by the entry.

By splitting and merging pages, the MLGF adapts to dynamic
environments where record insertions and deletions occur. If the
data page overflows, the corresponding region is split into two
equal-sized regions. The MLGF employs the local splitting strategy
[20] that splits a region locally, rather than across the entire
hyperplane, when the corresponding page overflows. The local
splitting strategy maintains the policy of having one directory
entry correspond to one page; thus, the strategy prevents the
MLGF from creating unnecessary directory entries. The MLGF
does not create directory entries for empty regions. As a result, the
directory size of the MLGF is linearly dependent on the number of

objects inserted regardless of data distribution or correlation
between the attributes [20]. Thus, the MLGF gracefully adapts to
highly skewed and correlated distributions that frequently occur in
corner transformation.

The MBR-MLGF is an extension of the MLGF for managing
spatial objects. Each directory entry of the MBR-MLGF maintains
the minimum of lx-values (min-lx) and the maximum of rx-values
(max-rx) of the objects (without additional storage overhead) in the
corresponding region. These values represent the MBR containing
the objects in the o-space.

By maintaining the min-lx and max-rx in the directory entries,
the MBR-MLGF has the following two benefits for join processing.
First, we can reduce the size of the SJW for a strip since the upper-
left point of the strip for the MBR-MLGF is nearer to the diagonal
than that for the MLGF. Second, the number of pages in an SJWP is
reduced. Details of these benefits are referred to in [17].

Since space partition in each directory level of the MBR-MLGF
is not always grid-like due to nonuniformity of data distribution,
we need to modify our strip selection algorithm. We also need to
handle multilevel nature of the directory. The recursive definition
of Peano-Hilbert order helps solve this problem. Details of these
modifications can be found in [17].

4.1 Experimental Results

We now perform experiments to evaluate the performance of the
algorithm s_join2 extended for two-dimensional cases using the
MBR-MLGF as the underlying PAM. We then compare the results
with those of the R*-tree based join algorithm proposed by
Brinkhoff et al. [2]. For all the experiments, we use the number
of disk accesses for data pages as the performance measure. We do
not consider CPU cost since we focus on the filter step, which
is I/O-intensive, rather than the refinement step, which
generally is known to be CPU-intensive [12].

For our experiment, we use real data in the two-dimensional
o-space. The data sets for the two files joined are identical to
those used by Brinkhoff et al. [2]. The first file contains the MBRs
of the streets in an area of California whereas the second those of
the rivers and railway tracks. They consist of 131,461 and 128,791
MBRs, respectively, and have 86,094 intersecting MBR pairs. We
set the maximum blocking factor of a data page for the MBR-
MLGF and R*-tree to the same value (=36) for a fair comparison.
The MBR-MLGF shows a somewhat lower storage utilization
making the file larger than that of the R*-tree. The storage
utilization becomes worse as the dimensionality increases. For
the experiment, in order to maintain the storage utilization similar
to that of the R*-tree, we use cyclic splitting only for two out of four
axes: rx and ry.

Fig. 7 and Fig. 8 show the results of the experiment.
For the R*-tree, we choose the algorithm using plane-sweeping
with pinning that has the best performance among those
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Fig. 6. Four-dimensional t-space: (a) lx-rx plane. (b) ly-ry plane. (c) ry-rx plane.



proposed in [2]. The numbers of data pages in the MBR-

MLGF and R*-tree are 11,699 and 10,359, and their storage

utilizations about 65 and 70 percent, respectively. Fig. 7 shows

the number of page accesses normalized by the total number of

data pages in the files. Thus, the number represents average

accesses for each data page. An average access of 1.0 represents the

theoretically optimal performance. Fig. 8 shows the absolute

numbers of page accesses.
The result in Fig. 7 shows that the proposed algorithm has

a better performance over the entire range of the buffer size

with small exceptions when the buffer is extremely small. This

result indicates that corner transformation and the proposed

join algorithm performed in the t-space handle spatial join

more efficiently than the R*-tree based algorithm performed in

the o-space. The result in Fig. 8 shows a slight degradation in

the performance of the MBR-MLGF. The reason for perfor-

mance degradation is lower storage utilization. However, the

R*-tree incurs a large processing cost to increase the storage

utilization by employing a complicated splitting strategy and

the forced reinsert policy [1]. For the proposed algorithm, the

1.1, 1.15, and 1.2-times buffer sizes [2] are 158, 95, and 65

pages, respectively, which are 1.35, 0.81, and 0.56 percent,

respectively, of the number of the MBR-MLGF's data pages for

the two files. In contrast, for the R*-tree case, they are 1,300,
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Fig. 7. The number of page accesses for the real data normalized by the total number of data pages in the file.

Fig. 8. The number of page accesses for the real data (unnormalized).



667, and 441 pages, respectively, which are 12.55, 6.44, and 4.26
percent, respectively, of the number of the R*-tree's data pages
for the two files.

The principal reason why the proposed algorithm has a
performance better than that of the R*-tree based join algorithm
is as follows. As discussed in Section 3.3, in order to reduce the
number of disk accesses, s_join2 determines the order of accessing
the pages in SPs and SJWPs by taking advantage of the relation-
ships among SJWs and the property of the LRU buffer replacement
policy. This is a kind of global optimization. In contrast, the R*-tree
based join algorithm determines the order of accessing the pages
pointed by directory entries in the two nodes to be joined at the
same level by employing the concepts of the plane-sweeping, local
z-ordering, and plane-sweeping with pinning. These are largely
local optimization based on spatial locality [2]. Thus, our algorithm
has some advantage over the other. We also have performed
comparatative experiments with synthetic two-dimensional data
sets that have controlled distributions. They have tendencies
similar to those in Experiment 2. Because of space limitation, we
omit the detailed results, which are referred to [17].

5 CONCLUSIONS

Spatial join, which finds object pairs that have a specific spatial
relationship, is a fairly expensive operation in spatial database
systems. In this paper, we have proposed a new spatial join
algorithm using corner transformation and have verified its
excellence through experiments.

We first have introduced the new concept of the spatial join
window, and then identified useful relationships among the
spatial join windows for adjacent regions and adjacent strips. We
have then proposed a spatial join algorithm that optimizes the
performance taking advantage of the relationships under the LRU
buffer replacement policy. We also have extended the algorithm to
the two-dimensional o-space. Finally, we have proposed the MBR-
MLGF as an enhancement of the MLGF and adapted the algorithm
to use it as the underlying point access method.

To prove the viability of the proposed algorithm, we have
performed a comparative experiment with the R*-tree using the
real and synthetic data sets. The results show that our algorithm
has a performance generally better than that of the R*-tree based
one. This is a strong indication that corner transformation is a
promising category of spatial access methods, and the spatial
operations can be performed better in the transform space than in
the original space. This reverses the common belief that transfor-
mation will adversely affect the clustering.

The advantage of the proposed algorithm is less marked when
the results are not normalized because of lower storage utilization
of the MBR-MLGF compared with that of the R*-tree. However, the
storage utilization is a characteristic of the MBR-MLGF and should
not be counted as a characteristic of corner transformation.

Finally, we point out the spatial join based on corner
transformation has an additional benefit that it can easily be
parallelized by dividing the trapezoidal Transformed Object
Placing Area (TOPA) into possibly multiple overlapping segments.
The narrower the area is, the easier it is to divide. We note that for
a large map to be joined in a GIS, the TOPA will be quite narrow.

To the extent of our knowledge, spatial join algorithms using
corner transformation is new, and we believe that our result will
provide a new insight towards transformation-based processing of
spatial operations.

ACKNOWLEDGMENTS

This work was supported partially by the Korean Ministry of
Science and Technology (MOST) through the National GIS
ProjectÐDevelopment of a Spatial Object Storage System, and
partially by the Korea Science and Engineering Foundation
(KOSEF) through the Advanced Information Technology Research
Center (AITRC). We are grateful to Thomas Brinkhoff, Daniel
Keim, and Hans-Peter Kriegel for providing data and the program
for the R*-tree based join algorithm.

REFERENCES

[1] N. Beckmann, H.-P. Kriegel, and R. Schneider, ªThe R*-Tree: An Efficient
and Robust Access Method for Points and Rectangles,º Proc. Int'l Conf.
Management of Data, pp. 322±331, ACM SIGMOD, 1990.

[2] T. Brinkhoff, H.-P. Kriegel, and B. Seeger, ªEfficient Processing of Spatial
Joins Using R-Trees,º Proc. Int'l Conf. Management of Data, pp. 237±246,
ACM SIGMOD, May 1993.

[3] T. Brinkhoff, H.-P. Kriegel, R. Schneider, and B. Seeger, ªMulti-Step
Processing of Spatial Joins,º Proc. Int'l Conf. Management of Data, pp. 197±
208, ACM SIGMOD, May 1994.

[4] O. GuÈ nther, ªEfficient Computation of Spatial Joins,º Proc. Ninth Int'l Conf.
Data Eng., pp. 50±59, 1993.

[5] O. GuÈ ting, ªAn Introduction to Spatial Database Systems,º VLDB J., vol. 3,
no. 4, pp. 357±399, Oct. 1994.

[6] A. Henrich, H.W. Six, and P. Widmayer, ªThe LSD Tree: Spatial Access to
Multidimensional Point and Nonpoint Objects,º Proc. 15th Int'l Conf. Very
Large Data Bases, pp. 45±53, 1989.

[7] Y.W. Huang and N. Jing, ªSpatial Joins Using R-Trees: Breadth-First
Traversal with Global Optimizations,º Proc. 23rd Int'l Conf. Very Large Data
Bases, pp. 396±405, 1997.

[8] M.L. Lo and C.V. Ravishankar, ªSpatial Joins Using Seeded Trees,º Proc.
Int'l Conf. Management of Data, pp. 209±220, ACM SIGMOD, May 1994.

[9] M.L. Lo and C.V. Ravishankar, ªSpatial Hash-Joins,º Proc. Int'l Conf.
Management of Data, pp. 247±258, ACM SIGMOD, June 1996.

[10] J. Orenstein, ªSpatial Query Processing in an Object-Oriented Database
System,º Proc. Int'l Conf. Management of Data, pp. 326±336, ACM
SIGMOD, 1986.

[11] B.U. Pagel, H.W. Six, and H. Toben, ªThe Transformation Technique
for Spatial Objects Revisited,º Proc. Third Int'l Symp. Spatial Databases,
SSD '93, 1993.

[12] J.M. Patel and D.J. Dewitt, ªPartition Based Spatial-Merge Join,º Proc. Int'l
Conf. Management of Data, pp. 259±270, ACM SIGMOD, June 1996.

[13] H. Samet, The Design and Analysis of Spatial Data Structures, Addison-
Wesley, 1990.

[14] B. Seeger and H.-P. Kriegel, ªTechniques for Design and Implementation of
Efficient Spatial Access Methods,º Proc. 14th Int'l Conf. Very Large Data
Bases, pp. 360±371, 1988.

[15] B. Seeger and H.-P. Kriegel, ªThe Buddy-Tree: An Efficient and Robust
Access Method for Spatial Database Systems,º Proc. 16th Int'l Conf. Very
Large Data Bases pp. 590±601, 1990.

[16] H.W. Six and P. Widmayer, ªSpatial Searching in Geometric Databases,º
Proc. Fourth Int'l Conf. Data Eng., pp. 496±503, 1988.

[17] J.W. Song, K.Y. Whang, and S.W. Kim, ªSpatial Join Processing Using
Corner Transformation,º Technical Report CS/TR-96-107, Dept. of Com-
puter Science, KAIST, Dec. 1996.

[18] K.Y. Whang and R. Krishnamurthy, ªMultilevel Grid Files,º IBM Research
Report RC 11516, 1985.

[19] K.Y. Whang and R. Krishnamurthy, ªThe Multilevel Grid FileÐA Dynamic
Hierarchical Multidimensional File Structure,º Proc. Second Int'l Conf.
Database Systems for Advanced Applications, pp. 449±459, 1991.

[20] K.Y. Whang, S.W. Kim, and G. Wiederhold, ªDynamic Maintenance of Data
Distribution for Selectivity Estimation,º VLDB J., vol. 3, no. 1, pp. 29±51,
Jan. 1994.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 11, NO. 4, JULY/AUGUST 1999 695


