
ODYS: An Approach to Building a Massively-Parallel
Search Engine Using a DB-IR Tightly-Integrated Parallel

DBMS for Higher-Level Functionality

Kyu-Young Whang†, Tae-Seob Yun†, Yeon-Mi Yeo†, Il-Yeol Song‡, Hyuk-Yoon Kwon†, In-Joong Kim†

†Department of Computer Science, Korea Advanced Institute of Science and Technology (KAIST)
Daejeon, Korea

{kywhang, tsyun, ymyeo, hykwon, ijkim}@mozart.kaist.ac.kr

‡College of Information Science and Technology, Drexel University
Philadelphia, USA

songiy@drexel.edu

ABSTRACT
Recently, parallel search engines have been implemented
based on scalable distributed file systems such as Google
File System. However, we claim that building a massively-
parallel search engine using a parallel DBMS can be an
attractive alternative since it supports a higher-level (i.e.,
SQL-level) interface than that of a distributed file system
for easy and less error-prone application development while
providing scalability. Regarding higher-level functionality,
we can draw a parallel with the traditional O/S file system
vs. DBMS. In this paper, we propose a new approach of
building a massively-parallel search engine using a DB-IR
tightly-integrated parallel DBMS. To estimate the perfor-
mance, we propose a hybrid (i.e., analytic and experimental)
performance model for the parallel search engine. We argue
that the model can accurately estimate the performance of
a massively-parallel (e.g., 300-node) search engine using the
experimental results obtained from a small-scale (e.g., 5-
node) one. We show that the estimation error between the
model and the actual experiment is less than 2.13% by ob-
serving that the bulk of the query processing time is spent at
the slave (vs. at the master and network) and by estimating
the time spent at the slave based on actual measurement.
Using our model, we demonstrate a commercial-level scal-
ability and performance of our architecture. Our proposed
system ODYS is capable of handling 1 billion queries per
day (81 queries/sec) for 30 billion Web pages by using only
43,472 nodes with an average query response time of 194 ms.
By using twice as many (86,944) nodes, ODYS can provide
an average query response time of 148 ms. These results
show that building a massively-parallel search engine using
a parallel DBMS is a viable approach with advantages of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’13 June 22–27, 2013, New York, New York, USA.
Copyright 2013 ACM 978-1-4503-2037-5/13/06 ...$15.00.

supporting the high-level (i.e., DBMS-level), SQL-like pro-
gramming interface.

Categories and Subject Descriptors
H.3.4 [Information Storage and Retrieval]: Systems
and Software—Performance evaluation (efficiency and ef-
fectiveness), Distributed systems; C.4 [Computer Systems
Organization]: Performance of Systems—Measurement tech-
niques, Modeling techniques

Keywords
massively-parallel search engines, parallel DBMSs, DB-IR
tight integration

1. INTRODUCTION
1.1 Motivation

A Web search engine is a representative large-scale sys-
tem, which handles billions of queries per day for a petabyte-
scale database of tens of billions of Web pages [9, 19]. Until
now, commercial Web search engines have been implemented
based on a scalable distributed file system such as Google
File System (GFS) [12] or Hadoop Distributed File System
(HDFS) [16]. These distributed file systems are suitable for
large-scale data because they provide high scalability using
a large number of commodity PCs. A storage system pro-
posed for real-world scale data with better functionality is
the key-value store. It stores data in the form of a key-value
map, and thus, is appropriate for storing a large amount
of sparse and structured data. Representative key-value
stores are Bigtable [6], HBase [15], Cassandra [5], Azure [2],
and Dynamo [11]. These systems are based on a large-scale
distributed storage such as a distributed file system [6, 15]
or a distributed hash table(DHT) [2, 5, 11].

However, both distributed file systems and key-value stores,
the so-called “NoSQL” systems, have very simple and primi-
tive functionality because they are low-level storage systems.
In other words, they do not provide database functional-
ity such as SQL, schemas, indexes, or query optimization.
Therefore, to implement high-level functionality, developers
need to build them using low-level primitive functions. Re-
search for developing a framework for efficient parallel pro-
cessing of large-scale data in large storage systems has been

313

proposed. MapReduce [8] and Hadoop [14] are the examples
of parallel processing frameworks. These frameworks are
known to be suitable for performing extract-transform-load
(ETL) tasks or complex data analysis. However, they are
not suitable for query processing on large-scale data because
they are designed for batch processing and scanning of the
whole data [27]. Thus, commercial search engines use these
frameworks primarily for data loading or indexing instead
of user query processing.

High-level functionalities such as SQL, schemas, or in-
dexes that are provided by the DBMS allow developers to
implement queries that are used in search engines easily be-
cause they provide a higher expressive power than primitive
functions in key-value stores, facilitating easy (and much less
error-prone) application development and maintenance. In
this sense, there have been many research efforts to sup-
port SQL even in the NoSQL systems. Fig. 1 shows the
representative queries used in search engines that can be
easily specified using the high-level functionality. Fig. 1 (a)
shows a schema of a relation pageInfo that represents the
information of Web pages. Fig. 1 (b) shows a SQL statement
that represents a keyword query. The query finds the Web
pages that contain the word “Obama” from the pageInfo re-
lation. Fig. 1 (c) shows a SQL statement that represents a
site-limited search. Site-limited search limits the scope of
a user query to the set of Web pages collected from a spe-
cific site [29]. The query finds the Web pages that contain the
word “Obama” from the site having siteId 6000. Fig. 1(d)
shows one of its optimized versions. It requires an index-level
join operation on docId with text predicates involving con-
tents and siteIdText attributes (see Fig. 4(a) in Section 2).

(a) pageInfo relation. (c) SQL statement for site-limited search.

(b) SQL statement for keyword search

(d) An optimized vertion of SQL statement for site-limited search.

docId integer System defined identifier

pageId integer Page identifier

siteId integer Site identifier

siteIdText text Site identifier

title text Page title

URL varchar Page URL

content text Page content

Attribute
Name

Attribute
Type Description SELECT p.pageId

FROM pageInfo p
WHERE MATCH(p.content, “Obama”)>0;

SELECT p.pageId
FROM pageInfo p
WHERE MATCH(p.content, “Obama”)>0
AND p.siteId = 6000;

SELECT p.pageId
FROM pageInfo p
WHERE MATCH(p.content, “Obama”)>0 AND MATCH(p.siteIdText, “6000”)>0;

Figure 1: An example of a schema and SQL state-
ments.

These high-level functionalities allow us to easily develop
advanced search engines with multiple search fields such as
on-line discussion board systems as shown in Fig. 2 (a). The
presented advanced search involves multiple fields as well
as community-limited search capability. It requires complex
index-level join operations among multiple fields, which re-
quire an implementation with high-level complexity. How-
ever, SQL allows us to implement those operations with a
simple specification. Moreover, an index can be defined on
any column by a simple declaration using SQL so that these
complex index-level joins on multiple columns can be pro-
cessed efficiently. Fig. 2 (b) shows a simple SQL statement
for an advanced search that requires a four-way index-level
join on docId with text predicates involving title, content,
communityIdText, and reg date attributes. Likewise, other
search related applications can be easily developed by using
SQL.

A parallel DBMS is a database system that provides both
storage and parallel query processing capabilities. It could
be considered an alternative to a large-scale search engine

SELECT p.pageId
FROM page p
WHERE MATCH(p.title, “database”) > 0
AND MATCH(p.content, “index”) > 0
AND MATCH(p.communityIdtext, “3”) > 0
AND p.reg_date>=“2001-01-01”;

(a) Advanced search with multiple fields.
(b) An SQL statement for an advanced

search using attribute embedding.

Community-limited search

Limited search: Search only within Linux community

Title+Content

Title

Content

Writer

database

index

AND

AND

2001-01-01 tofromDates
(ex: from 2002-01-25 to 2002-01-30)

Figure 2: An example of advanced search.

because it has higher scalability and performance than tra-
ditional single node DBMSs and also has rich functional-
ity such as SQL, schemas, indexes, or query optimization.
Stonebreaker et al. [27] argue that parallel DBMSs are scal-
able enough to handle large-scale data and query loads.
They claim that parallel DBMSs are linearly scalable and
can easily service multiple users for database systems with
multi-petabytes of data. However, parallel DBMSs have
been considered as not having enough performance and scal-
ability to be used as a large-scale search engine [1, 8], one
outstanding reason being the lack of efficient information
retrieval (IR) functionality.

To enable a DBMS to efficiently handle keyword search,
tight integration of database (DB) and information retrieval
(IR) functionalities has been proposed [28, 29]. The tight
DB-IR integration implements IR functionality within the
core of a DBMS, and thus, IR queries become efficient due
to short access paths to the IR functionality. Two techniques
for providing DB-IR integrated queries also have been pro-
posed: 1) IR index join with posting skipping [28, 29] and
2) attribute embedding [29] to be explained in Section 2.

1.2 Our Contributions
In this paper, we make the following three contributions.

First, we show that we can construct a commercial-level
massively parallel search engine using a parallel DBMS, which
to date has not been considered practical. Our proposed ar-
chitecture, featuring a shared-nothing parallel DBMS, con-
sists of masters and slaves. Our system, ODYS, following
the proposed architecture achieves commercial-level scalabil-
ity and efficiency by using Odysseus, which features DB-IR
tight integration [28, 29], as its slaves. We have verified that
each Odysseus is capable of indexing 100 million Web pages
(loading and indexing in 9.5 days in a LINUX machine1),
and thus, ODYS is capable of supporting a large volume
of data with a small number of machines. Furthermore, the
DB-IR tight integration enables the system to efficiently pro-
cess a large number of queries arriving at a very fast rate.
We show that ODYS can achieve a commercial-level perfor-
mance especially for single-keyword searching, which is the
most representative query.

Second, we propose an analytic and experimental per-
formance model (simply, a hybrid model) that estimates
the performance of the proposed architecture of the parallel
DBMS, and then, validate the accuracy of the model. We ar-
gue that this model can accurately estimate the performance
of a massively-parallel engine using the experimental results
obtained from a small-scale one. For the master and net-
work, we model each system component using the queuing
model, and then, estimate the performance. For the slave,
we propose an experimental method for accurately predict-
ing the performance of a scaled-out (e.g., 300-node) system

1The machine is with a quad-core 2.5 GHz CPU, 4 Gbytes
of main memory, and a RAID 5 disk having 13 disks (disk
transfer rate: avg. 83.3 Mbytes/s) with a total of 13 Tbytes,
a cache of 512 Mbytes, and 512 Mbytes/s bandwidth.

314

using a small-scale (e.g., 5-node) one. We note that the bulk
(say, 92.28%∼ 96.43%) of the query processing time is spent
at the slave compared with the master and network. Our
experimental method ensures high predictability of the slave
side query processing time (which contributes most of the
total processing time) since the estimation is directly derived
from actual measurement. To verify the correctness of the
model, we have built a ten-node parallel system of the pro-
posed architecture and performed experiments with query
loads compatible to those of a commercial search engine.The
experimental results show that the estimation error between
the model and the actual experiment is less than 2.13%. The
proposed hybrid approach allows us to substantially reduce
costs and efforts in building a large-scale system because
we can accurately estimate its performance using a small
number of machines without actually building it.

Last, by using the performance model, we demonstrate
that the proposed architecture is capable of handling com-
mercial-level data and query loads with a rather small num-
ber of machines. Our result shows that, with only 43,472
nodes, ODYS can handle 1 billion queries/day2 for 30 bil-
lion Web pages with an average query response time of 194
ms. We also show that, by using twice as many (i.e., 86,944)
nodes, ODYS can provide an average query response time of
148 ms. This clearly demonstrates the scalability and effi-
ciency of the proposed architecture, and supports our argu-
ment that building a massively-parallel search engine using
a parallel DBMS can be a viable alternative with advan-
tages such as the high-level (i.e., DBMS-level) and SQL-like
programming interface.

The rest of this paper is organized as follows. Section 2 in-
troduces techniques of DB-IR integration as a preliminary.
Section 3 proposes the architecture of ODYS, a massively
parallel search engine using a DB-IR tightly integrated par-
allel DBMS. Section 4 proposes the performance model of
ODYS. Section 5 presents the experimental results that val-
idate the proposed performance model and demonstrate the
scalability and performance of ODYS. Section 6 concludes
the paper.

2. DB-IR INTEGRATION
In the database research field, integration of DBMS with

IR features (simply, DB-IR integration) has been studied
actively as the need of handling unstructured data as well
as structured data is rapidly increasing. There are two ap-
proaches to DB-IR integration: loose coupling and tight cou-
pling. The loose coupling method—used in many commer-
cial systems—provides IR features as user defined types and
functions outside of the DBMS engine (e.g., Oracle Car-
tridge and IBM Extender). This method is easy to imple-
ment because there is no need to modify the DBMS engine,
but the performance of the system gets degraded because of
long access paths to the IR feature. On the other hand, the
tight coupling method [28, 29, 30] directly implements data
types and operations for IR features as built-in types and
functions of a DBMS engine (e.g., Odysseus [28, 29, 30] and
MySQL [20]). The implementation of the method is difficult
and complex because the DBMS engine should be modified
but the performance is accelerated. Thus, the tight coupling
method is appropriate for a large-scale system to efficiently
handle a large amount of data and high query loads. The

2Nielsenwire [23] reports that Google handled 214 million
queries/day in the U.S. in February 2010.

IR index of Odysseus [28]3 and MySQL are very close, but
Odysseus has more sophisticated DB-IR algorithms for IR
features as discussed below.

In a tightly integrated DB-IR system, an IR index is em-
bedded into the system as shown in Fig. 3 (a). As in a
typical DBMS, a B+-tree index can be constructed for an
integer or formatted column. Similarly, an IR index is (au-
tomatically) constructed for a column having the text type.
Fig. 3 (b) shows the structure of the IR index. The IR index
consists of a B+-tree index for the keywords, where each
keyword points to a posting list. The leaf node of the B+-
tree has a structure similar to that of an inverted index.
Each posting list for a keyword consists of the number of
postings and the postings for the keyword. A posting has
the document identifier (docId), and the location informa-
tion where the keyword appears (i.e., docId, offsets). On
the other hand, distinct from the inverted index, the IR in-
dex has a sub-index [28]3 for each posting list to search for
a certain posting efficiently.

data record text integer

IR index B+-tree index

…

postings docID1, offsets docID2, offsets . . .

keyword B+-tree

Sub-index (for each posting list)

a posting list

(a) IR index embedding.

(b) Structure of the IR index.

a posting

. . .

. . .

Figure 3: The IR index of the DB-IR tightly inte-
grated DBMS.

In the DB-IR tightly integrated DBMS, two methods are
used to improve the search performance: IR index join with
posting skipping [28, 29] and attribute embedding [29]. IR
index join with posting skipping is a technique for efficiently
searching documents (e.g., Web pages) that have multiple
co-occurring keywords. To search for documents having co-
occurring keywords, the posting lists of the keywords should
be joined. The posting skipping method identifies the part
of the posting lists that need to be merged and skips the
rest by using sub-indexes [28]. Attribute embedding is a tech-
nique for efficiently processing a DB-IR query that joins an
attribute of a structured data type and an attribute of the
text data type. For example, suppose that there are two at-
tributes A and B having the text type and the integer type,
respectively, and they are often accessed together. The at-
tribute embedding method embeds the value of attribute B
in each posting of attribute A. In this case, a DB-IR query
that joins attributes A and B can be simply processed by
one sequential scan of the posting list. In summary, it is
the tightly integrated IR features, such as the embedded
IR index with posting skipping, and attributed embedding,
that makes ODYS a powerful search engine in the proposed
parallel DBMS.

Example 1. Fig. 4 shows the processing of an IR query
in a tightly integrated DB-IR system. Fig. 4 (a) shows an
example of IR index join with posting skipping. When a site-
limited query as in Fig. 1 (c) is given, siteIdText of type
text is used instead of siteId of type integer as in Fig. 1 (d).
Thus, the postings to be merged from each posting list are
found efficiently using sub-indexes, as in the multiple key-
word query processing. Fig. 4 (b) shows an example of at-
tribute embedding. The values for siteId of type integer are
embedded in the postings of Content. We can efficiently

3Patented in the US in 2002; application filed in 1999.

315

process the queries involving both siteId and Content as in
Fig. 1 (c) by one sequential scan of the posting list. �

Subindex

Subindex

Keyword
“Obama”

doc10 doc14 doc49

Keyword
“6000” doc10 doc15 doc30 doc32doc14

doc30 doc35

doc38

doc15

doc11

doc50

Posting list

doc49

(a) Posting Skipping.

doc1 5000 doc10 doc13 2300 doc22 4200 doc25 9000

Keyword
“Obama”

docID siteID

Posting lista posting

6000

(b) Attribute Embedding.

.

. . .

.

Index for
attribute
“siteIdText”

Index for
attribute
“content”

Index for
attribute
“content”

Figure 4: IR query processing in a tightly integrated
DB-IR system [29].

3. ODYS MASSIVELY-PARALLEL SEARCH
ENGINE

3.1 Architecture
Fig. 5 shows the architecture of ODYS. ODYS consists of

masters 4 and slaves 5. The masters share the slaves, and
the slaves have a shared-nothing architecture. Each slave
is Odysseus storing data in a disk array. The master and
the slaves are connected by a gigabit network hub, and they
communicate by using an asynchronous remote procedure
call (RPC)6.

ODYS Parallel-IR Master

. . .

LAN card1 LAN cardnh. . .

machine

process

disk array

Slave1 Slavens

.

.

Slave 1+
nh

ns
1)-(nh

Slave
nh

ns

. . .Disk1 Diskw

Odysseus
DBMS

Shared buffer

. . .Odysseus
DBMS

Parent

Child
(async. calls)

Hub1 Hubnh

. . .

Figure 5: The architecture of ODYS.

The master stores metadata such as slaves’ IP addresses,
slaves’ database paths (i.e., the location of the disk device
storing each slave database), and schemas. The slaves store
crawled Web pages and their IR indexes. There are two well-
known methods for partitioning the index [9]: 1) partitioning
by documents and 2) partitioning by keywords. For perfor-
mance reasons, most commercial search engines including
Google use the former method [9], which makes slaves work
in parallel for processing the same query. Thus, we also em-
ploy the same method. That is, the entire set of Web pages is
partitioned horizontally. Each slave stores a segment of the
partitioned data and creates an IR index for each text-type
attribute in the segment. To build a scalable shared-nothing
parallel DBMS, we store tables into slaves in such a way to
avoid a cross-node join. In search engines, typically there is
one large-scale table, namely, the one for Web pages (say,
227 TBytes) and many small-scale tables (say, < 1 GBytes)
such as tables for schema information, site information, and
database statistics. We partition only the large-scale table
into slaves and duplicate small-scale tables in every slave7.

4The ODYS Parallel-IR Master consists of 58,000 lines of C
and C++ code.
5The Odysseus (slave) consists of 450,000 lines of C and
C++ code.
6We use socket-based RPC consisting of 17,000 lines of C,
C++, and Python code developed by the authors.
7In this design, if two or more large-scale tables were used,
join operations among those tables would not be allowed.

ODYS processes a user query as follows. When a user
query arrives at a master, the master distributes the query
to all slaves. Then, the master merges the results returned
from the slaves and returns the final results to the user. The
slaves process the query and return the results to the mas-
ter. Each slave returns top-k results in the ranking order,
and the master performs a merge operation for the results
returned from the slaves to get the final top-k results. The
slaves store each posting list of the IR index in the PageR-
ank order (i.e., we are using query-independent ranking) to
make top-k search efficient. Since the posting lists are stored
in the PageRank order, the query processing performance is
not much affected regardless how long the posting lists are
or how big the database is. In this paper, we focus on the
performance issues of the search engines and not on the ef-
fectiveness of ranking results. For performance reasons, we
use query-independent ranking, which can be computed in
advance, as many large-scale commercial search engines do,
but any other ranking methods can be applied8.

3.2 Updates and Fault Tolerance
In this paper, we focus on the performance issues of the

search engine. Thus, we only briefly mention update and
fault tolerance issues.
Updates and concurrency control: The search engines
should handle a tremendous number of concurrent queries,
which mostly consist of read-only transactions. Thus, in
this paper, we focus on read-only transactions and the need
for locking can be obviated9. Nevertheless, ODYS supports
updates on a per-node basis with strong consistency [30];
thus, any transaction pertaining to individual nodes can be
properly handled [29]. Update transactions can be processed
on dedicated nodes and the nodes on service can be replaced
with the updated nodes periodically.
Fault tolerance: Currently, fault tolerance features are
being implemented in ODYS. We adopt an approach simi-
lar to the one proposed in Osprey [31]. In Osprey, Yang et
al. [31] proposed a method implementing MapReduce-style
fault tolerance functionality in a parallel DBMS. The pro-
posed method maintains replicas and allocates small sized
tasks dynamically to the nodes according to the loads of each
node. As in Osprey, availability and reliability are achieved
by maintaining multiple replicas of ODYS, and a middleware
can be used for dynamically mapping masters and slaves of
the multiple ODYS replicas. We call a replica of ODYS an
ODYS set.

3.3 Other Parallel Processing Systems
In this section, we discuss the architectural relationships

between ODYS and other recently developed parallel pro-
cessing systems. We classify the existing DFS-based sys-
tems and parallel DBMSs into four types of layers as shown
in Fig. 6 10. In Fig. 6, the storage layer represents a dis-
tributed storage for large-scale data. The key-value store
or a table layer represents a data storage storing data in

8Most commercial search engines use PageRank as a base
ranking measure, and additionally, combines the query-
dependent ranking (e.g., TF-IDF). However, since query-
dependent ranking is only applied only to the top results
that have been retrieved based on query-independent rank-
ing [25], its processing cost is somewhat limited.
9Locking can be switched off in the search engine mode by
selecting the consistency level 0.

10Modified and extended from the figure in p.4 of [4].

316

the form of key-value pairs or records in tables. The par-
allel execution layer represents a system for automatically
parallelizing the given job. The language layer represents a
high-level query interface.

To be
extended

GFS

Map
Reduce

Bigtable

Sawzall

S3

Dynamo

~=

~=

~=

SQL-like SQL-like

HDFS

Hadoop

Hbase

Pig
(Yahoo!)

Cassandra
(Facebook)

Hive
(Facebook)

SQL-like

Cosmos

Dryad

Azure

Dryad
LINQ

Scope

Google AmazonApache MS

DFS-based systems Parallel DBMSs

Local
disk

Postgre
SQL

Yale &
Brown

(HadoopDB)

Hadoop

Hive

Odysseus

KAIST
(Odysseus

/DFS)

HDFS

Odysseus
DBMS

Odysseus/
Parallel-IR

Local
disk

KAIST
(ODYS)

ODYS

PNUTS

Yahoo!

Language
layer

Parallel
execution
layer

Key-value
store or
table layer

Storage
layer

Figure 6: The map of ODYS and other parallel pro-
cessing systems.

Most DFS-based systems that have been recently devel-
oped follow or modify Google’s architecture. DFS-based sys-
tems developed by Apache and Microsoft (MS) have an ar-
chitecture very close to Google’s. On the other hand, Ama-
zon’s Dynamo and HadoopDB can be considered as varia-
tions of Google’s architecture. Dynamo has a fully decen-
tralized architecture and uses a relaxed consistency model
called eventual consistency. HadoopDB has a hybrid ar-
chitecture of the DFS-based system and the DBMSs; it is
Hadoop on top of multiple single-node DBMSs. PNUTS is
a highly scalable parallel DBMS that provides carefully cho-
sen functionalities. It shares some design choices with the
DFS-based system in that it provides simple functionalities,
a relaxed consistency model, and flexible schema.

ODYS consists of two layers: Odysseus and Odysseus/
Parallel-IR. The Odysseus corresponds to the table layer.
In ODYS, Odysseus DBMSs with local disks are used in
parallel rather than key-value stores with a DFS system.
The Odysseus/Parallel-IR is an integrated layer that com-
bines the parallel execution layer and the language layer.
Because ODYS uses a DBMS for the table layer, it can pro-
vide rich functionality for query processing by directly using
most DBMS features including SQL.

There are several open source projects for search engines.
Solr and Nutch are parallel search engines based on Apache
Lucene [21], which is a search engine library for a single
machine. They have a similar architecture consisting of
masters and slaves where each slave is built on HDFS or
a local file system. However, they do not support the high-
level language layer such as SQL, but only support keyword
queries. In addition, their performance and scalability are
not enough to support commercial-level query loads. Mor-
eira et al. [22] analyze performance and scalability of Nutch.
The experimental results indicate that Nutch can process 33
queries/second (i.e., 2.8 million queries/day) for 480 GBytes
dataset using 12 machines [22]11.

4. PERFORMANCE MODEL
In this section, we present a performance model of the pro-

posed search engine architecture. Except for the specialized
search engine companies, it is very difficult for a research

11Moreira et al. [22] do not specify the ranking measure used.
However, it must be that they used query-dependent ranking
(e.g., TF-IDF) only since their results are significantly (8∼ 9
times) worse than those of ten-node ODYS to be explained
in Section 5.2.2. Thus, we do not directly compare their
results with ours here.

center or an academic institute to build a real-world scale
search engine because of limited resources including avail-
ability of hardware, space, and manpower. Therefore, an
elaborate analytic or experimental model is needed to test
and project the performance and scalability of a large-scale
system without actually building it. For massively-parallel
processing systems, analytic models using the queuing the-
ory have been proposed to estimate the performance of the
systems [17, 26]. However, those analytic models cannot be
simply applied to our architecture because of the following
reasons. First, the existing methods use simple parameters.
In practice, however, to accurately estimate the performance
of a large-scale system, all the specific parameters related to
the performance of the system should be identified. Second,
the existing methods assume that there is only one query
type, while we consider multiple types of queries. Last, as
the phenomenon that most significantly affects the perfor-
mance, we show that the query response time is bounded
by the maximum among slaves’ query processing times, but
no existing analytic method takes this into account. There-
fore, we propose a performance model based on the queuing
theory as well as intricate measurement schemes.

We claim that our performance model using a small-scale
reference system (i.e., 5-node) can quite accurately predict
the performance of a large-scale system (i.e., 300-node) due
to the following reasons12. The performance model consists
of two parts: 1) the master and network time and 2) the
slave time. We show that the estimation error of the former
is quite low, i.e., maximum 10.15% as shown in Fig. 11 in
Section 5.2.2. Moreover, even if the estimation error of the
master and network time were sizable, it could not affect
the overall performance in a significant way since the overall
performance largely depends on the performance of the slave
time (e.g., 96.43% for 15.5 million queries/day) as shown in
Fig. 14. We can be assured that the estimated performance
of slaves is very close to the actual measurement since the
estimation is directly derived from the measurement as pre-
sented in Section 4.2. Thus, our estimation of the total
query response time is quite accurate (e.g., the estimation
error is less than 2.13%) as shown in Fig. 11.

The assumptions related to query execution are as follows.
We assume that every query is a top-k query where k is one
of 10, 50 or 1000, and the set of input queries is a mix of
single-keyword queries, multiple-keyword queries, and lim-
ited search queries as will be explained in Section 4.1.1.
To evaluate a lower-bound performance of our system, we
take two very conservative assumptions: 1) we run ODYS
at “semi-cold start” and 2) we wait until “all” the slaves re-
turn the results. First, semi-cold start means that a query
is executed in the circumstance where the internal nodes of
the IR indexes (which normally fit in main memory) are res-
ident in main memory while the leaf nodes (which normally
are larger than available main memory), posting lists, and
the data (i.e., crawled Web pages) are resident in disk. Typ-
ical commercial search engines process queries at warm start
by storing the entire (or a large part of) indexes and data

12Cloud services (e.g., Amazon EC2, Microsoft Azure) can-
not meet our requirements for constructing the precise per-
formance model. We need to exclusively use and control
physical machines (including CPUs and memory buses), net-
work hubs, and disks to precisely reflect their effects to the
performance model. However, cloud services cannot guar-
antee that environment.

317

in a massive-scale main memory [9]. This significantly helps
reduce query response time. However, we do it at semi-
cold start for the sake of evaluating a lower-bound perfor-
mance13. To enforce semi-cold start, we use a buffer of only
12 MBytes sufficient for containing the internal nodes (occu-
pying 11.5 MBytes) of the IR index for each slave14. Second,
we wait until all the slaves return the results. This strategy
guarantees the completeness of the results and projects the
lower-bound performance. Performance can be improved by
a deadline-driven technique, which waits for the results from
slaves within limited time as in some commercial search en-
gines, but then, we lose the completeness.

In the proposed performance model, each system compo-
nent is modeled as a queue, and the query response time is
estimated by summing up the expected sojourn time [7] of
each queue. The following are the major considerations of
the performance model. First, since each system component
executes various types of tasks, the queue representing the
component would receive various types of tasks that take dif-
ferent processing times. For example, amaster CPU performs
tasks of distributing the query to the slaves, merging the re-
sults returned from the slaves, etc. To simplify the problem,
however, we regard the summation of all the types of tasks
for a component as one request for the corresponding queue.
Second, the service time is different depending on search
condition types and the value of k of the top-k query. (The
service time is the time for a request to be serviced in the
queue, excluding the waiting time.) For instance, the time
taken by a master CPU increases as the value of k gets larger
because the merging cost increases. Therefore, we adopt the
single-keyword top-10 query type—which has the shortest
processing time—as the unit query, and transform(i.e., nor-
malize) other query types in terms of the unit query. We
explain this transformation in detail in Section 4.1. Finally,
the times taken by slaves are bounded by the maximum
value among all the sojourn times of slaves. In other words,
we should calculate the expected maximum value of multi-
ple sojourn times. However, this estimation is known to be
very hard in the queuing theory [18]. Thus, we propose an
estimation method for the slave maximum time through ex-
periments, and it will be discussed in detail in Section 4.2.

4.1 Queuing Model
Among the ODYS system components, times taken by

master CPUs, master memory bus, and network hubs are
estimated by using a queuing model. Table 1 shows the
notation used in the performance model.

4.1.1 Query Model
We consider nine types of queries. First, the queries are

classified into three search condition types: single-keyword,
multiple-keyword, and limited search queries. For each of
the three search condition types, we further consider three
types of top-k queries, where k = 10, 50, and 1,000. The
performance of the master CPUs, master memory bus, and
network hubs depend only on the k value while the perfor-

13We also performed experiments at warm start. It turns out
that the total response time of our system at warm start is
approximately 8.33%∼ 18.01% of that at semi-cold start for
the single-keyword top-10 queries in Fig. 11(a).

14In our system, the size of the IR index excluding the posting
lists is 1.34 Gbytes per slave, out of which leaf nodes occupy
1.33 Gbytes and the internal nodes 11.5 Mbytes for indexing
114 million Web pages.

Table 1: The notation used in the performance
model.

Symbols Definitions

nm the number of master nodes
ncm the number of CPUs per master
ns the number of slave nodes
nh the number of network hubs
λ the arrival rate of the ODYS

λC the arrival rate of the system component C

λ′
C

the weighted arrival rate of the system compo-
nent C

wC(k)
the weight of the top-k query type in the system
component C

qmr(sct, k)
the query mix ratio of top-k queries where sct is
the search condition type

STC the service time of the system component C

LC
the average queue length of the system compo-
nent C

XC
the sojourn time of a customer in the queue of
the system component C

r the number of repetitions of a query set execution

np
the number of slaves in the small-sized system
built

mi the master processing time for the ith slave
si the query processing time of the ith slave
nti the network transfer time of the ith slave’s results

mance of a slave depends on both the search condition type
and the k value.

A single-keyword query is a query that has one keyword
search condition. It is processed by finding the posting list
that corresponds to the keyword from the IR index and
by returning the first k results of the posting list. Single-
keyword queries having the same k value can be processed
within almost the same time regardless of the keyword be-
cause the top-k results have been stored according to a
query-independent ranking calculated apriori.

A multiple-keyword query is a query that has two or more
keyword search conditions. It is processed by finding the
posting list for each keyword, performing a multi-way join
for the posting lists, and returning the first k results of the
joined results. A limited search query is a query having a
keyword condition together with a site ID or a domain ID
condition that limits the search scope. It is processed in
the same way as a multiple-keyword query is. To process
a limited search query using the multi-way join, site IDs
or domain IDs are stored as text types and the IR indexes
are created for them (see Example 1). Multiple-keyword
or limited search queries take much longer processing time
than single-keyword queries do because they require more
disk accesses to find top-k results from the postings having
the common docID’s in multiple document lists.

As stated above, the query processing time varies depend-
ing on the search condition type and the k value of the top-k
query. To simplify the queuing model, we normalize every
query into one equivalent query type, i.e., the single-keyword
top-10 query. For example, let us assume that a single-
keyword top-10 query takes 2 ms while a multiple-keyword
top-50 query takes 4 ms in some system component. Then,
we regard a multiple-keyword top-50 query as two single-
keyword top-10 queries for the component.

4.1.2 Arrival Rate (λ)
Suppose the query arrival rate is λ, and the requests are

uniformly distributed to the components of the same type.
Then, the arrival rate for a component is inversely propor-
tional to the number of the components of the type, i.e.,
the number of queues. Table 2 shows the arrival rates for
each component where nm, ncm, ns, and nh represent the

318

numbers of masters, of CPUs per master, of slave nodes,
and of network hubs, respectively. The queues for the mas-
ter CPUs and the master memory bus process one request
per user query while the queues for the network hubs pro-
cess ns requests per user query because every slave processes
the same query and returns the results through the network
hubs. Table 2: Arrival rates.

Component A master A master A network
CPU memory bus hub

Arrival rate
λ

ncm · nm

λ

nm

ns

nh
λ

4.1.3 Weighted Arrival Rate (λ’)
In the query model, we normalize a query of an arbi-

trary type to an equivalent number of single-keyword top-10
queries. A weighted arrival rate of a component is the ar-
rival rate of the normalized queries. For each component,
we measure the processing time of each top-k query and cal-
culate the relative weights of the processing time of top-50
and top-1000 queries compared with that of a single-keyword
top-10 query as the unit. As an example, Fig. 7 (a) shows
the average query processing time in the system component
C of each top-k query type, and Fig. 7 (b) shows the weight
wC(k) of each top-k query type in C. For the component
C, the average processing time of a top-10 query is 25.01
ms, and its weight is considered to be 1.0. The weights of
other top-k queries are calculated based on this value. The
weighted arrival rate at the component C, λC ’, is obtained
by calculating the sum of products of the weight and the
query mix ratio of each query type. For example, consider
an example of query mix ratio qmr(sct, k) for top-k queries
in Fig. 7 (c), where sct is a search condition type. Then, the
weight of the arrival rate at the system component C for
this query mix is calculated as 1.055.

(a) System component C time (ms). (b) Weights of top-k types wC(k).

k Top-10 Top-50 Top-1000

All query types 25.010 25.519 36.467

k Top-10 Top-50 Top-1000

All query types
1.0

query
1.02

queries
1.46

queries

(c) Query mix qmr(sct, k).

1.055

),()(
 types-top typescondition search

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
 ∑ ∑

C

kk sct
CCC ksctqmrkw

k Top-10
(45%)

Top-50
(45%)

Top-1000
(10%)

Single keyword
(98%) 44.1% 44.1% 9.8%

Multiple
keyword (1%) 0.45% 0.45% 0.1%

Limited search
(1%) 0.45% 0.45% 0.1%

search
condition type

search
condition type

search
condition type

search condition typestop-k types

Figure 7: An example of calculating a weighted ar-

rival rate at the system component C.

The weighted arrival rate at each system component is
as shown in Formulas (1)∼ (3). Here, we separate master
CPUs from the master memory bus since we have multiple
CPUs for each memory bus, and there is more contention
in the memory bus than in a CPU. Since it is impossible
to measure the weights of the master CPU and the mas-
ter memory bus separately, we measure the master’s total
weight wmaster(k) for each top-k type and assume the same
weight for both the master CPU and master memory bus.

4.1.4 Parameters of the Performance Model
To estimate a sojourn time at each component by using

a queuing model, we measure the service time of each com-
ponent. The service time at a component for each query
type is obtained by measuring and averaging the processing
times of all the queries of that type in a query set when
executed alone. The master has two types of components:
CPUs and the memory bus. Since the master CPU time
and master memory access time cannot be measured inde-

λ′
master-CPU (λ, nm, ncm) =

λ

ncm · nm

∑
k∈top-k

types

{
wmaster(k)

∑
sct∈search
condition

types

qmr(sct, k)

}
(1)

λ′
master-memory-bus(λ, nm) =

λ

nm

∑
k∈top-k

types

{
wmaster(k)

∑
sct∈search
condition

types

qmr(sct, k)

}
(2)

λ′
network(λ, ns, nh) =

ns

nh
λ

∑
k∈top-k

types

{
wnetwork(k)

∑
sct∈search
condition

types

qmr(sct, k)

}
(3)

STmaster(k, ns) =

Tparent-proc + (Tchild-proc + Tmaster-RPC(k)) ∗ ns

+Tmerge(k, ns) + Tcontext-switch(k, ns) (4)

STmaster-CPU (k, ns) = STmaster(k, ns) × α (5)

STmaster-memory-bus(k, ns) = STmaster(k, ns) × (1 − α) (6)

pendently, we first measure the total time taken by a mas-
ter STmaster(k, ns). Then, we obtain the service time of
a master CPU STmaster-CPU (k, ns) and that of the mas-
ter memory bus STmaster-memory-bus(k, ns) by dividing the
total time by a given ratio, which will be discussed below.
The total service time of a master STmaster(k, ns) is ob-
tained by Formula (4). In Formula (4), Tparent-proc is the
time spent by the parent process in the master for check-
ing syntax of the query. Tchild-proc is the time spent by the
child process for distributing the query to the slaves and
storing the results received from the slaves into the result
buffer. Tmaster-RPC(k) is the time taken by the communi-
cation (RPC) module of the master; it varies according to
k. Tchild-proc and Tmaster-RPC(k) are multiplied by ns since
they are repeated as many times as the number of slaves.
Tmerge(k, ns) is the time for merging the results from the
slaves to get the final top-k results. Tcontext-switch(k, ns) is
the time for the master processes to perform context switch-
ing. Formulas (5) and (6) show how to get the service times
of a master CPU and a master memory bus. The service
time of a master measured, STmaster(k, ns), is divided ac-
cording to the ratio of α : (1 − α) to estimate the ratio of
CPU time : memory access time (0 ≤ α ≤ 1). The value of
α is chosen in such a way that the estimated results fit the
experimental results actually measured using the five-node
reference system.

In Formula (4), Tparent-proc, Tchild-proc, and Tmaster-RPC(k)
are measured using a small-sized (five-node) system since
these values are independent of the number of slaves. On
the other hand, since Tmerge(k, ns) and Tcontext-switch(k, ns)
depend on the number of slaves, we obtain them by using
Formulas (7) and (8). To get the final top-k results, the
results from the slaves are merged using a loser tree. In
Formula (7), tcomparison is the time spent by one compari-
son in the loser tree, and �log2 ns�, the height of the loser
tree −1, is the number of comparisons for one result. tbase

is the time spent for selecting a winner including the time
to read streams and the time to copy the result to the re-
sult buffer but excluding the time for comparison. In For-
mula (8), tper-context-switch is the time spent by one context
switch in the master. ncsbase(k) is the initial number of con-
text switches, and ncsper-slave(k) is the additional number
of context switches per slave.

319

Tmerge(k, ns) = k × (�log2 ns� × tcomparison + tbase) (7)

Tcontext-switch(k, ns) =

tper-context-switch × (ncsbase(k) + (ns × ncsper-slave(k))) (8)

STnetwork(k), the service time of a network hub, is ob-
tained by measuring the time taken by a network hub to
transfer top-k results of a slave. Fig. 8 shows how to mea-
sure the service time of a network hub. For each top-k result,
we measure the total time C of an RPC call. We then sub-
tract M and S from C, where M is the CPU time taken by a
master node, and S is the CPU time taken by a slave node.
The CPU times are measured by using the time utility of
LINUX. The CPU times M and S overlap the time O, which
is the CPU time of the operating system to transfer data.
However, the time is spent concurrently with the network
transfer time, so we measure the time O and add it back.
To measure the time O, we make a dummy RPC function
by removing data transfer from the original RPC function,
and measure the CPU time of the master node. The mea-
sured value corresponds to M−O, so we can obtain O from
M and M−O. We assume that the CPU time of the oper-
ating system for network transfer at a slave is the same as
that at the master. Therefore, we measure the service time
of a network hub as (C−M−S)+2·O.

Master
Node

Slave
Node

Master-CPU time
excluding data transfer time

Slave-CPU time
excluding data transfer time

CPU time of OS

CPU time of OS

Master-CPU
time

Slave-CPU
time

(C)

(S)

(O)

(M)

the total time of
a socket-based

RPC call

(O)

Network Network transfer time
(Service time of a network hub)

Figure 8: Measurement of a service time at a net-

work hub.

4.1.5 Average Queue Length and the Estimated So-
journ Time

The average queue length of a component is the sum of
the number of customers waiting in the queue and the num-
ber of customers being serviced. The sojourn time, i.e., the
response time of a queue, is determined by the length of the
queue. In this paper, every queue used in the performance
model is an M/D/1 queue with a Poisson arrival process,
a constant service time, and a single server. The average
length of an M/D/1 queue is obtained by Formula (9). The
average queue length for each component is obtained by For-
mulas (10)∼ (12). To obtain the average queue length for
the component C, we substitute λ in Formula (9) with the
weighted arrival rate, and ST with the service time of top-
10 query type for the component because the queries are
normalized in terms of the single keyword top-10 query. We
use a fixed value of ST , which is the average service time for
the queue.

Meanwhile, the sojourn time X of a customer in a queue
is the total time the customer spends inside the queue for
waiting and for being served. The average sojourn time is
obtained by Formula (13), where L is the average queue
length and λ the arrival rate. Thus, the average sojourn
time of single-keyword top-10 queries for each component is
obtained by dividing the average length of the correspond-
ing queue by the weighted arrival rate. The average so-
journ times of queries having other top-k values are obtained
by multiplying the weight for the top-k of the component.

L(λ, ST) =
λ2E[ST 2]

2(1 − λE[ST])
+ λE[ST] (9)

Lmaster-CPU (λ, nm, ncm, ns) =

L(λ′
master-CPU (λ, nm, ncm), STmaster-CPU (k = 10, ns)) (10)

Lmaster-memory-bus(λ, nm, ns) = (11)

L(λ′
master-memory-bus(λ, nm), STmaster-memory-bus(k = 10, ns))

Lnetwork(λ, ns, nh) =

L(λ′
network(λ, ns, nh), STnetwork(k = 10)) (12)

E[X] =
L

λ
(13)

E[Xmaster-CPU] =

Lmaster-CPU (λ, nm, ncm, ns)

λ′
master-CPU (λ, nm, ncm)

× wmaster(k) (14)

E[Xmaster-memory-bus] =

Lmaster-memory-bus(λ, nm, ns)

λ′
master-memory-bus(λ, nm)

× wmaster(k) (15)

E[Xnetwork] =

ns

nh
× Lnetwork(λ, ns, nh)

λ′
network(λ, ns, nh)

× wnetwork(k) (16)

For a network hub, ns/nh is additionally multiplied because
ns/nh slaves are connected to one network hub.

4.2 Estimation of the Expected Slave Max Time
In ODYS, given a user query, all of the slaves process

the query in parallel at semi-cold start. When a query is
executed at semi-cold start, different slaves have much dif-
ferent processing times because the disk access time has a
lot of variation. We note that, the total processing time is
bounded by the maximum slave sojourn time (briefly, slave
max time) since we must receive the results from all the
slaves to answer the query. Here, we propose a method for
estimating the slave max time based on measurement.

Fig. 9 shows the algorithm of the proposed estimation
method for the slave max time. We call this algorithm the
partitioning-based estimation method (simply, the partition-
ing method). The partitioning method estimates the slave
max time of a large-sized (e.g., 300-node) target system
by running a small-sized (e.g., 5-node) test system multi-
ple times. Suppose r is the number of repetitions, np the
number of slaves in the test system, and ns the number of
slaves in the target system. In Step 1, the algorithm gener-
ates a sequence of np× r slave sojourn times for each query
by running the test system r times. In Step 2, the algo-
rithm partitions the sequence into segments of size ns, find
the maximum value per segment, and average these values.
Since the partitioning method provides the maximum value
by measurement, the result must be very close to the actual
measurement of the target system.

Algorithm Partitioning Method for estimating the expected Slave Max Time:
Input: (1) Q: the query set,

(2) r: the number of repetitions of the query set execution
(3) np: the number of slaves of the prototype
(4) ns: the number of slaves of the target system

Output: The estimated slave max time for each query in Q
Algorithm:
Step1. Generate a sequence of slave sojourn times for each query:

1.1 Execute Q for r times at semi-cold start by using the np-node prototype and
measure the slave sojourn times.

1.2 For the ith query in Q, make a sequence of the slave sojourn times as < ti,1,1,
ti,1,2, …, ti,1,m, ti,2,1, …, ti,2,m, …, ti,r,1, …, ti,r,np >, where ti,p,q is the slave
sojourn time for the ith query in the pth repetition at the qth slave.

Step2. Estimate the average slave max time for ns slaves:
For each sequence obtained in Step1,
2.1 Partition the sequence into segments of size ns.
2.2 Find the maximum value per segment and average those values.

Figure 9: The algorithm for estimating the expected

slave max time by using the partitioning method.

320

4.3 Estimation of the Average Total Query Re-
sponse Time

Fig. 10 shows an overview of the estimation method for
computing the average total query response time. In Fig. 10,
mi is the master processing time for a slave (i.e., for send-
ing the query and receiving results from a slave), si, the
query processing time of the ith slave, and nti, the net-
work transfer time of the ith slave’s result. Suppose that
for all i, mi, si, and nti have the same value m, s, and
nt, respectively. Then, there are two cases for estimat-
ing the response time of a query. If m is less than or
equal to nt, the total query response time is obtained as
(m1+s1+ns×nt) = (m+s+ns×nt) ≈ (ns×nt+s). Or, if m
is greater than nt, the total query response time is obtained
as (ns×m+sns +ntns) = (ns×m+s+nt) ≈ (ns×m+s).
(One m or one nt is negligible.) In other words, the total
query response time is obtained by adding the bigger of the
network hub’s total sojourn time (ns×nt) and the master’s
total sojourn time (ns × m) to the slave sojourn time (s).
Here, for s, we use the slave max time as discussed in Sec-
tion 4.2. Formula (17) shows how to get the estimated value
of the average total query response time.

Master

Slave1

Slavens

. . .

.

. . .
Network hub

Case 1: (m ≤ nt)

Network hub

Case 2: (m > nt)
. . .

m1 m2 mns

nt1 nt2 ntns

nt1 nt2 ntns

s1

s2

sns

Figure 10: Overview of estimating the average total

query response time.

5. PERFORMANCE EVALUATION
5.1 Experimental Data and Environment

We have built a ten-node parallel search engine accord-
ing to the architecture shown in Fig. 5. Here, we have used
one master, one 1-Gbps hub, and ten slaves each running
100 Odysseus processes with a shared buffer of 12 Mbytes.
We have used one machine for the master, a Linux machine
with a quad-core 3.06 GHz CPU15 and 6 Gbytes of main
memory. We have used two replicated five-node clusters:
Cluster 1 and Cluster 2. Cluster 1 consists of four Linux ma-
chines each with two dual-core 3 GHz CPU, 4Gbytes of main
memory, and a RAID 5 disk array. Each disk array has 13
disks (disk transfer rate: average 59.5 Mbytes/s) with a to-
tal of 0.9∼ 3.9 Tbytes disk space, a cache of 0.5∼ 1 Gbytes,
and 200 Mbytes/s bandwidth. The remaining one is a Linux
machine with a quad-core 2.5 GHz CPU, 4 Gbytes of main
memory, and a RAID 5 disk array. The disk array has 13
disks (disk transfer rate: average 83.3 Mbytes/s) with a to-
tal of 13 Tbytes, a cache of 512 Mbytes, and 512 Mbytes/s
bandwidth. Cluster 2 consists of five Linux machines each
with a quad-core 2.4 GHz CPU, 8 Gbytes of main memory,
and an internal RAID 5 disk array. The disk array has 10

15State of the art CPUs use several features (e.g., EIST,
Turbo Boost, C-State) for power saving. These features can
cause a significant variance in the service time. To minimize
this variance, we turn-off all these features.

disks (disk transfer rate: average 81.2 Mbytes/s) with a to-
tal of 5 Tbytes, a cache of 256 Mbytes, and 768 Mbytes/s
bandwidth. In general, Cluster 2 is a bit faster than Clus-
ter 1. The master and the slaves are connected by a 1-Gbps
network hub.

We perform experiments using 114 million Web pages
crawled. For each Web page, if its size is larger than 16
Kbytes, we extract and store important part of a fixed size
(front 8 KBytes + rear 8 KBytes) to uniformly control the
experiments. We build two replicated 5-node clusters (228
million Web pages total). For each cluster, we evenly parti-
tion the set of 114 million Web pages into five segments and
allocate each segment to a slave. Thus, each slave stores and
indexes 22.8 million Web pages16. We perform experiments
using two query sets. One consists of only single-keyword
top-10 queries, and the other consists of a mixed type of
queries with different k (in top-k) values. We call the query
sets SINGLE-10-ONLY and QUERY-MIX, respectively. For
QUERY-MIX, we use the query mix ratio in Fig. 7 (c). Each
query set includes 10,000 queries in which the keywords, site
IDs, and domain IDs are all unique. Queries are generated
at a Poisson arrival rate and issued by a separate machine.

We perform the following experiments. First, we measure
the estimation error of the performance model by comparing
its projected output with the results measured as the arrival
rate and number of nodes are varied. We use the estimation
error as defined in Formula (18). Second, we estimate the
slave max time using the partitioning method using the five-
node reference system (Cluster 1 only). Last, we project the
performance of ODYS for real-world scale data and query
loads by using the performance model. The value of α used
in the performance model is 0.25. All the experimental re-
sults are measured at semi-cold start. To measure the time
at semi-cold start, we first empty the DBMS buffers and disk
array caches of all the slaves, and then, run 10,000 queries
that are completely independent of the experimental queries
(i.e., no keywords, site IDs, or domain IDs overlapping with
those of the experimental queries) to load the internal nodes
of the IR index into the DBMS buffer.

5.2 Experimental Results
5.2.1 Measurement of Parameters

We measure the parameters of the queuing model using
the five-node system. The values are measured as described
in Section 4.1.4. Table 3 shows the parameters measured.

5.2.2 Accuracy of the Performance Model
We vary the query loads from 5 to 24 million queries/day

for the two query sets: SINGLE-10-ONLY and QUERY-
MIX. Fig. 11 shows the average total query response time
and the average processing time of the master and network
for each query load. In Fig. 1117, TOTAL-EXP-10 repre-

16One ODYS slave is capable of indexing 100 million Web
pages. But, we used 22.8 million/slave since we had only
114 million crawled. Nevertheless, this does not affect the
query performance significantly since the postings are sorted
according to the PageRank order, and only up to 1000 post-
ings are retrieved for a single-keyword top-k query. For a
multiple-keyword or limited search query, a larger number
of postings are accessed, but a sufficient number of postings
are available from 22.8 million Web pages.

17To avoid clutter, Fig. 11 shows only the results of the 10-
node system. Others show similar trends.

321

tparallel-n-node(sct, k, λ, nm, ncm, ns, nh)

= max

((
E[Xmaster-CPU] + E[Xmaster-memory-bus]

)
, E[Xnetwork]

)
+ tslave-max-time(sct, k, λ, ns)

= max

((
Lmaster-CPU (λ, nm, ncm, ns)

λ′
master-CPU (λ, nm, ncm)

× wmaster(k) +
Lmaster-memory-bus(λ, nm, ns)

λ′
master-memory-bus(λ, nm)

× wmaster(k)

)
,

ns

nh
× Lnetwork(λ, ns, nh)

λ′
network(λ, ns, nh)

× wnetwork(k)

)
+ tslave-max-time(sct, k, λ, ns) (17)

estimation

error
=

∣∣∣∣ estimated average

time of a query
− measured average

time of a query

∣∣∣∣
measured average

time of a query

(18)

Table 3: Parameters of the queuing model mea-
sured. Parameters Values

Tparent-proc 1.516 ms
Tchild-proc 0.0081 ms

Tmaster-RPC(k)
0.01 ms, k = 10
0.011 ms, k = 50

0.031 ms, k = 1000
tcomparison 0.191 μs

tbase 0.28 μs
tper-context-switch 2.105 μs

ncsbase(k)
56.490, k = 10, 50
97.728, k = 1000

ncsper-slave(k)
1.917, k = 10, 50
3.316, k = 1000

STnetwork(k)
0.129 ms, k = 10
0.222 ms, k = 50

0.318 ms, k = 1000

sents the experimental results of the total query response
time measured using the ten-node system as the query ar-
rival rate is varied; TOTAL-EST-10 the estimated results
from the hybrid performance model. That is, the slave max
time is estimated from the measurement of the five-node ref-
erence system using the algorithm in Fig. 9 in Section 4.2;
the master and network time is estimated from the queuing
model; TOTAL-EST-10 is a sum of these two. MN-EXP-
10 represents the experimental results of the master and
network time; MN-EST-10 the estimated results. The re-
sults show that the maximum estimation error of the total
query response time is 1.77% for SINGLE-10-ONLY, and
2.13% for QUERY-MIX. The maximum estimation error of
the master and network time (i.e., the part modeled by the
queuing model) is 6.29% for SINGLE-10-ONLY and 10.15%
for QUERY-MIX18. For the same query load, the result of
SINGLE-10-ONLY and QUERY-MIX shows a big difference.
The reason is that the response time of the multiple-keyword
and limited search queries are much longer than those of the
single-keyword queries as discussed in Section 4.1.119. In
Fig. 11, dotted lines represent the regions where measure-

18For sensitivity analysis, we have tested a different query
mix having 20% of top-1000 queries obtaining a similar re-
sult where the maximum estimation error was 8.64%. We
have not conducted sensitivity analysis on search condition
types since the master and network time does not depend
on search condition types, but only on the top-k value.

19It can be optimized by constructing separate ODYS sets
dedicated to limited search queries. For the IR indexes of
these ODYS sets, we can order the postings of each posting
list by the domain ID, and then, by ranking the sets of the
postings that have the same domain ID’s independently of
one another, significantly reducing the search over the post-
ing list. However, these additional optimizations are beyond
the scope of this paper and will be left as a further study.

(b) Total, QUERY-MIX.(a) Total, SINGLE-10-ONLY.

(c) Master and network only,
SINGLE-10-ONLY .

(d) Master and network only,
QUERY-MIX .2020

0
20
40
60
80

100
120
140
160
180
200
220

0 5 10 15 20 25

TOTAL-EST-10
TOTAL-EXP-10

A
ve

ra
ge

to
ta

l q
ue

ry
re

sp
on

se
 t

im
e

(m
s)

Arrival rate (million queries/day/set)

0

1

2

3

4

5

0 5 10 15 20 25

MN-EST-10
MN-EXP-10

A
ve

ra
ge

m
as

te
r

an
d

ne
tw

or
k

ti
m

e
(m

s)

Arrival rate (million queries/day/set)

0

1

2

3

4

5

0 5 10 15 20

MN-EST-10
MN-EXP-10

Arrival rate (million queries/day/set)

A
ve

ra
ge

m
as

te
r

an
d

ne
tw

or
k

ti
m

e
(m

s)

0

100

200

300

400

500

0 5 10 15 20

TOTAL-EST-10
TOTAL-EXP-10

A
ve

ra
ge

to
ta

l q
ue

ry
re

sp
on

se
 t

im
e

(m
s)

Arrival rate (million queries/day/set)

Figure 11: The estimated and experimental results of

the ten-node system (ns=10) as the query arrival rate

is varied. EST-10 represents estimated results for the

10-node system; EXP-10 experimental results.

ments become unstable since the number of input queries
becomes close to the maximum possible throughput. The
result in Fig. 11 (a) shows that the ten-node ODYS can sta-
bly process 266 queries/sec (23 million queries/day) with an
average response time of 154 ms on a 1.52 TBytes dataset.

Fig. 1221 shows the average total query response time and
the average master and network time as the number of nodes
is varied from 1 to 10 for two query sets: SINGLE-10-ONLY
and QUERY-MIX. Here, EST-x represents the estimated re-
sults for x million queries/day/set; EXP-x the experimental
results. In Figs. 12(a) and (b), due to variations of perfor-
mance in individual machines, for 1- or 3-node configura-
tions, the results vary depending on which machines we use
in the experiment and do not average out. Thus, we repre-
sent the result as a range (i.e., from min using the fastest
machine(s) to max using the slowest machine(s)). The re-
sults show that the maximum estimation error of the total
query response time is 2.13%, and that of the master and
network time is 10.15% when the number of nodes ≥ 5.

5.2.3 Estimation of the Slave Max Time
We analyze the effect of the number of slaves on the per-

formance of ODYS. We estimate the slave max times for
QUERY-MIX while increasing the segment size of the par-
titioning method for each query load. We measure 300 slave
sojourn times for each query by running the query set 60
times using the five-node reference system. Fig. 13 shows
the expected slave max time for each segment size. The re-
sults show that the expected slave max time increases up

20For Figures 11 (c) and (d), the master and network time is
measured by subtracting the slave max time from the total
query response time.

21To avoid clutter, Figs. 12(a) and (b) show the results only
for three representative arrival rates; Figs. 12(c) and (d) only
for one.

322

0

50

100

150

200

250

300

350

400

450

0 2 4 6 8 10

EST-5 EXP-5
EST-13 EXP-13
EST-15 EXP-15

A
ve

ra
ge

 t
ot

al
 q

ue
ry

re
sp

on
se

 t
im

e
(m

s)

Number of nodes

0
20
40
60
80

100
120
140
160
180
200

0 2 4 6 8 10

EST-5 EXP-5
EST-17 EXP-17
EST-23 EXP-23

A
ve

ra
ge

 t
ot

al
 q

ue
ry

re
sp

on
se

 t
im

e
(m

s)

Number of nodes
(b) Total, QUERY-MIX.(a) Total, SINGLE-10-ONLY.

(c) Master and network only,
SINGLE-10-ONLY.

(d) Master and network only,
QUERY-MIX.

0

1

2

3

4

5

0 2 4 6 8 10 12

EST-13 EXP-13

A
ve

ra
ge

m
as

te
r

an
d

ne
tw

or
k

ti
m

e
(m

s)

Number of nodes

0

1

2

3

4

5

0 2 4 6 8 10 12

EST-17 EXP-17

A
ve

ra
ge

m
as

te
r

an
d

ne
tw

or
k

ti
m

e
(m

s)

Number of nodes

Figure 12: The estimated and experimental result

as the number of nodes is varied. EST-x represents

the estimated results for x million queries/day/set;

EXP-x the experimental results.

to 1.5∼ 2 times of the minimum value as the segment size
increases, i.e., as the number of slaves increases. Interest-
ingly, the slave max time gradually converges to a value less
than twice the minimum instead of increasing indefinitely.
Detailed analysis of this phenomenon is beyond the scope of
this paper. We leave it as a further study.

0

100

200

300

400

500

600

700

800

0 50 100 150 200 250 300 350

1 million/day 5 million/day
9 million/day 13 million/day
15 million/day 15.5 million/day

E
st

im
at

ed
 s

la
ve

 m
ax

 t
im

e
(m

s)

Segment size (=number of nodes)

Figure 13: The estimated slave max time as the seg-

ment size is varied (QUERY-MIX, r=60, ns=5).

5.2.4 Performance Projection of a Real-World-Scale
(300-Node) ODYS

By using the performance model, we estimate the average
response time of ODYS for 30 billion22 Web pages, which
is considered real-world scale data [19]. Fig. 14 shows the
estimated performance of a 300-node system for the query
set QUERY-MIX. In the estimation, one ODYS set consists
of 4 masters, 300 slaves, and 11 Gbit network hubs. Each
master has a Quad-Core 3.06 GHz CPU, each slave has one
3 GHz CPU, 4 Gbytes of main memory, and 13×300 Gbytes
SATA hard disks. Here, we select the number of masters (4)
and network hubs (11) to make the queue lengths of master
memory and network hubs similar to each other to avoid
bottlenecks. In Fig. 14, TOTAL-EST-300 represents the
estimated total response time of queries, and SLAVE-MAX-
EST-300 represents the slave max time estimated using the
partitioning method. SLAVE-MAX-EST-300 is identical to
the results of the segment size 300 in Fig. 13.

22Google (as well as other commercial search engines such as
MS Bing and Yahoo!) indexes approximately 25 billion Web
pages. This is roughly indicated by the result of querying
with frequently occurring keywords such as “a,” “the,” or
“www.”

0

100

200

300

400

500

600

700

800

0 2 4 6 8 10 12 14 16

TOTAL-EST-300
SLAVE-MAX-EST-300

Arrival rate (million queries/day/set)

A
ve

ra
ge

 q
ue

ry
re

sp
on

se
 ti

m
e

(m
s)

Figure 14: The projected average response time of

ODYS for real-world scale service (ns=300). TOTAL-

EST-300 is the average estimated total query response

time; SLAVE-MAX-EST-300 the average estimated slave

max time.

As we observed in Fig. 14, if an ODYS set were to take
a higher query load, the total number of nodes required
to handle the load could be reduced, but the performance
would be degraded. Therefore, the trade-off between the
number of nodes and the performance exists in providing
reasonable performance with a minimal number of nodes.
For example, suppose we run 7 million queries/day (81 queries
/sec) per ODYS set, then ODYS can handle Google-scale
service using 143 sets of 304 nodes (4 masters and 300 slaves),
a total of 43,472 nodes, for 1 billion queries/day. In this case,
the average query response time is only 194 ms. In con-
trast, if we ran 3.5 million queries/day (40.5 queries/sec),
ODYS would need 286 sets with a total of 86,944 nodes
with an average query response time of 148 ms23. The ex-
periments show that our approach is capable of providing
a commercial-level service with a rather small number of
nodes.

6. CONCLUSIONS
In this paper, we have shown that a massively parallel

search engine capable of processing real-world scale data and
query loads can be implemented using a DB-IR tightly inte-
grated parallel DBMS. We have also presented the detailed
implementation of such a system, ODYS. The DBMS used
in the slaves of ODYS is Odysseus, which is a highly scal-
able object-relational DBMS that is tightly integrated with
IR features [29]. Odysseus is capable of indexing 100 million
Web pages, and thus, ODYS is able to handle a large volume
of data even with a small number of machines. The tightly
integrated DB-IR functionality enables ODYS to have a
commercial-level performance for keyword queries. Further-
more, ODYS provides rich functionality such as SQL, schemas,
and indexes for easy (and less error-prone) development and
maintenance of applications [30].

We have also proposed a performance model that can es-
timate the performance of the proposed architecture. The
model is a hybrid one that employs both an analytic ap-
proach based on the queuing model and an experimental
approach of using a small-sized (five-node, in this paper) ref-
erence system to project the performance of a large target
system. We have validated this model through comparison
of the result projected by the model with the results mea-
sured using a ten-node system. Our estimation of the total
response time is quite accurate since the bulk of the total
response time is spent at the slave, and we derive the slave

23The average response time of a typical commercial search
engine is known to be 200-250 ms [9, 13].

323

max time by measurement with accuracy. The result of the
comparison indicates that the estimation error of the to-
tal query response time of the ten-node system is less than
2.13%. Such a modeling method is helpful in realistically
estimating the performance of a system by using limited
resources—without actually building a large-scale system.

Finally, we have estimated the performance of ODYS for
real-world scale data and query loads. According to the
performance model, with a small number of (i.e., 43,472)
nodes, ODYS is capable of handling 1 billion queries/day for
30 billion Web pages at an average query response time of
194 ms. With twice as many nodes (i.e., half the query load
per node), it can provide an average query response time
of 148 ms. This clearly demonstrates the scalability and
efficiency of our architecture. These results are even more
marked since these are conservative results from a semi-cold
start environment reflecting a lower-bound performance.

7. ACKNOWLEDGEMENTS
This work was supported by the National Research Foun-

dation of Korea (NRF) grant funded by Korean Govern-
ment (MEST) (No. 2012R1A2A1A05026326). We deeply
appreciate incisive comments of anonymous reviewers, which
made the paper far more complete. We also would like to
acknowledge contributions of many people who worked on
the Odysseus DBMS project over 23 years—in particular,
Young-Koo Lee, Min-Jae Lee, Wook-Shin Han, Jae-Gil Lee,
and Jae-Jun Yoo.

8. REFERENCES
[1] Abouzeid, A. et al., “HadoopDB: An Architectural Hybrid

of MapReduce and DBMS Technologies for Analytical

Workloads,” In Proc. Int’l Conf. on Very Large Data Bases

(VLDB), pp. 922-933, Aug. 2009.

[2] Azure, http://www.microsoft.com/windowsazure.

[3] Barroso, L., Dean, J. and Holzle, U., “Web Search for a

Planet: the Google Cluster Architecture,” IEEE Micro,

Vol. 23, No. 2, pp. 22-28, Mar. 2003.

[4] Budiu, M., 2009, available at

http://budiu.info/work/dryad-talk-berkeley09.pptx.

[5] Cassandra, http://cassandra.apache.org.

[6] Chang, F. et al., “Bigtable: A Distributed Storage System

for Structured Data,” In Proc. Symposium on Operating

Systems Design and Implementation (OSDI), pp. 205-218,

Nov. 2006.

[7] Cooper, R., Introduction to Queuing Theory, North

Holland, 2nd ed., 1981.

[8] Dean, J., and Ghemawat, S., “MapReduce: Simplified Data

Processing on Large Clusters,” In Proc. Symposium on

Operating Systems Design and Implementation (OSDI),

pp. 137-150 , Dec. 2004.

[9] Dean, J., “Challenges in Building Large-Scale Information

Retrieval Systems,” In Proc. ACM Int’l Conf. on Web

Search and Data Mining (WSDM) (an invited talk), p. 1,

Feb. 2009 (presentation slides available at http://research.

google.com/people/jeff/WSDM09-keynote.pdf).

[10] Dean, J., “Designs, Lessons and Advice from Building

Large Distributed Systems,” a keynote at ACM SIGOPS

Int’l Workshop on Large Scale Distributed Systems and

Middleware (LADIS), Oct. 2009 (presentation slides

available at http://www.odbms.org/download/dean-

keynote-ladis2009.pdf).

[11] DeCandia, G. et al., “Dynamo: Amazon’s Highly Available

Key-Value Store,” In Proc. ACM Symposium on Operating

Systems Principles (SOSP), Oct. 2007.

[12] Ghemawat, S., Gobioff, H., and Leung, S., “The Google File

System,” In Proc. ACM Symposium on Operating Systems

Principles (SOSP), Oct. 2003.

[13] Google, http://www.google.com/about/corporate/

company/tech.html.

[14] Hadoop, http://hadoop.apache.org.

[15] HBase, http://hbase.apache.org.

[16] HDFS, http://hadoop.apache.org/hdfs.

[17] Javadi, B., Khorsandi, S., and Akbari, M., “Queuing

Network Modeling of a Cluster-Based Parallel System,” In

Proc. Int’l Conf. on High Performance Computing and

Grid in Asia Pacific Region, pp. 304-307, July 2004.

[18] Kemper, B. and Mandjes, M., Approximations for the

Mean Sojourn Time in a Parallel Queue, Technical Report

PNA-E0901, Centrum Wiskunde & Informatica, Mar. 2009.

[19] Kunder, M., http://www.worldwidewebsize.com.

[20] Lentz, A., “MySQL Storage Engine Architecture,” In

MySQL Developer Articles, MySQL AB, May 2004

(available at http://ftp.nchu.edu.tw/MySQL/tech-

resources/articles/storage-engine).

[21] Lucene, http://lucene.apache.org.

[22] Moreira, J. et al., “Scalability of the Nutch search engine,”

In Proc. Int’l Conf. on Supercomputing (ICS), pp. 3-12,

June 2007.

[23] Nielsenwire, “Nielsen Reports February 2010 U.S. Search

Rankings,” Nielsen Report, Mar. 15, 2010 (available at

http://blog.nielsen.com/nielsenwire/ online mobile/nielsen-

reports-february-2010-u-s-search-rankings).

[24] Özsu, M. and Valduriez, P., “Distributed Reliability

Protocols,” In Book Principles of Distributed Database

Systems, Prentice Hall, 2nd ed., pp. 379-400, 1999.

[25] Richardson, M., Prakash, A., and Brill, E., “Beyond

PageRank: machine learning for static ranking,” In Proc.

Int’l Conf. on World Wide Web (WWW), pp. 707-715,

May 2006.

[26] Shahhoseini, H. and Naderi, M., “Design Trade off on

Shared Memory Clustered Massively Parallel Processing

Systems,” In Proc. Int’l Conf. on Computing and

Information, Nov. 2000.

[27] Stonebraker, M. et al., “MapReduce and Parallel DBMSs:

Friends or Foes?,” Communications of the ACM (CACM),

pp. 64-71, Jan. 2010.

[28] Whang, K. et al., An Inverted Index Storage Structure

Using Subindexes and Large Objects for Tight Coupling of

Information Retrieval with Database Management Systems,

U.S. Patent No. 6,349,308, Feb. 19, 2002, Application No.

09/250,487, Feb. 15, 1999.

[29] Whang, K. et al., “Odysseus: A High-Performance

ORDBMS Tightly-Coupled with IR Features,” In Proc.

Int’l Conf. on Data Engineering (ICDE), pp. 1104-1105,

Apr. 2005. This paper recieved the Best Demonstration

Award.

[30] Whang, K. et al., “DB-IR Integration Using Tight-Coupling

in the Odysseus DBMS,” submitted for publication, 2013.

[31] Yang, C. et al., “Osprey: Implementing MapReduce-Style

Fault Tolerance in a Shared-Nothing Distributed

Database,” In Proc. IEEE Int’l Conf. on Data Engineering

(ICDE), pp. 657-668, Mar. 2010.

324

