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We present a probabilistic algorithm for counting the number of unique values in the presence of 
duplicates. This algorithm has O(q) time complexity, where q is the number of values including 
duplicates, and produces an estimation with an arbitrary accuracy prespecified by the user using only 
a small amount of space. Traditionally, accurate counts of unique values were obtained by sorting, 
which has O(q log q) time complexity. Our technique, called linear counting, is based on hashing. We 
present a comprehensive theoretical and experimental analysis of linear counting. The analysis 
reveals an interesting result: A load factor (number of unique values/hash table size) much larger 
than 1.0 (e.g., 12) can be used for accurate estimation (e.g., 1% of error). We present this technique 
with two important applications to database problems: namely, (1) obtaining the column cardinality 
(the number of unique values in a column of a relation) and (2) obtaining the join selectivity (the 
number of unique values in the join column resulting from an unconditional join divided by the 
number of unique join column values in the relation to he joined). These two parameters are important 
statistics that are used in relational query optimization and physical database design. 

Categories and Subject Descriptors: G.3 [Mathematics of Computing]: Probability and Statistics- 
probabilistic algorithms; G.4 [Mathematics of Computing]: Mathematical Software-algorithm 
analysis; H.2.2 [Database Management]: Physical Design; H.2.4 [Database Management]: 
Systems-query processing 

General Terms: Algorithms, Experimentation, Performance, Theory 

Additional Key Words and Phrases: Bit map, column cardinality, hashing, join selectivity, physical 
database design, query optimization, statistical databases 

1. INTRODUCTION 

The number of unique values in a column (column. cardinality) of a relation is 
one of the most important statistics that is used in query optimization and 
physical database design. Many database models and commercial systems use 
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this statistic to estimate the selectivity of a predicate, the size of the answer set 
(final or intermediate) of a query, or the size of a projection [4, 6, 11, 18-J. In 
query optimization, the estimated values are used to select the minimum-cost 
access plan for executing a query [ll]. In physical database design, they are used 
to find the access configuration that gives the minimum average response time 
for a set of user transactions [Xi]. Thus, accurate estimation of the column 
cardinality is crucial in obtaining good database performance. 

Unfortunately, the presence of duplicates in a column makes it difficult to 
maintain the column cardinality dynamically at every insertion or deletion of a 
tuple. Maintaining column indexes could alleviate the problem, but in many 
practical applications, indexes are not maintained for all columns because of 
maintenance overhead. 

Conventional techniques that have been proposed to estimate the column 
cardinality can be classified into separate categories-sorting, hashing, and 
sampling. Sorting schemes require 0 (q log q) disk accesses [2] and therefore are 
inefficient. Bitton and Dewitt [2] propose a scheme that removes duplicates 
during the sorting process. They present an example in which the number of disk 
accesses is reduced by as much as 50 percent. Nonetheless, the method still 
requires O( q log q) disk accesses. 

Hashing represents a second approach to determining the column cardinality. 
Hashing has the nice property of eliminating duplicates without a need to sort. 
Thus, only one scan of the relation is required. If the key values are stored in the 
hash table, an exact count of unique values in a column can be obtained. However, 
simple application of hashing could do worse than sorting because, except for 
relations with relatively low column cardinalities, the hash table would be too 
large to fit in main memory and thus would have to be stored on disk. Each probe 
into the hash table would then cost approximately one disk access and the 
counting algorithm would require (q + q/k + q/b) disk accesses, where k is the 
average number of tuples having the same column value (duplication factor), and 
b is the number of tuples stored in each disk block (bloc&g factor). The first 
term in the expression counts the number of disk accesses for probing (reading) 
the hash table, the second for writing new hash table entries (for unique values) 
and the third for scanning the relation. Note that this number is quite possibly 
larger than the 2 x (q/b + (q/b)log,( q/b)) disk accesses required by the sorting 
algorithm using an external z-way sort merge [ 171 in practical ranges of b, q, and 
z. For example, for b = 100, q = 1 million, z = 10, sorting would cause 100,000 
disk accesses, while simple hashing would cause 1.11 million disk accesses, 
assuming a duplication factor of 10. 

Finally, random sampling would intuitively appear to offer an attractive 
mechanism for estimating the column cardinality. However, taking a simple 
random sample from the relation causes the proportion of distinct values to 
the relation cardinality to be overrepresented because, in a small sample, the 
probability of hitting the same value twice is fairly small. Thus, simple linear 
extrapolation will overestimate the number of distinct values in the column 
significantly. For example, when we take a random sample of one percent of the 
relation, we cannot simply multiply the number of distinct values in the sample 
by one hundred to get the estimated number of distinct values in the full set. In 
general, to get the proper estimate, we must use precise distribution information. 
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However, this information is more complicated to obtain than the column 
cardinality. The same observation is made in [lo] in a slightly different context, 
where the number of disk accesses is counted under random sampling. Olken and 
Rotem [9] make the same observation by pointing out that projection and 
sampling cannot be commuted. Hence, projection after sampling would produce 
a different number of distinct values than sampling after projection would. The 
main reason for this phenomenon is the presence of duplicate values. Note that 
counting the number of unique values is essentially a projection operation, in 
which duplicates are eliminated. Therefore, we cannot obtain a valid estimate by 
sampling before counting. 

In this paper we present a probabilistic technique that estimates the number 
of unique.values in a column or a group of columns in linear time-(c X q/b), 
where q is the number of tuples in the relation (relation cardinality), b is the 
blocking factor, and c is either one or two depending on whether the relation 
cardinality (number of tuples in a relation) is available. If the relation cardinality 
is not known, a preliminary scan of the relation must be made to determine the 
cardinality. Our technique is based on hashing. However, unlike the simple 
application of hashing, the algorithm we propose does not store the key values 
in the hash table; instead, it simply turns on a bit in the appropriate entry in the 
hash table. Since two records that share the same hash table entry (i.e., collide) 
cannot be distinguished, an exact count can no longer be obtained. Thus, the 
column cardinality must be approximated based on the occupancy rate of the 
hash table when the relation has been completely scanned. In this sense the 
algorithm is probabilistic. 

We demonstrate that our algorithm can obtain the column cardinality for 
fairly large relations with an arbitrarily small error, using a bit map’ that can fit 
in main memory. For example, with 1.25 Mbytes of main memory available for 
the map, the algorithm can be used for relations as large as 120 million tuples 
with an error of 1 percent. The only penalty is the loss of EXACT COUNT. The 
algorithm also provides significant enhancement in processing time compared 
with conventional techniques. For instance, it would cause only 1,000 disk 
accesses for the example we discussed above. 

Compared with simple hashing, the algorithm significantly reduces the storage 
space needed for the hash table for two reasons. First, by storing bits rather than 
keys and by avoiding overflow records, it reduces the size of the hash table entry. 
For example, for four-byte integer keys, it reduces the space by a factor of 32. 
For 20-character string keys, this factor increases to 160. Second, a surprising 
result of the analysis in Section 4 is that load factors (the number of unique 
values/map size) much higher than one (e.g., twelve) can be used while achieving 
good accuracy (e.g., 1%). Accordingly, the hash table size can be further reduced 
by a factor of 12. Note that in simple hashing the load factor cannot exceed one. 
Overall, the algorithm can obtain storage reduction by a factor of 384 for integer 
keys and 1,920 for 20-character string keys. 

A sketch of this algorithm, termed linear counting, was presented in [l] without 
a detailed analysis, along with two other algorithms also based on hashing: 

1 A map is a structure that keeps track of the statistical behavior of the counting process. In linear 
counting the map is a hash table. 
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logarithmic counting and sample counting. In linear counting, the estimator is 
based on a measurement that is approximately proportional to (linear in) the 
true count. Hence, the name linear counting. In logarithmic counting and sample 
counting, the estimators are based on measurements that are logarithms of the 
true counts. 

It was pointed out in [l] that linear counting provides the most accurate 
estimates of any of the three algorithms. Further, linear counting can be made 
arbitrarily accurate since the technique allows the programmer to allocate in- 
creasingly large maps without paying a performance penalty (one probe for each 
element in the column). Increasing the size of the map degrades the performance 
of the other methods since they require as many probes as the map size for each 
element. 

Despite the accuracy of the linear counting method, Astrahan et al. suggested 
that linear counting could not be advantageously used for relations whose 
cardinality exceeded 20 million, since the map size would become burdensomely 
large. This limitation was deemed necessary since it was believed that the load 
factor had to be kept below two to maintain a reasonable accuracy over a large 
range of column cardinalities. Thus, a relation with 20 million tuples would 
require a 10 million-entry map. Since each entry of the map occupies one bit, the 
map requires 1.25 Mbytes of storage space. Any map larger than this would 
probably have to be stored on disk, and the resulting I/O accesses would cause a 
significant degradation of performance. 

As previously mentioned, our analysis discloses that load factors much higher 
than two (e.g., twelve) can be used while achieving good accuracy. Since a large 
load factor reduces the map size, our analysis suggests that linear counting can 
be profitably used for much larger relations than previously thought. This aspect 
is discussed in detail together with interesting constraints determining the map 
size. 

We proceed by first reviewing the basic counting algorithm described in [l]. 
We then present a detailed analysis and develop a complete algorithm for 
practical applications. This analysis focuses on two properties of the ratio C/n, 
where li denotes the maximum likelihood estimator of the true count of unique 
values (i.e., column cardinality) n: 

(1) the bias in expected value and 
(2) the standard error. 

The bias of the ratio h/n is equal to the expected relative error of the estimator 
iz. For example, a bias of .Ol indicates that, on average, the estimator iz will 
overestimate the column cardinality n by 1 percent. Formally, the bias is defined 
as in Eq. (1). 

Bias(ri/n) = E(ri/n) - 1. (1) 

The standard error is defined as the standard deviation of G/n. It indicates 
how variable the ratio C/n is expected to be, indicating the extent of the error in 
the measurement. 

The rest of the paper is organized as follows. Section 2 sketches the basic 
linear counting algorithm. Section 3 presents our analysis of the bias and the 
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standard error of the measurement. Section 4 introduces constraints that apply 
to the counting process to achieve the desired standard error and to avoid invalid 
measurements. We provide techniques to satisfy these constraints. In Section 5 
we present the results of comprehensive experiments performed to verify the 
analysis. Section 6 presents a complete linear counting algorithm that can be 
readily applied to practical applications. In Section 7 we discuss an interesting 
application of linear counting that obtains join selectivity, that is, the number of 
unique values in the join column resulting from an unconditional join divided by 
the number of unique join column values in the relation to be joined. An 
unconditional join is a join without any selection predicates. The join selectivity 
is an important parameter in determining the size of the answer set of a query 
[4]. Finally, we conclude the paper in Section 8. 

2. LINEAR COUNTING: THE BASIC ALGORITHM 

Linear counting is a two-step process. In step 1, the algorithm allocates a bit map 
(hash table) of size m in main memory. All entries are initialized to “0”s. The 
algorithm then scans the relation and applies a hash function to each data value 
in the column of interest. The hash function generates a bit map address and the 
algorithm sets this addressed bit to “1”. In step 2, the algorithm first counts the 
number of empty bit map entries (equivalently, the number of “0” entries). It 
then estimates the column cardinality by dividing this count by the bit map size 
m (thus obtaining the fraction of empty bit map entries V,) and plugging the 
result into the following equation (we derive Eq. (2) in Section 3.2): 

ri = -m In V,. (The symbol A denotes an estimator.) (2) 

The algorithm is made precise in Figure 1. 
Figure 2 illustrates this process for one column of a relation having twelve 

tuples. In Figure 2, if there were no collisions, the count of “1” bits would be 
eleven, which is the desired column cardinality. Due to collisions, however, the 
measured count is six. Since the bit map has eight entries, the fraction of empty 
bit map entries is 2/8. Plugging this fraction into Eq. (2) gives an estimated 
column cardinality of 11.1. 

3. ANALYSIS 

In this section we derive theoretical values for the bias and standard error of the 
ratio h/n. To make the analysis easier to follow, we first recast the problem of 
estimating the number of unique values in a column as the urn problem [13,19]. 
Suppose that there are Q balls and that each ball has one of n distinct colors. 
Balls are randomly assigned to a set of m urns in such a way that balls with the 
same color are assigned to the same urn. Then, linear counting can be transformed 
to the urn problem by associating tuples with balls, unique values with distinct 
colors, and bit map entries with urns. The terminology associated with this 
transformation, as well as additional notation, is summarized in Table I. Inci- 
dentally, this problem can also be cast as the one of counting the set cardinality 
(number of unique elements) from a multiset (with duplicates). 
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Algorithm Basic Linear Counting: 

Let keyi = the key for the ith tuple in the relation. 

Initialize the bit map to “0”s. 

for i = 1 to q do 

hash-value = hash(keyJ 

bit map(hash-value) = “1” 

end for 

U, = number of “0”s in the bit map 

V, = UJm 
iL=-mln V, 

Fig. 1. Linear counting: The basic al- 
gorithm. 
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Fig. 2. Mapping a column of a relation into a bit map. 

3.1 Properties of the Random Variables U, and V, 

We summarize the formulas for the expectation and variance of U,. Detailed 
derivation is presented in Appendix A: 

E (U,,) = mevnim = me+, as m, n + 00, (3) 
Var(U,) = meet(l - (1 + t)e-“), as m, n + w (4) 

Since V, = UJm, 

E(V,) = emt, as m, n +- a, (5) 

Var( V,) = i e-“(1 - (1 + t)e-“), as m, n + w. (6) 
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Table I. Terminology and Notation 

Urn problem Linear counting 

n: Number of distinct colors 

q: Number of balls 

m: Number of urns 
t: n/m 

U, : Random variable denoting the number of 
empty urns 

V,,: UJm-random variable denoting the 
fraction of empty urns 

True count of unique values in the column 
(column cardinality) 

Total number of tuples in the relation or total 
number of values in the column including 
duplicates (relation cardinality) 

Number of bits in the bit map 
n/m = load factor 
Random variable denoting the number of “0” 

bits after the test 
Random variable denoting the fraction of “0” 

bits after the test 

p: mean of V, 

ri = -m In Vn: maximum likelihood estimator of n (see Appendix B) 

3.2 Derivation of the Estimator for the Number of Distinct Colors n 

From Eq. (5), E(V,J = e+lm, as m, n + 00. Replacing E(V,) and n by their 
representations in terms of observed variables, V,, and it, we obtain 

fi= -m In V,, (7) 

where fi is our estimator for n. Theorem A4 in Appendix B shows that ri is the 
maximum likelihood estimator for n. 

3.3 Derivation of the Bias 

We derive the bias for the ratio ii/n as follows. First, we expand the right hand 
side of Eq. (7) by its Taylor series about p = E( V,) = emt, the mean of V,. 
Denoting -ln( V,,) as f (V,,), 

ii=mXf(VJ 

= W(p) + (V, -p)f’(p) + $(Vn -pYf”(p) 

+ $wn -P)3f”‘(P) + &WI -P)*f”“(P) * * .I (8) 

=m t 

( 

vn-P I ~(v,-P)2_$(vn-P)3+s(vn-P)4... . 

P P2 P3 P4 ) 

We truncate Eq. (8) after the third term since the expected value of the second 
term is 0: and the third term is the first nonzero bias term. We shall discuss the 
error caused by this truncation in Appendix C. We then obtain the expected 
value of ri as follows: 

E(i) = mt + $ E(V, - p)“. 

Since, from Eq. (6), E( V, - p)” = Var(V,) = (l/m)e-‘(1 - (1 + t)e-“), we obtain 

et-t-1 
E(i) = n+ 2 . 
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n 

Fig. 3. Load factor that must be selected to achieve a specific bias. 

Therefore, 

(10) 

Notice that, given a constant load factor t, the estimator ii/n is asymptotically 
unbiased. Figure 3 uses expression (10) to illustrate the relationship among the 
load factor t, the number of distinct colors n, and the bias. The graph shows the 
value oft that must be selected to achieve the desired bias for each value of n. 

3.4 Derivation of the Standard Error 

In this section we derive the standard error, that is, the standard deviation of 
the ratio C/n. We proceed with the Taylor series expansion in the previous 
section. Truncating Eq. (8) after two terms, we obtain 

ri=m(t-y2), 
The error analysis in Appendix C justifies this truncation. It follows that 

from Eq. (6) 

m(et - t - 1) = 
n2 

Hence, the standard error of the ratio ii/n is as follows: 

&i(et - t - 1)“’ 

n 

(11) 

(12) 

(13) 
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n 

Fig. 4. Load factor that must be selected to achieve a specified standard error. 

Table II. The Size of the Map Required to Assure that m > fi(e’ - t - 1) when a = -& 

n 

100 5034 80 
200 5067 106 
300 5100 129 
400 5133 151 
500 5166 172 
600 5199 192 
700 5231 212 

800 5264 231 
900 5296 249 

1000 5329 268 

2000 5647 441 
3000 5957 618 

4000 6260 786 
5000 6556 948 
6000 6847 1106 

7000 7132 1261 
8000 7412 1412 
9000 7688 1562 

10000 7960 1709 
20000 10506 3105 
30000 12839 4417 
40000 15036 5680 

50000 17134 6909 
60000 19156 8112 

70000 21117 9294 

Map size m 
epsilon 

Map size m epsilon 

.Ol .lO n 

80000 23029 10458 
90000 24897 11608 

100000 26729 12744 
200000 43710 23633 
300000 59264 33992 

400000 73999 44032 

500000 88175 53848 
600000 101932 63492 

700000 115359 72997 

800000 128514 82387 
900000 141441 91677 

1000000 154171 100880 

2000000 274328 189682 

3000000 386798 274857 

4000000 494794 357829 

5000000 599692 439233 
6000000 702246 519429 
7000000 802931 598645 
8000000 902069 677040 
9000000 999894 754732 

10000000 1096582 831809 
50000000 4584297 3699768 

100000000 8571013 7061760 
120000000 10112529 8313376 

.Ol .lO 
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Figure 4 uses Eq. (13) to show the relationship between the load factor t, the 
number of distinct colors n, and the standard error of 6/n. For each value of n, 
it plots the corresponding value of t that must be selected to achieve the desired 
standard error. Notice that as the number of distinct colors (column cardinality) 
increases, the load factor can be increased without increasing the standard error. 
The reason for this behavior is that if t is held constant as n approaches infinity, 
the standard error approaches zero. Thus, a constant standard error can be 
maintained by slowly increasing the load factor as n increases. This finding 
suggests that load factors much larger than one can achieve good accuracy. We 
explore this finding more rigorously in Section 4 (see Table II), 

4. CONSTRAINTS RELATING THE MAP SIZE, LOAD FACTOR, AND 
STANDARD ERROR 

Since linear counting is a probabilistic algorithm, there are a number of param- 
eters that the user can manipulate to influence its performance. The first of these 
parameters is the standard error which, as noted in the introduction, is a measure 
of variability of the estimate provided by linear counting. Decreasing the standard 
error results in more precise estimates, but increases the required map size. 
Similarly, increasing the standard error results in less precise estimates, but 
decreases the required map size. The second parameter is the probability that 
the map becomes full. When the map is full, the experiment is fatally distorted 
because our estimate ri = -m In V,, blows up. Thus, it is desirable to select a map 
size so that the probability that the map becomes full is negligible. 

4.1 Two Constraints 

Suppose the user wants to limit the standard error to t. Slightly reformulating 
Eq. (13), this constraint can be written as 

((et - t - 1)/m)“” < ~ 
t , 

or equivalently as 

et-t-l 
m> 

(et)” . (14) 

Next, the map should be made sufficiently large to make the probability of its 
becoming full negligible. Let us note that, unless m > n (i.e., t < l), there is a 
nonzero probability that the map will become full. We can control this probability 
by allocating a map based on the constraint that the mean number of empty urns 
must be a standard deviations from zero. This constraint can be written as 

E( U,) - a x StdDev(U,) > 0. (15) 

Since E(U,) = meet and StdDev(UJ = (me-Y1 - (1 + t)eet))‘j2 (from Eq. (3) 
and Eq. (4)), Eq. (15) can be written as 

meet > a(medt(l - (1 + t)e-“))‘I” or (16) 
m > u2(et - t - 1). 
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As we discuss in Section 4.2, a = & limits the probability of the map becoming 
full to 0.7 percent. From Eq. (14) and Eq. (16), we obtain 

m > P(et - t - l), (17) 

where p = max(a2, l/(~t)~). 

4.2 Probability that the Map is Filled Up 

In this section, we discuss the probability of the map becoming full (fill-up 
probability) and the effect of p (more specifically, a) on this probability. In 
particular, we show that if a > & (meaning that E(U,) must be at least & 
standard deviations away from 0), then the fill-up probability is less than 0.7 
percent. 

We first introduce a lemma showing that the distribution of U,, converges to a 
Poisson distribution. (In Appendix B, we show that the distribution also con- 
verges to a normal distribution. However, in this section, we would like to use a 
discrete distribution that assigns a nonzero probability to the event that the map 
is filled up. Since the normal distribution is a continuous distribution, it assigns 
only an infinitesimal probability to this event. In principle, we can use a 
cumulative distribution for the interval [-0.5, 0.5)). 

We then show that if E(UJ > & X StdDev( U,), then Prob(U, = 0) < 0.007. 

LEMMA 1 [5]. The limiting distribution of U,, the number of empty urns, is 
Poisson with the expected value X if 

me -Mm + x as n, m + 03. 

Thus, 

Zim Pr(U, = k) = (Xk/h!)e-“. 
?&,lTl-m 

(Note that E(U,) = rne+lm = A). The fill-up probability is then obtained as 

Pr(U, = 0) = e-‘. 

(18) 

If a > &, that is, E( U,) > & StdDev(U,,), then X > &, or equivalently, 
X > 5 since E (U,,) = h and StdDev( U,,) = fi. Let us note that, in a Poisson 
distribution, mean = variance. Since X > 5, 

Pr(U, = 0) < eW5 = .007(0.7%). 

This analysis shows an interesting phenomenon. Since X = E(U,), the 
mean number of empty urns, the condition X > 5 indicates that the (absolute) 
number of empty urns must be more than 5 to guarantee that the map is 
not filled more than 0.7 percent of the cases. Interestingly, this number is 
independent of n or m. 

4.3 A Table To Assist Users in Choosing the Map Size 

In Section 4.1 we obtained the constraint 

m > fl(et - t - 1) = max(a2, l/(d)‘) X (et - t - 1). (1% 

Given n, Eq. (19) cannot be solved for m analytically since t = n/m and m 
appears as both a linear and an exponential term. In this section we provide a 
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table of precomputed solutions of Eq. (19) to assist users in choosing the map 
size for the standard errors of .Ol (1%) and .l (10%) when a = & (i.e., the fill- 
up probability is 0.7%). We use the method of bisection [3]; the results are 
displayed in Table II. To use the table, locate the interval that brackets n and 
use interpolation to find the appropriate value of m. In Table II we note that the 
term l/(tt)” determines ,8 for c = .Ol while the term a2 dominates when 6 = .l 
and n > 1000. The term l/(~t)’ dominates for 6 = .l and n I 1000. 

5. EXPERIMENTAL RESULTS 

To verify the correctness of the theoretical derivations and analysis, we conducted 
a series of experiments, in which the estimators for the bias and standard error 
were compared with empirically derived figures. The map size for the experiments 
was varied between 100 and 100,000 and the loads were varied between .25 and 
10 in the following manner: 

map size: 100, 1000, 10000, 1000000 
load factor: .25, .50, .75, 1, 2, . . . , 10 

Each combination of these parameters was tested one hundred times. The 
experiments were performed by generating random numbers using a random 
number generator to simulate the set of unique values. Specifically, the experi- 
ments were organized as follows: 

(1) Pick a map size m and a load factor t. Generate n = m X t random numbers 
between 0 and 1. n is the column cardinality we try to measure. 

(2) Hash these numbers into the map by multiplying each random number by 
the map size. 

(3) Count the number of “0” bits (U,) in the map. 
(4) Transform the measured value according to the maximum likelihood esti- 

mator ri = -m In UJm. 
(5) Perform 100 such experiments for each data point and calculate the mean 

and the standard deviation of the estimator. 
(6) Compare these results with the theoretical bias and standard error. 

The results of the experiments are shown in Tables III-VI. Given a map size, we 
increased the load factor only up to the point where the map becomes full at 
least once during the experiments. As we predicted, these experimental points 
approximately coincided with the requirement p z 5 to keep the fill-up probability 
below 1 percent. (This can be checked by calculating m/(et - t - 1) (see Eq. (19)) 
for the maximum load factor t that did not cause the map to be filled up.) 

The experimental standard error and the theoretically predicted standard error 
were extremely close in almost every case. The experimental bias and theoreti- 
cally predicted bias tended to diverge to some extent. However, the orders of 
magnitudes of these values stayed close to each other. We believe that this 
deviation is due to an insufficient number of random experiments. In fact, we 
observed that this deviation was reduced as we increased the number of random 
experiments. For example, when we increased the number of experiments to 
1,000 (from loo), the experimental fi/n for the case m = 10,000, t = 4, the 
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Table III. Map Size = 100 

Load 
factor 

Experimental 
W+l 

Theoretical 
E[rilnl 

Experimental 
standard error 

Theoretical 
standard error 

0.25 0.995473 1.000681 0.069282 0.073784 
0.50 0.999503 1.001487 0.074145 0.077129 
0.75 1.006892 1.002447 0.076310 0.080774 
1 1.012565 1.003591 0.092389 0.084752 
2 1.027666 1.010973 0.117486 0.104750 
3 1.016958 1.026809 0.138771 0.133689 

Table IV. Map Size = 1000 

Load 
factor 

Experimental 
JWl4 

Theoretical 
JWnl 

Experimental 
standard error 

Theoretical 
standard error 

0.25 0.999197 1.000068 0.022948 0.023333 
0.50 1.003729 1.000149 0.025523 0.024390 
0.75 1.002573 1.000245 0.023620 0.025543 
1 1.000577 1.000359 0.025823 0.026801 
2 1.003372 1.001097 0.034144 0.033125 
3 1.006535 1.002681 0.043413 0.042276 
4 1.007168 1.006200 0.063848 0.055677 
5 1.007115 1.014241 0.077536 0.015475 

Load 
factor 

Table V. Map Size = 10000 

Experimental Theoretical Experimental Theoretical 
EWnl E[W standard error standard error 

0.25 1.000175 1.000007 0.007149 0.007378 
0.50 1.000392 1.000015 0.007504 0.007713 
0.75 0.999416 1.000024 0.007576 0.008077 
1 0.998791 1.000036 0.007927 0.008475 
2 0.999860 1.000110 0.010844 0.010475 
3 0.999488 1.000268 0.013565 0.013369 
4 1.002690 1.000620 0.016362 0.017606 
5 0.999464 1.001424 0.023171 0.023867 
6 1.005000 1.003304 0.034150 0.033184 
7 1.014530 1.007776 0.058061 0.047135 

experimental value of C/n was 1.000755, which was very close to the theoretical 
prediction. Generally, since the bias is negligible, we can safely ignore this 
deviation. Taken as a whole, we observe an excellent match between the theoret- 
ical and experimental results. 

6. LINEAR COUNTING: THE COMPLETE ALGORITHM 

Figure 5 presents the complete linear counting algorithm. 
Note that, in step 3 of the algorithm, we use the relation cardinality q instead 

of n since n is not known before the measurement is completed. Since q 2 n, 
generally, the algorithm will produce the result with a smaller standard error 
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Table VI. Map Size = 100000 

Load Experimental Theoretical Experimental Theoretical 
factor Elhlnl WVnl standard error standard error 

0.25 0.999977 1.000001 0.002096 0.002333 
0.50 0.999874 1.000001 0.002256 0.002439 
0.75 1.000235 1.000002 0.002894 0.002554 
1 0.999992 1.000004 0.002726 0.002680 
2 1.000241 1.000011 0.003658 0.003312 
3 0.999878 1.000027 0.004317 0.004228 
4 0.999918 1.000062 0.005681 0.005568 
5 1.000011 1.000142 0.007748 0.007548 
6 1.001603 1.000330 0.010973 0.010494 
7 1.000730 1.000778 0.014368 0.014905 
8 1.000408 1.001857 0.023627 0.021549 
9 1.010030 1.004496 0.035842 0.031609 

10 1.011620 1.011008 0.051350 0.046921 

Algorithm Complete Linear Counting: 

(1) Specify the desired accuracy (i.e., the standard error). 

(2) Measure the relation cardinality (complexity = 0 (9)) if it is not already available. 

(3) Read the map size from Table II using the relation cardinality q as n. 

(4) Run the basic Linear Counting Algorithm. 

(5) If the map fills up, rerun the basic Linear Counting Algorithm with a different hash function. 

Fig. 5. Linear counting: The complete algorithm. 

than specified. The relation cardinality is readily available in many systems 
because it is an important statistic that the system keeps track of. Otherwise, it 
can be measured by making only one pass over the relation. This process has 
O(q) time complexity. In this case, the complete algorithm would require two 
passes over the relation. However, since more than one column can be processed 
simultaneously with this technique, the cost for each column can be kept lower 
than this. For example, for a relation having five columns, the average cost of 
obtaining the column cardinality of one column is that of making .4 pass over 
the relation. If the relation cardinality is already available, the cost would be 
only .2 pass over the relation. 

When the load factor is greater than 1.0, there is a nonzero fill-up probability. 
However, this situation must occur very rarely since the fill-up probability is less 
than .7 percent. The probability that more than two iterations will be required 
is less than .5 x 10e4. 

7. APPLICATIONS OF LINEAR COUNTING 

As mentioned in Section 1, an important application of linear counting is the 
estimation of the column cardinality, which is one of the most important statistics 
that is used by many database systems. In addition to this application, linear 
counting has another interesting usage: namely, the estimation of the number of 
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distinct values in the join column resulting from an unconditional (i.e., without 
any selection predicates) join of two relations. This number (N,) is an important 
parameter in estimating the size of a join result [4]. The role of this parameter 
is also demonstrated in [15], where the join selectivity J(R, JP) of a relation R 
with respect to a join path JP is defined as N”JINRJ, where NM is the number 
of distinct join column values of R. A join path is a set (RI, R1.A, Rz, R,.A), 
where RI and Rz are relations participating in the join and RI .A and R2.B are 
the join column of RI and Rz, respectively. 

The number NUJ is essentially the size of the set intersection between the join 
column of RI (JC& and the join column of Rz (JC&. To construct the set 
intersection of the two columns, either sorting or simple hashing can be used. 
However, they have the same performance problems as we mentioned in regard 
to obtaining the column cardinality. We present below an efficient algorithm to 
obtain NUJ by slightly modifying linear counting. As in the case of the column 
cardinality, this algorithm requires only one or two scans over the relations 
involved depending on the availability of relation cardinalities. Thus, it will cause 
c x (q,/b + qn/b) disk accesses, where q1 or q2 is the relation cardinality of the 
relation RI or R2 and c is either one or two. 

The algorithm first obtains the set sizes of JC,, and JC,, using linear counting. 
It must use the bit maps of the same size for the two relations and must use the 
same hash function. Then, by applying logical OR to the two bit maps bit by bit, 
it constructs a third bit map reusing the storage of one of the original bit maps. 
From the third bit map, it calculates the set size of (JCR~ U JC&. Then, the set 
size of the intersection of the two columns is simply 

set-size(J& n JCR2) 

= set-size(JCR1) + set-size(JCR2) - set-size(JC& U JC&. 

Finally, the join selectivities of RI and R2 with respect to the join path (JP) 
considered can be obtained as follows: 

J(R,, JP) = set-size(JCR1 n J&,)/set-size(JC&, 

J(R2, JP) = set-size(JCR1 n JCR2)/set-size(JC,,). 

Figure 6 further illustrates the algorithm. In Figure 6, set-size(JCsi) = -15 X 
In 4/15 = 19.83, set-size(JCR2) = -15 X In 6/15 = 13.74, and set-size(JCR1 U 
JCR2) = -15 X In 3/15 = 24.14. Hence, set-size(JCR1 U JC& = 19.83 + 13.74 - 
24.14 = 9.43. The join selectivities are 9.43119.83 = 0.48 for RI and 9.43113.74 = 
0.69 for R2. 

Let us note that logically ORing the two bit maps produces the third bit map 
as if it were constructed independently by hashing all the values in the columns 
JC,, and JC,,. Thus, using this map, we can measure the size of the union of 
the two columns. 

Linear counting can be used to update the column cardinalities of the columns 
(especially those that do not have indexes) whenever all the statistics are updated. 
At the same time, the new algorithm can be used to update the join selectivities 
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Fig. 6. Computing the join selectivity. 

for the predetermined join paths. The set of join paths that are to be used 
frequently can be determined when the database is designed [ 161. 

Finally, linear counting can also be used for measuring the cardinalities of 
composite columns (sets of multiple columns) by simply applying the technique 
to the composite key values from the component columns. 

8. SUMMARY 

We have presented a comprehensive theoretical and experimental analysis of 
linear counting-a probabilistic algorithm for counting the column cardinality- 
and proposed a complete algorithm that can be used in practical environments. 
The linear counting algorithm has O(o) time complexity, where 9 is the number 
of tuples in the relation. The analysis has shown that we can achieve arbitrarily 
accurate estimation in linear time by prespecifying the standard error and using 
the appropriate map size. 

We have analyzed two constraints relating the map size, the column cardinality, 
and the standard error. These constraints are due to (1) the standard error that 
the user prespecifies and (2) the probability that the map is filled up (fill-up 
probability). We have provided a table reflecting these constraints to assist users 
in choosing the proper map size. 

A surprising result of the analysis is that a load factor much larger than 1.0 
(e.g., 12) can be used for accurate estimation. With this property, when 10 million 
bits (1.25 Mbytes) of main memory is available, we find from Table II that linear 
counting can be profitably used with relations as large as 120 million tuples, 
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whereas it was indicated in [l] that linear counting can perform efficiently only 
up to 20 million tuples. For this number of tuples, we can achieve the standard 
error of 1 percent with the corresponding load factor of 12. In comparison, with 
the same amount of main memory available, simple hashing is efficient only up 
to 315 thousand tuples (Available Main Memory Size in bytes/Key Length in 
bytes) for integer keys and 62.5 thousand tuples for 20-character string keys. 
When compared with sorting, assuming b = 1,000, linear counting would require 
only 120,000 disk accesses, whereas a lo-way external sort merge would require 
1.46 million disk accesses. 

We have found an interesting phenomenon that the fill-up probability is 
determined by the absolute average number of “0” bits in the map regardless of 
the map size. In particular, an average of five or more “0” bits (from a lo-million- 
bit map, for example!) assures less than 0.7 percent of fill-up probability. 

We have demonstrated two important applications of linear counting to data- 
base query optimization and physical database design. The first we have ad- 
dressed is the estimation of column cardinality. The column cardinality is widely 
used to estimate the selectivities of predicates and the size of the answer sets of 
queries. The second is the estimation of the join selectivity. The join selectivity 
is a crucial parameter for estimating the size of a join result. We believe more 
applications can be found in the future as we gain experience with this technique. 
We believe our technique provides significant progress towards designing reliable 
database query optimizers and physical database design tools. 
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APPENDIX A: Properties of the Random Variable U, 

In this appendix we derive the mean and variance of the random variable U,, 
representing the number of empty urns. 

Let Aj be the event that urn j is empty and let lAj be the corresponding indicator 
random variable. Since the assignment of the balls is independent, 

j # k. 

Since U, is the number of empty urns, 

u, = 5 lAj. 
j=l 
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Thus, 

since (lAj)’ = lAj and lAi X lAj = lAia,. Accordingly, 

Var(U,) = E(UZ) - E(UJ2 

=m((l-f-)‘-(l-~~+m((l-~)‘-(l-~)2n)) 

- m(e-” - e-2t - ,-27 = as m,n+w 

= memt(l - (1 + t)e-“). 

In the derivation above, we used m((1 - 2/m)” - (1 - l/m)2n) E --te-2t since 

=ex*[n(-i-i(s)-i(s)...)] 

= exp[-(g) X exp(-2) X exp(-i(s)) . ..I 

=exp[2n(-i-i(--$)-:(-$)...)I 

=exp(-z)Xexp(-$)Xexp(-i(s))... 

m((l-ir-(1-kr)ZmXexp(-z)(exp(-$)-exp(-5)) 

SmXexp(-E)((l-$)-(1-s)) 

s -&-2t as n,m+m. 
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APPENDIX 6: Approximating lJ, as a Normal Variable 

In this appendix we present a theorem showing that the distribution of U,, (and 
V,) can be approximated as a normal distribution. We also show that li is the 
maximum likelihood estimator (MLE) of n. 

THEOREM Al. If n, m + 03 with n/m + t where t is a constant, then the limit 
distribution for the number of empty urns U,, is normal, that is, U,, is asymptotically 
normal. 

(Proof in [7, 121.) 

COROLLARY A2. The fraction of empty urns V,, is asymptotically normal. 

LEMMA A3. Let X be the MLE of the variable X. If f is an invertible function 
(i.e., has a single-valued inverse), then f(A) is an MLE off(X) ([8] Theorem 1, 
p. 284). 

THEOREM A4. fi is the MLE of n. 

PROOF. Since V,, is a random sample taken from a normally distributed 
population, V, is the MLE of the mean fraction of empty urns E( V,). Further, 
since -In X is invertible, ri = -m In V, is the MLE for -m In E( V,) = n. Cl 

APPENDIX C: Error Bounds in Analysis 

In Section 3 we derived the bias and standard error of the estimator S/n by 
truncating the Taylor series after the third and second terms respectively. The 
question naturally arises: How much error is introduced by this truncation? The 
answer is “not much.” Specifically, for the bias, we show that the first nonzero 
remainder term truncated from the series is only 3/2p as large as the last term 
included in the series. For the variance (standard error2), we show that the 
relative error caused by not including the third term is l/2/3. Since p 2 5 this 
would mean approximately 30 percent of error in the estimation of the bias and 
5 percent of error in the estimation of the standard error (10% for the 
variance). 

For the discussion of the error bounds, it is convenient to rewrite V,, in terms 
of the standard normal distribution (Appendix B shows that the distribution of 
V,, can be approximated as a normal distribution). Let 5 denote the standard 
normal (N(0, 1)) random variable and write 

VIZ = P + d, (20) 

where p = E(VJ = e-’ is the mean and B = ((l/m)e-Yl - (1 + t)e-“))lj2 is the 
standard deviation of V,. Substituting this value of V,, into Eq. (8), we obtain 

c = m 

( 

t _ 2 : W2E2 Gb3E3 : cf>u”t” . . . . 

P P2 P3 P4 ) 
(21) 
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C.l Error Bound in Analysis of the Bias 

We derive the error bound on the first nonzero remainder term in the Taylor 
series expansion for the bias (E(fi/n) - 1). From Eq. (21) 

E(h) = mt+ 0 + y ; 
( I( ) 

e-“(1 - (1 + t)e+)ezt + 0 

+ E(E4) T --$ e-Y1 - (1 + t)e-t)2e4t 
oi ) 

+ higher-order terms. 

In Section 3 we truncated the series after the third term. Thus, the first nonzero 
remainder term for this approximation of E(iz/n) is 

2t(l - (1 + t)e-t)2e4t. 

The size of this term as a fraction of the last term used in the approximation is 

(E([“)em2”/4m)(l - (1 + t)e-t)2e4t/(e-t/2)(1 - (1 + t)e-t)e2t 
= 3et(l - (1 + t)e-“)/m (E (6”) = 3 for a standard normal distribution) 
= 3(ef - t - 1)/2m 
< 3(et - t - 1)/2P(et - t - 1) (since m > fl(et - t - 1)) 
= 3/2@ 

Since 0 2 5, the inclusion of additional terms in the Taylor series for ri in the 
computation of E(h) would increase the computed bias by approximately 30 
percent. Given the generally negligible value of the bias (as we saw in Section 6), 
we decided that the inclusion of additional terms was not justified. 

C.2 Error Bound in Analysis of the Standard Error 

We derive the bound of the error caused by not including the third term of the 
Taylor series for ri in computing the standard error for the estimator s/n. In this 
derivation we first calculate A Var(iz/n) when the third term of the series is 
added in the approximation, and then, take the ratio of the result over the 
variance that would be obtained with only two terms (i.e., Eq. (12)). 

From Eq. (al), truncating after three terms, we obtain 

ri 
-cm t- 

( 
“E-+2- 

l&2 

n 1 P P2 ’ 

The resulting expression for Var(fi/n) is 

Var(t)=(-$)Var(m(t-:+y)) 

= (zy(Var(t) + (irVar([) + i (iIVar([2)) (22) 

-2m 21 a3 

0 0 
n 2 p Cov(Et t2), 
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where Cov is the covariance of the two random variables. To avoid clutter, two 
covariance expressions that are zero, Cov(t, [) and Cov(t, t2) are omitted. Cov(& 
E”) is also zero because 

Cov(t, [“I = E(E x E”) - E(E) x ELE2) PI 
= l3(#$3) - 0 (since E(t) = 0) 
= 0 (since E(E3) = 0 if [ is a standard normal variable). 

Further, Var(t) = 0 since t is a constant. Using Var([) = 1, the variance of h/n. 
can be simply written as 

(23) 

Var(t2) =2 since [” has a Chi-square distribution with one degree of freedom. (If 
x has N(0, l), then x2 has x”(1). Since the variance of a Chi-square distribution 
is two times its degree of freedom, Var(t2) = 2.) 

Substituting c and p with its values, we note that the first term of Eq. (23) is 
identical to Eq. (12), which would be the computed value of the variance if only 
two terms of the series were considered. Thus, the bound of the error caused by 
excluding the third term is 

(24) 

Substituting G = ((l/m)e6(1 - (1 + t)e-“)) 1’2 and noting m > P(ef - t - l), we 
transform Eq. (24) as 

$(i)‘=($--(et-t-l) 

et-t-1 
< 

2/3(et - t - 1) 
1 =- 

33 - 

(25) 

Since ,6 L 5, the inclusion of the third term of the Taylor series for iz. in the 
computation of the variance adds at most 10 percent. Since we are actually 
interested in the standard error, we must take the square root of (1 + 1/2p) to 
obtain the percentage difference between the two computations of the standard 
error. Since the square root of 1.1 is approximately 1.05, we would encounter an 
error of only 5 percent. Thus, the addition of the third term in the calculation of 
the standard error was not deemed worthwhile. 
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