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Abstract: We propose a technique for specifying universal

quantification and existential quantification (combined with negation) '

in a two-dimensional (graphical) database query language. Unlike
other approaches that provide set operators to simulate universal
quantification, this technique allows a direct representation of universal
quantification. We present syntactic constructs for specifying universal
and existential quantifications, two-dimensional translation of uni-
versal quantification to existential quantification (with negation), and
translation of existentially quantified two-dimensional queries to rela-
tional queries. The resulting relational queries can be processed di-
rectly by many existing database systems. Traditionally, universal
quantification has been considered a difficult concept for typical data-
base programmers. We claim that this technique renders universal
quantification easy to understand. To substantiate this claim, we pro-
vide a simple, easy-to-follow guideline for constructing universally
quantified queries. We believe that the direct representation of uni-~
versal quantification in a two-dimensional language is new and that our
technique contributes significantly to the understanding of universal
quantification in the context of database query languages.

1.0 Introduction

Universal quantification is an important element in relational cal-
culus [Cod71]. Yet, it has not been fully integrated in many practical
database query languag There are two possible reasons: 1) in a
linear-syntax language, complex syntax is needed to support universal
quantification, and 2) universal quantification can be replaced with
existential quantification and negation, which many languages provide.
Some approaches support universal quantification by using set opera-
tors [Z1075] [Ozs87). However, in these approaches, the user has to
transform a universally quantified query to multiple subqueries con-
nected by set operators. Oftentimes, the transformation is a nontriviat
task for average database programmers. SQL {IBM86] supports uni-
versal quantification that can be specified in the form expression =
ALL (subquery). However, only very limited cases of universal
quantification can be represented in this form.

In this paper we present a simple, elegant technique for specifying
universal quantification. Owur technique employs a two-dimensional
representation of queries.2 Unlike other set-oriented approaches, the
technique allows a direct representation of universal quantification.
We first present syntactic constructs for specifying universal
quantification and existential quantification (with negation). We then
present an algorithm for transforming automatically a universally
quantified query to an existentially quantified query. Next, we present
an algorithm to transform an existentially quantified query to a rela-
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tional calculus query. This sequence of transformations proves that the
universally quantified query specified in our two-dimensional language
can be easily implemented by using any of many existing relational
database systems provided that it supports negation and existential
quantification. (Many database systems support existential
quantification implicitly or explicitly. See Section 4 for more discussion
on this aspect.)

Many two-di query la have been proposed in the
lltemture [Zl075] [McD75] [Won82] [Zha83] [EIm85] [Kim88]). We
e these &k ges by classifying their features into three cate-

gories: the data model. aggregation, and quantification. We pay special
attention to aggregation and quantification because these features re-
quire a scoping operator to define parts of the query (i.e., subgueries) to
which they apply. In a linear syntax, the scoping operator is a paren-
thesis or a keyword. In a two-dimensional syntax, it will be a box or
an enclosure. As we discuss in subsequent sections, we use boxes to
represent quantifications. Aggregation requires a scoping operator
when it appears in certain conditions as exemplified in [McD75).

A pioneering work in two-dimensional representation of database
queries is Query-by-Example (QBE) [Z1075). A language based on the
relational model, it supports aggregation and existential quantification
(with negation). It also supports universal quantification by using a set
notation. Due to the lack of the scoping operator (i.e. subqueries can-
not be defined), however, ambiguity can arise if aggregation appears
in a condition or if quantification involves more than one relation.
CUPID [McD?75] is also based on the relational model and has features
similar to QBE’s. However, it does not provide the mechanisms to
specify quantification although it does provide a scoping operator to
specify subqueries involving aggregation. GUIDE [Won82] is based
on the entity-relationship model, but does not support aggregation or
quantification. Elmasri and Larson [Elm85] also proposed a language
based on the entity-relationship model. It provides set operators and
aggregation operators, but does not provide explicit scoping operators.
However, it is possible to resolve ambiguity in scoping by rephrasing
the queries in English and asking the user to verify them. PICASSO
[Kim88] uses the universal relation model [Mai83] as its basis and
supports set operators as well as a scoping operator to be used for each
maximal object. The scoping operator can be used for aggregation, but
not for quantification. Quantification can be handled through set op-
erators although this aspect was not discussed explicitly in the paper.
GQL/ER [Zha83] combines the features of the entity-relationship
model and the universal relation model. This language does not sup-
port aggregation or quantification. Finally, Ozsoyoglu [Ozs87] pro-
posed a linear syntax language called RC/S*. RC/S* is a variation of
relational calculus that replaces universal quantification with oper-
ations on sets.

* We describe our

usi.ng me em;., i ip model b of its ele-
gance in rep ing the heless, the technique is equally ap-
plicable 1o the relauoml model wncre relationships are replaced with join
conditions.




Our query language supports aggregation, universal quantification,
and existential quantification (with negation). In this paper we con-
centrate on the facilities for quantifications and do not discuss aggre-
gation in depth. Here, we identify two distinct contributions of this
paper. First, we claim that our quantification scheme is easy to use.
Traditionally, universal quantification has been considered a difficult
concept for typical database programmers. Substantiating this claim,
we present a simple and easy guideline for constructing universally
quantified queries. This guideline works for most of the commonly
encountered queries. Second, we believe that the direct representation
(without using set operators) of universal quantification in a two-
dimensional language is new and it contributes to the understanding
of universal quantification in database query languages. The class of
universally quantified queries that can be exp d in out language is
formally defined in Section 5. We believe that it includes most of the
queries commonly encountered in practical situations.

The organization of the paper is as follows. Section 2 briefly in-
troduces our two-dimensional query language. Section 3 presents the
syntactic constructs for composing queries with universal
quantification.  Similarly, Section 4 presents the constructs for
existential quantification with negation. Section 5 formally defines the
class of universally quantified queries that we handle and presents the
algorithm for transforming a universally quantified query to an
existentially quantified query with negation. Section 6 presents the
algorithm for transforming an existentially quantified query to a rela-
tional calculus query. We present a simple guideline for composing
universally quantified queries in Section 7 and discuss a more complex
case in Section 8. Finally, we conclude the paper in Section 9.

2.0 A Two-Dimensional Query Language

In this section we briefly introduce our two-dimensional database
query language. We present only those features that are relevant for
the discussions in this paper. A full description of the language will be
presented in a future paper.

A query is a specification of conditions according to which entities
are selected from among those contained in the database. We define
a schema diagram as a graph that represents the structure of a database.
We use the entity-relationship (ER) model [Che76] for its basis. A
schema diagram consists of three constructs: entity sets, one-to-many
(including one-to-one) relationship sets, and many-to-many (including
nonbinary) relationship sets. An entity set appears as a rectangular
node with the name of the entity set in it. A one-to-many relationship
set appears as an arc with the name of the relationship in the middle.
An end of the arc adorned with the symbol ’*’ represents a cardinality
of ’many’, while an unadorned end represents a cardinality of ‘one’.
A many-to-many relationship set or a nonbinary relationship set ap-
pears as a rhombus node with the name of the relationship in it. We
draw unadorned arcs between the rhombus and the entity sets partic-
ipating in the relationship.

A query graph is a subgraph of the schema diagram with possibly
certain nodes and arcs replicated. In addition, each node of the query
graph can have logical conditions and projection information associated
with it. There is also a global condition box in which complex condi-
tions can be specified. We classify logical conditions into three cate-
gories: a selection condition that applies to a single node, a join
condition that applies to a set of nodes, and an aggregation condition
that involves an aggregation operation. These conditions are specified
in an area called a query box. For each node, one or more query boxes
can be created by clicking the mouse with the cursor positioned on the
node. For the purpose of this paper, however, we simply write the
condition next to the node without using a query box. Thus, we write
a selection condition next to the node representing the entity set to
which the condition applies. Similarly, we write a join condition next
to any one of the nodes representing the entity sets to which the con-
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dition applies. We do not discuss aggregation conditions because they
are beyond the scope of this paper. We select a projection attribute by
clicking on the attribute name in the query box. Selected projection
attributes are shown in reverse video. In this paper, for simplicity and
without loss of generality, we assume all the attributes of the entity set
(rather than a subset of the attributes) are projected. We indicate
projection by writing the symbol ’proj.’ next to the entity set.

In Figure 1 we illustrate the use of these constructs by using a
simple query. The query states "List the employees whose salaries are

more than one tenth of the budget of their department and who par-
ticipate in a project that has more than ten members."”

employ

proj . m Salary>0. 1xDept .Budget No-Member>10

Participate

Figure 1. An Example Two-Dimensional Query.

The query contains three entity sets Dept, Emp, and Project; a one-
to-many relationship set, employ; and a many-to-many relationship
set, Participate. A selection condition is specified for the entity set
Project, and a join condition is specified for the entity sets Emp and
Dept. The result of the query is projected from the entity set Emp.

3.0 Universally Quantified Queries

In this section we present how universally quantified queries are
expressed in our two-dimensional query language. Consider the fol-
lowing query: "List the departments that sell all the items supplied by
the supplier Parker." In relational calculus, the query is represented
as follows:

{T | 3p(Dept(DDADT = THIA
1.5 _sttem(I)ASupply(Su) ASupplier(S)A
I[1] = Su{1]AS[1] = Su[2]AS[2] = Parker -
35/(Sell(SHASA1] = DTT1IAST2] = MID))}

1

For convenience, we assume in this section that an entity set or a re-
lationship set is mapped to a relation. In Section 6, we relax this re-
striction by mapping a one-to-many relationship set to a foreign key
without representing it as a separate relation. The query is represented
in Figure 2, where a universal quantification box (U-box) drawn with
bold lines encloses universally quantified variables, I(for Item), Su(for
Supply), and S(for Supplier).

proj . oept] [Tten) [supp1ied NomesParker
Figure 2. A Query with Universal Quantification.




Note that the query in Figure 2 is different from the query in Fig-
ure 3, which says "List the departments such that all the items they sell
are supplied by the supplier Parker.” In relational calculus this query
is represented as

{T | 3p{Dept DNA(DT = A
V, si(Jem(1)ASell(SHASN1] = DT(1]ASA2) = /1] ~
is,su(Supplier(S)ASuppMSu)/\Su[]] = I[1)A
Su[2] = S[1)AS[2] = Parker)))}

In this query, the phrase "they sell” modifies the noun (items) that is
universally quantified, thus composing a noun phrase. In the relational
calculus representation, the variables corresponding to this noun
phrase are Si(for Sell) and J(for Item). These variables are universally
quantified because they represent the universally quantified noun and
the conditions associated with it. Thus, we enclose Sell and Item in a
U-box.

2)

m m Name~Parker

S S

Another Query with Universal Quantification.

Figure 3.

In Figure 4 and Figure S, we present two additional examples of
universally quantified queries. The schema diagrams in these examples
contain one-to-many and ternary relationship sets whereas those in
Figure 2 and Figure 3 contain many-to-many relationship sets. We
use these schema diagrams throughout the paper for illustrative pur-
poses.

The query in Figure 4 states "List the divisions where all the de-
partments they own have at least one employee whose salary is greater
than 50000 dollars.” In relational calculus, it is represented as follows:

{T | 3pADIUDVIADY = DA
¥V pr.0(Dept D) Aown(0)AO(1] = DVI1INO(2) = DT(1) 55
3 Emp(E)Nemploy(H)AH(1] = DTT1]A
HI(2] = E11]A(E[2] > 50000))))}

Note that the universally quantified noun phrase is "the departments
they own." Thus, we enclose the entity set Dept and the relationship
own in the U-box.

proj.| Div

*

.

employ

l
Salary>50000

A Universally Quantified Query with One-to-Many
Relationship Sets.

Figure 4.

The query in Figure 5 states "List the suppliers that supply all the
parts of type A to companies located in New York." The universally
quantified noun phrase is "the parts of type A. " Thus, the U-box en-
closes the entity set Item with the condition Type=A.

proj.| Supplier

Loc=New York

A Universally Quantified Query with a Ternary
Relationship Set.

Figure 5.

4.0 Existential Quantification and Negation

We discuss in this section how existential quantification is specified
in our two-dimensional query language. Existential quantification is
implicitly supported by many relational query languages. For exampie,
consider the SQL query "SELECT dept.* FROM dept, emp WHERE
dept.dno=emp.dno AND emp.salary>50000." This query can be re-
presented in relational cakculus as follows:

{T | 3p1£(dept DTIA(DT = T) Aemp(E)ADTI1] = E[3IA
ET2] > 50000)}

Note that the existential quantification on DT and E is implicit in the
SQL query. In these query languages, however, existential
quantification is made explicit when negation is involved. For example,
consider a SQL query "SELECT * FROM dept X WHERE NOT
EXISTS (SELECT * FROM emp WHERE X.dno=emp.dno AND
emp.salary>50000)." This query returns the dept tuples only when
there is no employee in the dept who earns more than 50000 doflars.
The query is represented in relational calculus as follows:

{T | 3p{deptDDIADT = DA-3lemp(EADTIN] = EBA
EI2] > 50000))} )

With an existential quantifier, associated is a scope within which
the quantification is effective. For example, in the query

{T | 3, [CVDAL = A3y, 13 [A(VAB(VIIA
V1[1] = v2[3]AV2(1] = V3211,

the scopes of existential quantifi are enclosed by the brackets.
In a two-dimensional language, we represent a scope by a two-
dimensional bracket, i.e., a box. In our language, we allow use of ex-
plicit existential quantification® only when it is used in conjunction with
negation. Thus, a box for negated existential quantification (NE-box)
represents NOT EXISTS (a subquery) in the SQL syntax. The use of
this NE-box (drawn with broken lines) is illustrated in Example 1 and
Example 2.

Example 1:
Consider the query, "List the departments where none of the em-

ployees in the department has a salary of more than 50000 dollars."
In our two-dimensional query language, the query is expressed as in

. Figure 6.




Figure 6.

Example 2:

A Query with an NE-box.

Consider the query, "List the divisions that do not own a depart-
ment where none of the employees has a salary of more than 50000
dollars." This example shows nested existential quantification with
negation. The query is shown in Figure 7.

A Query with Nested Existential Quantification
with Negation.

Figure 7.

5.0 Translation of a Universally Quantified Two-
Dimensional Query to an Existentially Quantified
Two-Dimensional Query

In this section we describe how we translate automatically a uni-
versally quantified query that the user composes into an existentially
quantified query. We present a translation algorithm and show its
correctness.

4 If there is no quantificd variable within the NE-box, it represents simply NOT (a
condition) in the SQL syntax.
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Universally quantified queries in our language are in the following
general form.

{T | 33y (P(V1, DAV 15(Q(V1, V2) =+ 35(R(V1, V2, 3N} (5)

where P, Q, and R are formulas, V1, V2, and V3 are sets of tuple vari-
ables, and T is a set of free variables.® Free variables represent the
tuples that appear in the result of the query, i.e., the tuples that are
projected. For example, the query in Figure 2 on page 4 was ex-
pressed as in Eq.(1).

We define a scope to be a set of entity sets, relationship sets, and
conditions. In Eq.(5) a scope corresponds to a set of tuple variables
and formulas. We define three different scopes. For convenience, we
define an entity set, a relationship set, or a logical condition as an ele-
ment.

1. Scope 1: This scope includes the entity sets that are projected
plus any other elements that are pot included in Scopes 2 and 3.
In Eq.(5), Scope 1 includes the tuple variables in V1 and T plus
the formula P(V1,7).

2. Scope 2: This scope includes the elements enclosed by the U-box
(i.e., universally quantified elements). In Eq.(5), Scope 2 in-
cludes the tuple variables in V2 plus the formula Q(V1,V2).

3. Scope 3: Consider a reduced graph where the projected entity
sets are eliminated. Scope 3 includes the elements that are di-
rectly or indirectly connected to those in Scope 2 in the reduced
graph. In Eq.(5), Scope 3 includes the tuple variables in V3 plus
the formula R(V1,12,V3).

Example 3 illustrates how we identify different scopes.
Example 3:

In Figure 4 the entity set Div belongs to Scope 1, the entity set
Dept and the relationship set own belong to Scope 2, and the entity set
Emp, the relationship set employ, and the condition Salary>50000
belong to Scope 3. Suppose the query is slightly modified as in
Figure 8. Then, the relationship set rel and the entity set Ent also
belong to Scope 1. Note that they do not belong to Scope 3.

proj.

Ay

own

Salary > 50000

Figure 8. An Example Query for Identifying Scopes.

We do not allow free variables inside universal quantification (i.c., projection in-
side the U-box) for the safety of the query. The safety is briefly discussed in Ap-
pendix 1.



We now present the algorithm for translating a universally quanti-
fied query to an existentially quantified query.

Algorithm 1 (U-to-E Translation):

Put an NE-box around all the elements in Scopes 2 and 3.

2. Put an NE-box around all the elements in Scope 3. Note that this
box is completely enclosed by the NE-box in Step 1. If no ele-
ment exists in Scope 3, create an element with the value of "true"
and put an NE-box around it.

Correctness of the Translation
Algorithm 1 essentially reflects the following equality:

V(4 - 3B) = V(-4V3B) = ~H4A-3B). 6)
Using this equality, Eq.(5) can be transformed as follows:
1T | 3y (PVL,DA-315(Q(V], V2)A-(R(VL, V2, VIONE (1)

Eq.(7) indicates that an NE-box is applied to all the elements in Scopes
2 and 3. In addition, another NE-box is applied to all the elements in
Scope 2. This proves the correctness of the translation algorithm.

We illustrate this translation in Examples 4 and 5.
Example 4:

The query in Figure 4 is transformed from Eq.(3) as follows:

{T | 3, A{DIMDVIN(DV = DA
~3pr,0(DeptDT)Aown(0)AO[1] = DV1IAOI2) = DTI{IA
-3¢ ;(Emp(E) Nemploy(H)AH[1] = DTI1IA
HI2) = E[1)A(E12] > 50000))))}

Eq.(8) corresponds to the equivalent existential query in Figure 7.
Example 5:

The query in Figure 5 is translated into an existentially quantified
query in Figure 9. The query states "List the suppliers for which there

are no parts of type A that they do not supply to companies located in
New York."

]
]
Loc=New York :
1
]

Figure 9.

An Existentially Quantified Query with a Ternary
Relationship Set.

6.0 Translation of an Existentially Quantified
Two-Dimensional Query to a Relational Calculus

Query

In Section 5, we discussed how a universally quantified query can
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be translated to an existentially quantified query with negation. In this
section we present an algorithm for translating an exi ially quanti
fied query to a tuple relational calculus query. Using this transforma-
tion, a universally quantified query can be easily implemented by using
existing relational database systems that support only existential
quantification with negation.

To translate the query, we first need to translate the schema ac-
cording to the underlying data model. The translation of an entity-
relationship model schema to a relational model schema is well known
[UN82]. Here, we adopt a translation technique using system-
generated identifiers, i.e., surrogates. We briefly review basic tech-
niques for schema translation and then present query translation.

6.1 Schema Translation

For schema translation, we introduce two types of relations: entity
relations and relationship relations. First, for each entity set, we create
a relation scheme (entity relation) that consists of all the attributes of
the entity set plus a surrogate attribute and foreign key attributes. The
surrogate uniquely determines the tuple. A foreign key attribute is
added for each one-to-many relationship set in which this entity set is
on the many-side of the relationship. The foreign key attribute is the
surrogate attribute of the relation on the one-side of the relationship.
We treat a one-to-one relationship set like a one-to-many relationship
set, adding a foreign key attribute to one of the entity sets. We treat
the entity set so chosen as if it were the one on the many-side of the
one-to-many relationship. Second, for each many-to-many or nonbi-
nary relationship set, we create a relation scheme (relationship re-
lation) that consists of the surrogate attributes of the entity sets
participating in the relationship.

6.2 Query Translation

We now present the query translation algorithm. We describe it in
two steps: We first consider queries without NE-boxes. Then, we
consider queries containing NE-boxes.

6.2.1 Queries without NE-boxes

Algorithm 2 (Simple-Translation):
Input: A two-dimensional query without NE-boxes
Output: A tuple relational calculus query

Constructing a relational query in this case is straightforward; thus,
we only sketch the algorithm. First, we construct an atom of the form
R(V) for each entity set, many-to-many relationship set, or nonbinary
relationship set, where R is the name of the relation corresponding to
the entity set, many-to-many relationship set, or nonbinary relation-
ship set, and V is the tuple variable. We say that the formula R(¥)
defines the tuple variable V. Second, we construct a formula of the
form V1[A1] = V2[A2] for each one-to-many relationship set, where
V1, V2 are tuple variables for the relations on either side of the re-
lationship, A1 is the positional index for the surrogate attribute of the
relation on the one-side of the relationship, and 42 is the positional
index for the foreign key attribute of the relation on the many-side of
the relationship. Similarly, we construct two equality formulas for each
many-to-many relationship set equating the tuple variable for each of
the two entity relations and the tuple variable for the relationship re-
lation via the surrogate and foreign key attributes. For a nonbinary
relationship set involving » entity sets, we construct n equality formu-
las. Third, we construct an appropriate formula for each condition
specified. Fourth, all these formulas are logically ANDed, and the re-
sult is quantified BY 3, pie wrioties de fined in the formuias - LaSt, We €quate each
tuple variable to be projected with a free variable 7, Example 6 il-
lustrates this algorithm.



Example 6:

Consider the query in Figure 10: "List the suppliers who supply a
part of type A to a company located in New York."

proj. I sunpuerJ rCnnunyJ Loc=New York Type=A

Figure 10.

A Query with a Ternary Relationship Set.

The corresponding relational query is as follows:

{T | 35 c.p su(Suppliers(S)ACompany(C) APart(P)ASupply(Su)A\
(S = DAS(1] = Su[1JAC[1] = Su[2]JAP[1] = Su[3]A
C12) = New YorkAP[2] = A)}

Here, S, C, P, and Su are tuple variables, S[1], C[1], P[1] represent
surrogate attributes of relations Supplier, Company, and Part, and
Su[1), Su[2] , Su[3] represent foreign key attributes of the relation
Supply. The first three equality formulas come from the ternary re-
lationship set Supply and the last two come from the conditions for the
entity sets Company and Part.

6.2.2 Queries with NE-boxes

‘We use the notation Q... to represent the part of the query Q that
is outside the outermost NE-boxes within Q. We call the part of the
query within an NE-box as Q... If a relationship name appears within
the NE-box, the relationship set is part of Q,,., even if it may be con-
nected to an entity set outside the NE-box. The parameter n is the
number of outermost NE-boxes in Q.

Algorithm 3 (Translation):
Input: A two-dimensional query Q with zero or more NE-boxes
Output: A tuple relational calculus query

Begin
G = Simple-Translation(Q,,,.)
For each outermost NE-box , of Q
F, o <3y e veriatles defined in (@uncrpom, TTDSIALIOD (O, )
Output = GARARA...AF,
End

In a formula F, we do not generate existential quantification if
(Qinner) e s DO tuple variables defined in it. In this case, the sub-
query simply becomes a condition. Note that Algorithm 3 is called
recursively for the subqueries within NE-boxes. In translating a sub-
query, all the tuple-variables defined outside its scope can be refer-
enced. For example, in Example 7, the tuple variable DT is referenced
within the innermost subquery.

Example 7:

Consider the query in Figure 7. The translated tuple relational
calculus query is as follows:
{T | 3pHUDIADVIA(DY = T)A-3p{Dept DTI)ADU 1] = DTI2IN
~3g(Emp(E)ADTI1] = E[3)AE[2] > 50000)))3,
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where DV[1] is the surrogate of Div, DT{1] and DI2] are the surrogate
and the foreign key of Dept, E[3] is the foreign key of Emp, and Ef2]
is the Salary attribute.

7.0 A Guideline for Composing a2 Universally
Quantified Query

Writing a universally quantified query is often not intuitively obvi-
ous. Thus, we present a simple guideline for composing a universally
quantified query. We present this guideline for the following reasons:

1. The concept of universal quantification is more complex than
most other concepts in a query language. We believe that this
complexity is inherent and is not specific to a query language.

2. Even when a query does not involve universal quantification, the
flexibility of a natural language (e.g., words like "all") can give
the impression that the query does involve universal
quantification, as we explain in the guideline below.

Guideline (U-query):

1. Rewrite the query in English by eliminating any occurrences of
"all" (or "each," "every," "at least") where the elimination does
not alter the meaning of the query. For example, consider the
query, "List all the divisions where all departments they own have
an employee whose salary is greater than 50000 dollars.” In this
query, the first "all" can be removed without altering the meaning
of the query, but the second "all" cannot. Thus, the reduced
query is "List the divisions where all the departments they own
have an employee whose salary is greater than 50000 dollars."

2. Identify the noun phrase that is quantified by the word "all." A
noun phrase includes the noun quantified by the word "all" and
the phrase (if any) that modifies the quantified noun. In the ex-
ample above, the noun phrase is "the departments they own."

3. Compose a query as if the word "all" were replaced by an indef-
inite article. In the example above, we construct the query, "List
the divisions where a department they own has an employee
whose salary is greater than 50000 dollars." Construct the cor-
responding query graph.

4. Put a U-box around the entity sets, relationship sets, and logical
conditions that correspond to the noun phrase identified in Step
2. Thus, the example query is represented as in Figure 4.

8.0 Queries with Implicit Projection

In Section 7 we discussed a basic guideline for composing a uni-
versally quantified query. In this section we discuss a case that needs
special attention.

A query may have different meanings depending on whether cer-
tain elements belong to Scope 1 or Scope 3. For example, consider the
query in Figure 11.



proj .

IDeptl

Color=B8lue

A Query Becomes Ambiguwous if Implicit
Projection is Allowed.

Figure 11.

The query states "List the divisions such that for each blue item
there is a department in the division that sells the item.” Note that the
query (Queryl) is different from the following query (Query2): "List
the divisions owning a department that sells all the bive items."
Query1 qualifies a division if the departments it owns collectively cover
all the blue items, while Query2 requires that a single department cover
all the blue items.

The scoping rules in Section 5 interpret the query as Query1 since
the entity set Dept and the relationship set own are contained in Scope
3. To interpret the query as Query2, we have to assume that there is
an implicit projection on the entity set Dept, which will put the entity
set Dept and the relationship set own in Scope 1.

Implicit projection makes the query ambiguous. To disambiguate
it, we have two alternatives: 1) to provide a syntactic construct to
distinguish Scope 1 from Scope 3 explicitly or 2) to disallow implicit
projection by requiring that the entity set Dept be projected as well.
We chose the latter option for the simplicity of the scoping rules and
for ease of use. We believe that this requirement is reasonable since
in Query2 the user would quite likely be interested in having in the
query result the specific department that covers all the blue items.

9.0 Summary

We have presented a technique for specifying universal
quantification and existential quantification (with negation) in a two-
dimensional database query language. Our technique allows a direct
representation of universal quantification in a two-dimensional manner
without using set operators. We have also presented a two-
dimensional algorithm to transform a universally quantified query to a
query with existential quantification and negation, and showed its cor-
rectness. Finally, we have presented an algorithm to transform an
existentially quantified query to a relational calculus query. This
transformation allows the universally quantified queries to be easily
processed by many existing database management systems that sup-
port existential quantification with negation.

Universal quantification has been considered a difficult concept in

query languag We claim that our technique renders the
concept easy to understand. Substantiating this claim, we have pre-
sented a simple, easy-to-follow guideline for constructing queries with
universal quantification.

ry
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We believe that the technique of directly representing universal
quantification without using sets in a two-dimensional query language
is new and that its ease of use will contribute to bringing the concept
of universal quantification more into the world of database query lan-
guages.
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Appendix I Safety of Queries

In this appendix we briefly discuss the safety issue. The safety is-
sve was discussed extensively in [Dem82] [Van87] [Kri86] [She86].
We omit detailed proofs and discussions on safety since they are be-
yond the scope of the paper.

A query (or a formula) is safe if it has a finite result. A class of
formulas called ewaluable formulas defined by Demolombe [Dem82)
and refined by Van Gelder and Topor [Van87] is by far the largest
known decidable subset of safe formulas. A class of allowed formulas
is a subset of evaluable formulas whose intermediate results are finite
as well. Thus, allowed queries ensure safe execution to produce the
results.

It can be shown that any relational calculus formula in the form of
Eq.(5) is not evaluable if a free variable appears in Scope 2 or Scope
3, ie., in formulas Q and R. For example, the following queries are
not evaluable (and in this case unsafe):

Tt iyl(P(Vl)/\qu(Q(Vl,VZ,T) - 33RVLZVIMY (g
= {T | py(P(VDAV (- Q(V1,V2,DVa13(R(V1,V2,V3))N}

{T | 3 (POVDAY 1(Q(V1,V2) = 3p3(R(V1,V2,V3, D))} 10)
- {T| im(P(Vl)/\V;Z(-Q(Vl,VZ)Vay;(R(Vl,n,WJ))))}

In Eq.(9) the universally quantified subformula is satisfied regard-
less of T values if the second disjunct is satisfied. It is also satisfied for
all (and possibly an infinite number of) T values that do not satisfy the
formula Q(V1,V2,7). (According to the formalism in [van87],
gen(T, ~-Q(V1,V2,1)) and gen(T, R(V1,V2,V3)) fail.) Similarly, in
Eq.(10), the universally quantified subformula js satisfied regardless
of T values if the first disjunct is satisfied. (According to [Van87],
gen(T, ~Q(V1,¥2)) fails.) Thus, both queries can produce an infinite
number of values for T and therefore are unsafe.

It can also be shown that a formula in the form of Eq.(5) is allowed
(and therefore safe) if it satisfies the following conditions:

1. For every quantified subformula, each quantified variable appears
in a base formula that is not contained in a nested quantification.
A base formula is an atomic formula whose predicate symbol re-
presents a database relation.

2. The subformulas P, Q, and R are conjuncts of base formulas,
atomic formulas that are conditions, and universally quantified
formulas of the form in Eq.(5) that satisfy this condition
recursively.
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We note that the definition of the allowed class of formulas presented
in [Van87] does not have to be extended for equality since all the var-
iables appear in base formulas that form conjunctions in the formulas
P, Q,and R.

The two-dimensional query language we present in this paper,
when mapped to the relational model, satisfies the two properties With
one exception. This exception is the treatment of the set of free vari-
ables T, i.e., the variables in T do not appear in base formulas. Nev-
ertheless, since they are always equated to variables in the base
formulas, they do not affect the safety of the query. Hence, we can
treat the queries as if they did not include these free variables. There-
fore, the queries in our query language are allowed, and safe.



