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ABSTRACT
Event pattern detection refers to identifying combinations of events
matched to a user-specified query event pattern from a real-time
event stream. Latency is an important measure of the performance
of an event pattern detection system. Existing methods can be
classified into the eager evaluation method and the lazy evaluation
method depending on when each event arrival is evaluated. These
methods have advantages and disadvantages in terms of latency de-
pending on the event arrival rate. In this paper, we propose a hy-
brid eager-lazy evaluation method that combines the advantages
of both methods. For each event type, the hybrid method, which
we call APAM (Adaptive Partitioning-And-Merging), determines
which method to use: eager or lazy. We also propose a formal
cost model to estimate the latency and propose a method of find-
ing the optimal partition based on the cost model. Finally, we show
through experiments that our method can improve the latency by up
to 361.48 times over the eager evaluation method and 27.94 times
over the lazy evaluation method using a synthetic data set.

1. INTRODUCTION
Event pattern detection refers to finding combinations of events

(called pattern instances) matched to a user-specified event pat-
tern from a real-time event stream [8]. Throughput and latency are
the major measures of the performance of event pattern detection.
Throughput refers to the number of events processed per unit time
[11], and latency the time elapsed between the arrival of the last
event of a pattern instance matched to a query event pattern and
the point at which the system identifies that the pattern instance
is matched [12]. While both measures are important, latency is
highly significant for mission-critical or time-critical applications.
However, most existing studies assume that the event arrival rate is
extremely fast, and thus, only focus on improving the throughput
[1, 2, 4, 5, 10, 11, 13, 14].

Existing event pattern detection methods can be classified into
the eager evaluation method and the lazy evaluation method de-
pending on when each arriving event is evaluated. Each method
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has its advantages and disadvantages in terms of latency depending
on the event arrival rate.
• The eager evaluation method evaluates all events immediately

when they arrive. Thus, events are always evaluated in the or-
der in which they arrive. An advantage of the eager evaluation
method is that latency is low when the event arrival rate is slow.
The slower the event arrival rate is, the more idle time there
will be. The eager evaluation method utilizes this idle time to
evaluate arriving events immediately. Because most events of
a pattern instance have been detected prior to the arrival of the
last event of that pattern instance, the eager evaluation method
can detect the pattern instance as soon as the last event arrives.
However, a disadvantage of the eager evaluation method is that
latency may be high when the event arrival rate is fast. The
faster the event arrival rate is, the less idle time there will be.
Hence, events may not be evaluated immediately when they ar-
rive, and these evaluations may be delayed. In this case, latency
is significantly affected (i.e., gets higher) by lower throughput,
which decreases because the order in which events are evaluated
may not be optimal in eager evaluation.

• The lazy evaluation method defers evaluations of arriving events
and evaluate them in batch later. Thus, events can be evaluated
in any order. An advantage of the lazy evaluation method is that
latency is low when the event arrival rate is fast. As mentioned
above, when the event arrival rate is fast, the latency is heav-
ily dependent on the throughput. Given that events can always
be evaluated in the optimal order, the throughput is high and
latency is low. However, a disadvantage of the lazy evaluation
method is that the latency is high when the event arrival rate is
slow. Even when there is sufficient idle time, the lazy evaluation
method defers all evaluations of arriving events until the batch
evaluation starts. When the last event of a pattern instance ar-
rives, all the events that arrived prior to the last event must be
evaluated in batch. Hence, the time taken to detect the pattern
instance in this case is delayed.

In this paper, we propose a hybrid eager-lazy evaluation method,
which combines the advantages of both methods providing low la-
tency at any event arrival rate. For each event type, the proposed
method determines which method to use: eager or lazy. At slower
event arrival rate, more event types are evaluated by the eager eval-
uation method in order to fully utilize the idle time. At faster event
arrival rate, more event types are evaluated by the lazy evaluation
method in order to evaluate more events in the optimal order.

Toward this goal, we first propose a hybrid method APAM (mean-
ing Adaptive Partitioning-And-Merging). APAM partitions event
types into an eager evaluation group and a lazy evaluation group,
and merges the results of evaluations of the eager evaluation group
with the deferred events of the lazy evaluation group to construct
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the pattern instances. Second, we propose a method of selecting
the optimal plan. APAM is able to use various plans according to
how event types are partitioned. The proposed method estimates
the latency of each plan and selects the plan with the lowest la-
tency. We define a cost model to estimate the latency. Finally, we
empirically validate the performance of our optimal plan selection
method and show that APAM achieves the lower-bound of latency
of both existing methods at any event arrival rate.

2. PRELIMINARIES
An event is a tuple that represents an instantaneous and atomic

occurrence of interest at a point in time [3, 8]. Each event has a
set of attributes according to the schema defined for the type of that
event. Essentially, an event has the name of the type of that event
and the time of the event associated with (when the event occurred)
as attributes. For ease of explanation, an event type is denoted by
an upper-case letter (e.g., A), and an event by a lower-case letter
with its timestamp value subscripted (e.g., a1). Event stream is a
linearly ordered sequence of events [8, 11] and is the input to the
event pattern detection system. An event stream may contain events
of heterogeneous types. In the event stream, events are assumed to
be sorted by their timestamp values.

The query language of an event pattern detection system spec-
ifies the event pattern to be detected. We use a declarative query
language [1, 10, 11, 14]. A query event pattern consists of the fol-
lowing three clauses:

PATTERN Event Pattern
WHERE Predicates on the Event Attributes
WITHIN Time Window

A PATTERN clause specifies an event pattern by using event
types and event operators that represent the correlations among
event types. A sequence operator (;) is the primary event operator
focused on by the event pattern detection area [7, 10, 11], and thus,
we concentrate on the event patterns specified by sequence opera-
tors. A;B indicates that an event of type B occurs after an event
of type A has occurred. All the combinations of events (ax, by),
where x < y, are matched to the event pattern A;B.

WHERE and WITHIN clauses specify the predicate and the time
conditions that the events matched to the event pattern satisfy. A
WHERE clause specifies the predicates on event attributes. There
are two types of predicates: a simple and a parameterized predicate.
A simple predicate is a predicate on an attribute of one event type
(e.g., A.attr1 > 10). A parameterized predicate is a predicate be-
tween attributes of different event types (e.g.,A.attr1 = B.attr1).
A WITHIN clause specifies a time window that represents the time
period within which events matched must occur.

3. OVERVIEW OF APAM
In APAM, event types are partitioned into two groups: the ea-

ger evaluation group (EEG) and the lazy evaluation group (LEG).
Events in the EEG are evaluated immediately when they arrive, and
evaluations of events in the LEG are deferred until the last event of
a pattern instance, called the final event [10], arrives. Whenever
the final event arrives, events whose evaluations are deferred and
the results of the eager evaluations are merged to construct pattern
instances. Parameterized predicates are also partitioned into two
groups along with the event types. Predicates involving the event
types of the EEG are grouped into the EEG, and other predicates
(those involving the event types of the LEG and those involving the
event types of both groups) are grouped into the LEG. Predicates
are evaluated when events of the same group are evaluated.

Figure 1 shows the architecture of an event pattern detection sys-
tem that uses APAM. For simplicity, we assume that events whose

types are not specified in the query event pattern and who do not
satisfy the simple predicate are filtered out beforehand. As shown
in the figure, the system consists of four modules.
• The Partitioner determines the evaluation method of each arriv-

ing event according to the plan selected by the Plan Optimizer.
The Plan Optimizer selects the plan that minimizes the latency
according to the event arrival rate, which will be explained in
Section 4. In addition, it maintains the statistics needed to se-
lect the optimal plan. Statistics are calculated using simple win-
dowed averages based on sampling [10].
• The Eager Evaluator evaluates the EEG events immediately.

As a result, pattern instances matched to the partial query event
pattern consisting of the event types in the EEG are constructed
and stored in the eager evaluation result buffer.
• The Lazy Evaluator stores the LEG events into deferred event

buffers allocated per event type. Evaluations of these events are
deferred until the final event arrives.
• The Merger constructs pattern instances matched to the query

event pattern using the results of eager evaluations and the events
whose evaluations are deferred. In Section 5, we explain merg-
ing in more detail.

Input (event stream)

EEG
events

Output (pattern Instances)

LEG
events

Deferred
events

Eager
evaluation
results

Merger

Partitioner

Eager
Evaluator

Lazy
Evaluator

Plan Optimizer

Figure 1: The architecture of APAM.

4. OPTIMAL PLAN SELECTION
In this section, we explain the optimal plan selection method re-

ducing the latency of APAM. Before proceeding, we summarize
the notation used in the following sections in Table 1. For an event
pattern whose length is l, the number of possible plans is

∑l
i=0

(
l
i

)
.

To reduce the search space, we fix the matching order to the optimal
matching order. A matching order is an order by which the events
matched are detected, and the optimal matching order corresponds
to the optimal join order [6]. Here, we use a heuristic method to
find the optimal order processing more selective matching earlier.
Thus, we consider l+1 evaluation plans resulting from binary parti-
tioning of event types sorted by the optimal matching order as can-
didate plans. We then estimate the latency of each candidate plan.
The candidate plan with the lowest estimated latency is selected
as the optimal plan. For example, /BCAD, B/CAD, BC/AD,
ABC/D, and ABCD/ are the candidate plans of A;B;C;D,
whose optimal matching order is B,C,A,D. Here, BC/AD rep-
resents the evaluation plan where B and C are grouped into the
EEG, A and D are grouped into the LEG, and the matching order
is B, C, A, D. Notice that the plan resulting from binary partition-
ing where three event types are grouped into the EEG is ABC/D
rather than BCA/D. This is because the matching order of the
EEG is fixed to the order specified in the query event pattern.

4.1 Queueing model
To estimate the latency of the evaluation plan, we model APAM

using an M/G/1 queue. Characteristics of the M/G/1 queue is sum-
marized as follows [9]:
• M: Events arrive at the input queue of the system at a rate λ

according to a Poisson process.
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Table 1: Summary of the notation used in Sections 4.1 ∼ 6.
Notation Description

λ
event arrival rate (the number of events arriving per
unit time)

λE arrival rate of events of type E

µ
event service rate (the number of events served per
unit time)

ρ system utilization (= λ
µ

[9])

QWT
queue waiting time (time spent by an event waiting in
the input queue)

ST service time (time taken to serve an event)
STE service time of the event of type E

cST
coefficient of variance of ST (= µσST , where σST
is the standard deviation of ST [9])

TM time taken to execute the merging

TPE
time taken to evaluate one predicate (measured by ex-
periments)

TRC

time taken to construct (i.e., concatenate two par-
tial pattern instances) one result (measured by exper-
iments)

TBI
time taken to insert one event into the buffer (mea-
sured by experiments)

Q query event pattern
W time window of Q

NPEi,Ej

/NPEi;Ej

the number of parameterized/sequence predicates be-
tween event types Ei and Ej

SPEi,Ej

/SPEi;Ej

total selectivity of parameterized/sequence predicates
between event types Ei and Ej

PIE1;...;En

set of pattern instances matched to partial pattern
E1; ...;En from events arriving within W

|PIE1;...;En |
cardinality of PIE1;...;En (=

∏n
i=1 (λEi

×W )×∏n−1
i=1

∏n
j=i+1 (SPEi,Ej

× SPEi;Ej
))

• G: ST has a general distribution (µ = 1
E[ST ]

).

• 1: A single server serves events one at a time according to a
first-come, first-served discipline.

A service of an event is defined differently according to the event
type. A service of an event of EEG is to eager-evaluate it, and
that of LEG is to defer the evaluation. If the event is a final event,
constructing pattern instances by merging is included in the service.

The output of the system is a set of pattern instances matched
to Q. Such an output exists only when a true final event, which is
defined in Definition 1, is served.

Definition 1. A final event is a true final event if there exists any
pattern instance that contains the final event. Otherwise, the final
event is called a false final event.

In this model, the expected latency E[L] is as shown in Eq.(1).
E[L] is the average elapsed time from the point at which a final
event arrives to the point at which all pattern instances that contain
the final event are detected. E[QWTTFE ] is the expected queue
waiting time of a true final event. This time is caused by the events
that arrive before the true final event arrives and the services for
them. This time increases as ρ becomes higher and µ becomes
slower [9]. E[STTFE ] is the expected service time of a true final
event. Since this time includes the merging time, it increases as
more event types are grouped into the LEG.

E[L] = E[QWTTFE ] + E[STTFE ] (1)

4.2 Latency estimation
We estimate E[L] as shown in Eq.(2). We use the expected

queue waiting time E[QWT ] instead of E[QWTTFE ] in Eq.(1),
and the expected service time of a final event E[STFE ] instead of

E[STTFE ] in Eq.(1). While E[QWT ] and E[STFE ] are simpler
to estimate, they have the same tendency as that of theE[QWTTFE ]
and E[STTFE ]: E[QWT ] increases as ρ becomes higher and µ
becomes slower [9], and E[STFE ] increases as more event types
are grouped into the LEG.

E[L] = E[QWT ] + E[STFE ] (2)

E[QWT ] can be calculated as shown in Eq.(3) [9]. We estimate
µ, which is the inverse of E[ST ] as shown in Eq.(4). We estimate
σST which is the component of cST as shown in Eq.(5).

E[QWT ] =
ρ

2µ(1− ρ) (1 + cST
2), where ρ < 1 (3)

E[ST ] =
∑
∀Ei ofQ

λEi

λ
× E[STEi ] (4)

σST =
∑
∀Ei ofQ

√
λEi

λ
× (E[STEi ]− E[ST ])2 (5)

E[STEi ] in Eqs.(4) and (5) differs depending on which of EEG
or LEGEi belongs to. Suppose that the evaluation plan isEE1EE2

...EE|EEG|/EL1EL2 ...EL|LEG| where |EEG| (or |LEG|) is the
number of event types in EEG (or LEG). Then, E[STEi ] is esti-
mated as in Eqs.(6) ∼ (8).

E[STEEi
] = (|PIEE1

;...;EEi−1
| ×

i−1∑
j=1

NPEEi
,EEj︸ ︷︷ ︸

the total number of predicate evaluations

×TPE)

+ (|PIEE1
;...;EEi−1

| ×
i−1∏
j=1

SPEEi
,EEj︸ ︷︷ ︸

the total number of results constructed

×TRC) (6)

E[STELi
] = TBI (7)

E[STFE ] = (E[STEEi
] or E[STELi

]) + TM (8)

If E is not the final event type, E[STE ] is estimated using either
Eq.(6) or Eq.(7). If E is in the EEG, E[STE ] is estimated using
Eq.(6). The first term estimates the time taken to evaluate param-
eterized predicates. The second term estimates the time taken to
construct the result when all of the predicates are satisfied. If E is
in the LEG, E[STE ] is equal to the time taken to insert the event
into the buffer as shown in Eq.(7).

If E is the final event type, where E is in either the EEG or the
LEG, E[STE ] is estimated using Eq.(8). The first term estimates
the service time of the final event itself, which differs depending on
the group to which the final event type belongs. The second term
estimates the time taken by merging. TM is estimated as the sum of
the time taken to perform the join operations composing the merg-
ing. The time taken to perform each join operation is estimated
using Eq.(9). The first term is the time taken to evaluate join condi-
tions, and the second term is the time taken to construct the results
of join operations when all of the join conditions are satisfied.

TEi./Ej = (|PIEi | × |PIEj | × (NPEi,Ej +NPEi;Ej )︸ ︷︷ ︸
the total number of predicate evaluations

×TPE)

+ (|PIEi | × |PIEj | × SPEi,Ej × SPEi;Ej︸ ︷︷ ︸
the total number of results constructed

×TRC)

(9)

As shown in Eq.(3), E[QWT ] is stable and can be calculated
only if ρ < 1 [9]. If ρ of a candidate plan is greater than or equal to

2277



one, we consider the E[QWT ] of that plan infinite, and thus, E[L]
of that plan is estimated to be infinite. If E[L]’s of all candidate
plans are estimated to be infinite, we select the plan in which µ is
the fastest. This is because the latency is heavily dependent on the
throughput (i.e., µ) when ρ ≥ 1, as noted in Section 1.

4.3 Heuristic intuition
Among the candidate plans,E[STFE ] decreases whileE[QWT ]

increases as the eager evaluation ratio (defined in Definition 2) of
the candidate plan gets higher. E[STFE ] decreases because the
cost of the merging decreases since more events are immediately
evaluated even before the final event arrives. E[QWT ] increases
becauseE[ST ] increases given that the matching order differs from
the optimal order. On the other hand, E[STFE ] increases while
E[QWT ] decreases as the lazy evaluation ratio (defined in Defini-
tion 2) of the candidate plan gets higher.

Definition 2. The eager (or lazy) evaluation ratio of an evaluation
plan is the ratio of the number of event types in EEG (or LEG) to
those in Q. An eager (or lazy) evaluation plan refers to the one
whose eager (or lazy) evaluation ratio is 1.

Given the characteristics above, we state the heuristic intuition
to select the optimal plan according to λ as follows, which will
be used for sanity check of our proposed cost-based plan selection
method in Section 6.
• Case 1: λ is slow (ρ < θlower). It is best to use the eager eval-

uation plan. Because there is sufficient idle time, most events
are evaluated using the idle time. In this case, the increase in
E[QWT ] is shorter than the decrease in E[STFE ]. Thus, the
latency can be reduced by reducing E[STFE ].

• Case 2: λ is fast (ρ > θupper). It is best to use the lazy eval-
uation plan. Because there is little idle time, most evaluations
of events are delayed. In this case, the increase in E[QWT ]
is longer than the decrease in E[STFE ]. Thus, the latency can
be reduced by reducing E[QWT ]. If a prefix of the optimal
matching order is same as the order specified in Q, it is better
to group the event types of the prefix into the EEG because
E[STFE ] decreases while E[QWT ] stays the same (ρ is the
same) since the matching order does not change (i.e., stays the
same as the optimal matching order).

• Case 3: λ is in the middle (θlower < ρ < θupper). The optimal
evaluation ratio can be found by considering the trade-off be-
tween E[QWT ] and E[STFE ]. An event type is grouped into
the EEG, if grouped it reduces the latency since the increase in
E[QWT ] is shorter than the decrease in E[STFE ]. The lazy
evaluation ratio of the optimal plan will become higher as λ be-
comes faster.

5. INTERMEDIATE RESULT MERGING
Whenever a final event arrives, the pattern instances matched to

Q are constructed using partial pattern instances stored in the eager
evaluation result buffer and events stored in deferred event buffers.
Here, only those partial pattern instances and events within W are
used to satisfy the time window condition of Q. We refer to this
process as merging, which is formally defined in Definition 4.

Definition 3. Consider E1;E2; ...;En. For Ei and Ej (where i <
j), a sequence predicate is Ei.timestamp < Ej .timestamp.

Definition 4. Suppose that the evaluation plan is EE1EE2 ...
EE|EEG|/EL1EL2 ...EL|LEG| . Merging is PIEE1

;...;EE|EEG|
./

PIEL1
./ ... ./ PIEL|LEG|

using the conjunction of the following
predicates as a join condition:

• parameterized predicates grouped into LEG

• sequence predicates between an event type in EEG and the one
in LEG

• sequence predicates among event types in LEG

Example 1. Figure 2(c) shows an example of merging detecting
the query event pattern in Figure 2(a). The figure shows the state
right after the event stream in Figure 2(b) arrived completely and
the merging initiated by d15 is finished. In the join tree shown in the
figure, leaf nodes represent the eager evaluation result buffer (green
colored) and deferred event buffers (yellow colored), and internal
nodes represent buffers into which the intermediate join results are
materialized. First, the time window condition is evaluated prior to
the start of the merging. (1) In this figure, a1 and a5, which are
outside of the time window based on d15, are discarded. When the
merging starts, two-way join operations are performed repeatedly
according to the predetermined join order. In this figure, the join
order ((EERBBC ./ DEBD) ./ DEBA) is used, in which the
most selective join operation is performed first. Initially, (2) the
partial pattern instances inEERBBC andDEBD are joined, with
the results being inserted into BCD. Next, (3) the results of prior
join and pattern instances in DEBA are joined, with the results
being inserted into ABCD.

PATTERN A(attr1);B(attr1);C(attr1, attr2);D(attr1, attr2)
WHERE A.attr1 < D.attr1
AND B.attr1 = C.attr1
AND C.attr2 = D.attr2
WITHIN 10

(a) Query event pattern

a1(2), c2(3, 1), b3(1), c4(2, 5), a5(7),a6(1),b7(9),c8(6, 6),

a9(9),b10(3),b11(4),c12(3, 7),a13(3), c14(3, 6),d15(5, 7)

(b) Event stream

DEBA

a1
a5
a6
a9
a13

BCD

b10; c12; d15

DEBD

d15

EERBBC

b10; c12
b10; c14

C.timestamp < D.timestamp
C.attr2 = D.attr2

./

ABCD

a6; b10; c12; d15

A.timestamp < B.timestamp
A.attr1 < D.attr1

./

(1)

(2)

(3)

(c) Merging

Figure 2: An example of the merging.

6. PERFORMANCE EVALUATION
In this section, we test the performance of APAM. We validate

the proposed optimal plan selection method, and show that APAM
achieves the lower bound of latency of the eager and lazy evaluation
methods at any arrival rates.

6.1 Experimental setting
We conduct three experiments in which the optimal matching

orders differ, as shown in Table 2. Next, we compare the perfor-
mance of APAM with those of existing methods, i.e., the eager
evaluation method and the lazy evaluation method. As the repre-
sentative existing methods, we use SASE [1, 11, 13, 14] for the
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eager evaluation method and ZStream [10] for the lazy evaluation
method. SASE acts as APAM that uses an eager evaluation plan
does, and ZStream as APAM that uses a lazy evaluation plan does.

Table 2: Three cases of experiments conducted.
No. Description

1 The optimal matching order (EDCBA) is the reverse order
of that specified in Q (ABCDE)

2 The optimal matching order (ABCDE) is identical to the or-
der specified in Q (ABCDE)

3 Part of the optimal matching order (BCDAE) is identical to
part of the order specified in Q (ABCDE)

The performance metric is latency. We measure the average
elapsed time from the point at which each final event arrives to
the point at which all pattern instances that contain the final event
are detected. We conduct each experiment five times and use the
average value.

For each experiment, we generate a synthetic event stream that
consists of 100,000 events (50,000 for warm-up and 50,000 for
measuring the performance). Events arrive into the system at ar-
rival rate λ according to a Poisson process. For each experiment,
we vary λ from 100 to 4500 events/sec. The event stream is a het-
erogeneous event stream that consists of five types of events. The
distribution of event types follows a uniform distribution. The event
schema is shown in Figure 3(a).

Figure 3(b) shows the query event pattern used in the experi-
ments. The optimal matching order of each experiment in Table
2 is determined by selectivities of the parameterized predicates of
this query event pattern. In the first experiment, the selectivities
are 0.008, 0.006, 0.004, and 0.002. In the second experiment, they
are 0.002, 0.004, 0.006, and 0.008, respectively. In the third ex-
periment, the corresponding selectivities are 0.006, 0.002, 0.004,
and 0.008. The selectivity of each parameterized predicate can be
varied by varying the domain of the relevant event attribute.

eID (integer)
type (integer, [0, 4])
timestamp (long)
attr1 ∼ 9 (integer)

(a) Event schema

PATTERN A;B;C;D;E
WHERE A.attr1 < B.attr1
AND B.attr2 < C.attr2
AND C.attr3 < D.attr3
AND D.attr4 < E.attr4
WITHIN 2000 events

(b) Query

Figure 3: The event schema and the query.

All experiments are conducted on a Linux machine equipped
with an Intel Core i7 4790 CPU and 8 GB of main memory. We use
SASE provided as an open-source software and implement ZStream
as described in Mei, Y. et al. [10] These are implemented in Java.

6.2 Experimental results
6.2.1 Experiment 1

Figure 4 shows the results of the measurements of the latency
of candidate plans for No. 1 in Table 2 while varying the event
arrival rate. Figure 4 also shows QWTTFE and STTFE , which
are the time components of the latency. The x-axis represents the
candidate plans, where the optimal plan selected by the proposed
method is underlined.

As shown in Figure 4(a), when the event arrival rate is slow
(where ρ < 0.1), the optimal plan selection method proposed in
Section 4 selects the eager evaluation plan so as to utilize the idle
time to the greatest extent possible. On the other hand, as shown in
Figure 4(d), when the event arrival rate is fast (where ρ > 1), it se-
lects the plan that uses the optimal matching order so as to increase
the service rate. Here, the matching order of the plan selected is

DECBA, which is another optimal matching order since selectiv-
ity of matching E after matchingD is the same as that of matching
D after matching E. As shown in Figures 4(b) and 4(c), when the
event arrival rate is in the middle, the proposed method selects the
plan that maximizes using the idle time provided that the queueing
delay does not cancel the benefit. This result also conforms to the
heuristic intuition in Section 4.3.

When the event arrival rate is 1500 event/sec, the proposed method
selects the second optimal plan, but there is only a slight difference
(1.30 times higher) between the latency of the selected plan and
that of the optimal plan. In all cases, the latency of APAM which
uses the plan selected is lower than or equal to the latency of the
existing methods. When the event arrival rate is 100 events/sec, the
latency of the proposed method is equal to the latency of SASE and
is 27.94 times lower than that of ZStream. When the event arrival
rate is 1500∼4500 event/sec, the latency of the proposed method
is 15.73∼361.48 times lower than that of SASE and is 1.04∼1.17
times lower than that of ZStream.

6.2.2 Experiment 2
Figure 5 shows the results for No. 2 in Table 2. In this result,

the proposed method selects the eager evaluation plan for all event
arrival rate. Since the optimal matching order is identical to the or-
der specified inQ, increasing eager evaluation ratio makes STTFE
decrease while not affectingQWTTFE . Thus, a plan with a higher
eager evaluation ratio achieves a lower latency regardless of the
event arrival rate. This result also conforms to the heuristic intu-
ition. In all cases, the latency of APAM is lower than or equal to
the latency of the existing methods. As the eager evaluation plan is
selected for all event arrival rate, the latency of APAM is same with
that of SASE, and 1.25∼5.71 times lower than that of ZStream.

6.2.3 Experiment 3
Figure 6 shows the results for No. 3 in Table 2. As shown in Fig-

ure 6(a), when the event arrival rate is slow, the proposed method
selects the eager evaluation plan. On the other hand, as shown in
Figure 6(d), when the event arrival rate is fast, it selects the plan
that uses the optimal matching order. As shown in Figures 6(b)
and 6(c), when the event arrival rate is in the middle, the proposed
method selects the plan that maximizes using the idle time provided
that the queueing delay does not cancel the benefit. This result also
conforms to the heuristic intuition.

When the event arrival rate is 4500 event/sec, the proposed method
selects the third optimal plan, but there is only a slight difference
(1.05 times higher) between the latency of the selected plan and
that of the optimal plan. In all cases, the latency of APAM which
uses the plan selected is lower than or equal to the latency of the
existing methods. When the event arrival rate is 100 events/sec, the
latency of the proposed method is equal to the latency of SASE and
is 5.51 times lower than the latency of ZStream. For the rest of
the case, the latency of the proposed method is 3.32∼60.09 times
lower than that of SASE and is similar to or up to 1.61 times lower
than the latency of ZStream.

7. CONCLUSION
In this paper, we propose a hybrid eager-lazy evaluation method,

called APAM, for low-latency event pattern detection. In APAM,
event types and parameterized predicates of the query event pat-
tern are partitioned into an eager evaluation group and a lazy eval-
uation group. When the final event arrives, pattern instances are
constructed by merging partial pattern instances constructed from
the eager evaluation group and events whose evaluations have been
deferred in the lazy evaluation group. APAM can act as the ea-
ger evaluation method, the lazy evaluation method, or as a hybrid
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Figure 4: Latency of candidate plans with varying arrival rates in Experiment 1.
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Figure 5: Latency of candidate plans with varying arrival rates in Experiment 2.
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Figure 6: Latency of candidate plans with varying arrival rates in Experiment 3.

evaluation method according to the evaluation plan. By using the
optimal evaluation plan, APAM can provide a lower-bound latency
of those of existing methods at any event arrival rate. To find the
optimal evaluation plan, we propose a cost model for estimating
the latency of an evaluation plan. Based on the cost model, we
propose a method that selects the optimal evaluation plan. Exper-
imental results show that this method selects the optimal or near-
optimal evaluation plan at varying arrival rates, which constitutes
a lower-bound latency of existing methods. The results also show
that APAM under the optimal evaluation plan can improve the la-
tency by up to 361.48 times over the eager evaluation method and
27.94 times over the lazy evaluation method.
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