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Abstract

We propose two-dimensional indexing—a novel in-memory indexing architecture that
operates over distributed memory of a massively-parallel search engine. The goal of two-
dimensional indexing is to provide a one-integrated-memory view as in a single node system
using one large integrated memory. In two-dimensional indexing, we partition the entire
index into n x m fragments and distribute them over the memories of multiple nodes in
such a way that each fragment is entirely stored in main memory of one node. The pro-
posed architecture is not only scalable as it uses a scaled-out shared-nothing architecture
but also is capable of achieving low query response time as it processes queries in main
memory. We also propose the concept of the one-memory point, which is the amount of
the memory space required to completely store the entire index in main memory provid-
ing a one-integrated-memory view. We first prove the effectiveness of two-dimensional
indexing with single-keyword queries, and then, extend the notion so as to be able to han-
dle multiple-keyword queries. To handle multiple-keyword queries, we adopt pre-join that
materializes a multiple-keyword query a priori as well as a new notion of semi-memory join
that obviates extensive communication overhead to perform join across multiple nodes. In
experiments using the real-life search query set over a database consisting of 100 million
Web documents crawled, we show that two-dimensional indexing can effectively provide
a one-integrated-memory view without too much of additional memory compared with the
single node system using one large integrated memory. We also show that, with a six-node
prototype, in an ideal case, it significantly improves the query processing performance over
a disk-based search engine with an equivalent amount of in-memory buffer but without two-
dimensional indexing — by up to 535.54 times. This improvement is expected to get larger
as the system is scaled-out with a larger number of machines.
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1 Introduction
1.1 Motivation

With the advent of various Web services on Internet, the amounts of data on the Web are
explosively increasing. The Web search engine stores petabyte-scale data consisting of tens
of billions of Web pages and handles billions of queries per day [7, 13, 15]. Since such
large-scale data can be neither stored nor processed in a single node, commercial search
engines use hundreds of thousands nodes to store large-scale data in a distributed manner
and process queries in parallel [7].

As many people use search engines routinely, their expectations for low query response
time are very high. However, satisfying users’ expectation is not easy since the random
access speed of disk is slow. To solve this problem, both academic research reported and
commercial search engines heavily rely on cache severs. That is, keeping a set of cache
servers outside the search engine for caching the query results [8, 10, 16, 20, 26] is widely-
accepted as an orthodoxy, and many other caching techniques have been developed at
different levels such as the document server [1, 2] and the index server [4, 29].

Meanwhile, as semiconductor technology rapidly advances, it has become viable to con-
struct a large-scale, main-memory system based on the memories of multiple machines in
a distributed environment. As a result, many large-scale systems based on distributed mem-
ory have been developed [9, 17, 19, 27]. We can decrease the level of dependency on cache
servers by storing the entire index in distributed memory and process queries in memory.
In the academic world, however, only some single-node in-memory IR methods have been
reported [5, 28], but no work reported for massively-parallel search engines using multiple
nodes. Google, which is a massively-parallel commercial search engine, is known to store
the entire index in distributed memory [7], but it heavily relies on cahe servers that stores
instance of query results in the memory to speed up query processing [11].

Figure 1 shows the architecture of the ODYS search engine [32]. ODYS is a massively-
parallel search engine using the DB-IR tightly-integrated DBMS architecture [33]. It
consists of masters and slaves. The entire Web documents and indexes are partitioned and
stored in the slaves. The user query is given to a master, and the master distributes the query
to the slaves. Then, the master merges intermediate results retrieved from the slaves and
returns the final result to the user.

Here, the entire index is stored in disks of the slaves, and only the part of the index that is
recently accessed is brought into main memory of the slaves via buffering. Thus, while the
queries that have been recently processed can be rapidly processed in main memory, other
queries that need to access the data in disk cause a major performance penalty. To handle a
large query load, ODYS needs to keep multiple ODYS sets (i.e., replicas). However, even
if the collective memory space from all the slaves in multiple ODYS sets is bigger than the
size of the entire index, the entire index cannot be stored in main memory if the memories
of multiple nodes are not properly coordinated. Thus, we need a method of coordinating
memories of multiple nodes as if we had one integrated memory storing the entire index.

1.2 Query semantics in the search engine
Queries in a search engine are classified into single-keyword ones and multiple-keyword
ones by the number of keywords used in a query. A single-keyword query returns documents

that contain the given keyword. A multiple-keyword query finds documents containing key-
words satisfying a Boolean expression consisting of AND, OR, NOT operators specified in
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Figure 1 The architecture of the Query Result
ODYS search engine [32]

Master e
Sub- 1 Sub-query n
ub-query Sub-query Sub-query duery
result 1 result n
8 Slave 1 Slave n
4l CPU | \ CPU \
% RAM RAM
-
=1 | scattered part of index| | | | scattered part of index
(recently processed) (recently processed)
HDD HDD
8 Slave 1 Slave n
4l CPU \ \ CPU \
g RAM RAM
3| =~ NI
HDD HDD
e

the query. We use the AND semantics for multiple-keyword queries since the user generally
wants to find documents containing all the query keyword.! In general, a Boolean expres-
sion can be transformed into the equivalent disjunctive normal form. Thus, in order to find
the results of a multiple-keyword query, we can first process each conjunct as a query and
union the results.

A search engine usually retrieves only top-k results since there could be a large num-
ber of documents that contain the query keywords. For the ranking measure, we use
PageRank [21], which is one of the most popular ranking methods for the search engine.
PageRank is very efficient since it is query-independent, i.e., the score of a document can
be determined before the query is given. To improve ranking quality of PageRank, we can
additionally apply query dependent ranking (e.g., TF-IDF) into the top results returned by
PageRank. In this paper, however, we do not deal with ranking quality since we focus on
the performance of the search engine.

We focus on the index access time only (i.e., excluding the document retrieval time).> The
document retrieval time can be easily reduced by using other scalable in-memory systems
such as in-memory key-value stores [17, 19] or in-memory DBMSs [9, 27] since each doc-
ument can be accessed independent of index access. Hence, we define the query response
time as the index access time.

1.3 Challenging issues

Challenging issues in constructing an in-memory search engine are summarized below. We
focus on how to solve these issues effectively.

ISince ODYS/2D-Indexing is a DBMS-based search engine supporting SQL, it gently supports arbitrary
queries including various operators such as AND, OR, NOT.
2Many research studies [5, 28] focus on the index search time without including the document retrieval time.
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Partitioning of the entire index: In a distributed environment, we need a method that
effectively partitions the entire index into multiple index fragments to distribute over
multiple nodes.

Inter-node communication: During query processing in a distributed environment,
we may need to transfer partial results from one node to another. This inter-node com-
munication incurs cost. Thus, we need an efficient query processing method avoiding
inter-node communication as much as possible.

Dynamic join: When processing a multiple-keyword query, we need to join the posting
lists of the keywords in the query to find documents containing all the query keywords.
Here, the join among posting lists is a very expensive operation since we generally need
to access a much larger number of postings than k for a top-k query from posting lists
to find documents containing all the query keywords. Thus, we need to reduce the cost
of dynamic join.

1.4 Our contributions

The goal of this paper is to show that, by carefully coordinating collective memories in
multiple nodes of a search engine, we can achieve the same effect as one integrated memory
in a single-node system. We summarize our contributions as follows.

We propose a novel notion of two-dimensional indexing that simulates collective dis-
tributed memory as one integrated memory. Figure 2 shows the concept of providing a
one-integrated-memory view of collective memories by using two-dimensional index-
ing over n x m two-dimensional distributed memory. Here, the horizontal axis of the
array indicates n index shards that are partitioned from the entire index; the vertical axis
in each column of the array indicates m index fragments that are partitioned from each
index shard. The architecture supports parallel processing among n index shards based
on document partitioning(to be defined in Section 2.2) and distributes the query load
of each index shard to m index fragments based on keyword partitioning(to be defined
in Section 2.2). We prove its usefulness with single-keyword queries (Section 3.3). The

Parallel processing over

‘ Index shard 1 ‘

‘ Index shard 2 ‘

&

o multiple index shards
5 & ! \
=5 g_ Index shard 1 Index shard 2 Index shard n
SE - =
= 2 Wlnd%/x fragment, | 1Ind*¢x fragment, ||
E. = i T 1
g E {Index fl*a.gmentlli i Ind%x ﬁ*&}gmentz_zi
5 é' : . .
C's ;%: iIndex fragmelbt,},J {Index fragme]ilt2 ,J {Index ﬁ{a_\_g_{r_lgﬁmj
[}
= B Integrating index fragments
@ g @ @ into an index shard L
e

Index shard n

Integrating index shards
into one integrated memory

One integrated memory

Figure 2 Integrated view of collective distributed memories as one memory

@ Springer




World Wide Web

two-dimensional indexing architecture is scalable as it uses a shared-nothing architec-
ture. Moreover, we can achieve low query response time as it allows processing queries
in main memory.

—  We newly propose the concept of the one-memory point, which is defined as the amount
of memory space required for a system with distributed memory to completely store
the entire index in main memory providing a one-integrated-memory view. We find
the one-memory point of a system by examining a real data set (Section 4), and then,
validate its correctness by comparing the examined result with the experimental result
(Section 6). The significance of the one-memory point is that it allows us to estimate
the total size of distributed memory required for building an in-memory massively-
parallel search engine employing two-dimensional indexing, which can be an important
practical guideline.

—  We extend the notion of two-dimensional indexing so as to be able to handle multiple-
keyword queries. We first propose the concept of two-dimensional indexing with single-
keyword queries. However, in practical situations, we must handle multiple-keyword
queries as well. To handle multiple-keyword queries in two-dimensional indexing, we
propose the notion of pre-join that can handle a multiple-keyword query just like a
single-keyword query (Section 5.1). Then, we propose the notion of semi-memory join
that eliminates the costly inter-node communication among the nodes at a cost of some
disk accesses (Section 5.2).

— We implement two-dimensional indexing in the ODYS search engine [32] building
a system, ODYS/2D-Indexing. Through the experiments, we show that ODYS/2D-
Indexing can provide a one-integrated-memory view for single-keyword queries only
with 0.25% of additional memory space (i.e., one-memory point = 1.0025 x index
size); for a real-world query set consisting of single-keyword and multiple-keyword
queries with 10.97% of additional memory space (i.e., one-memory point = 1.1097
x index size). We further show that, in an ideal case when all the pre-joined
multiple-keyword queries are in the in-memory buffer, ODYS/2D-Indexing signifi-
cantly outperforms the ODYS disk-based search engine that do not use two-dimensional
indexing [32] by 2.84 ~ 6.05 times for single-keyword queries and 99.66 ~ 535.54
times for real-world queries including single-keyword and multiple-keyword queries.

2 Preliminaries

In Section 2.1, we introduce recent trends and issues on in-memory systems. In Section 2.2,
we briefly review the inverted index, and the partitioning methods of the inverted index.

2.1 Distributed main memory

Since the data transfer rate of RAM is orders of magnitude faster than that of the disk [24,
25], we can effectively improve the system performance by storing data in RAM. How-
ever, when we deal with large-scale data, it is not feasible to store the entire data into the
memory of one machine since the size of RAM equipped in a single machine is limited.
Therefore, the concept of distributed memory consisting of those of multiple machines has
been introduced [23].

If the collective amount of distributed memory is larger than the size of data, we can store
the entire data, in theory, into the distributed memory. However, since distributed memory is
located over multiple nodes, the system using distributed memory, in general, does not have
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the same performance as that of a single node system using one large integrated memory.
This comes from the fact that query processing usually requires data stored in multiple
nodes causing performance degradation due to the communication cost of inter-node joins.

Recently, many large-scale systems based on distributed memory have been developed.
In-Memory DBMSs [9, 27] process queries by loading the necessary data into distributed
memory. However, they do not deeply deal with the inter-node join problem in a distributed
environment; they just adopt the traditional methods such as semi-join [3, 9] or replicat-
ing small tables to obviate inter-node communication [27]. Moreover, they neither support
efficient information retrieval (IR) functionality such as an IR index, nor the architecture
of partitioning/storing the IR index. In-Memory Key-Value Stores [17, 19] store data in
the key-value format into distributed memory and accesses the data using a key uniquely
assigned. It is suitable for storing data in a distributed manner. However, to model multiple
normalized relations in the key-value format, we need to transform related relations into a
de-normalized form (i.e., pre-joined). De-normalization renders the space utilization inef-
ficient since a lot of data is duplicated. Moreover, we cannot use an index for a non-key
attribute that is embedded in the value field. Thus, it is not suitable for processing search
queries that have search conditions on arbitrary attributes. There are many other variants of
in-memory key-value stores. In-Memory Data Grid (IMDG) [12, 18] stores data in dis-
tributed memory in a key-value format where the value is a serialized object (e.g., JVM
objects). It inherits disadvantages of key-value stores. Similarly, Spark [34, 35] stores mate-
rialized intermediate results (i.e., RDDs) for iterative algorithms (e.g., MapReduce jobs,
calculating PageRank) in a key-value format in distributed memory to accelerate the pro-
cessing speed of those algorithms. They are appropriate for batch analytics using scanning
of the whole data [35].

2.2 Inverted index

The inverted index is a representative index for searching the documents containing query
keywords [6, 30]. Figure 3 shows the structure of an inverted index. The inverted index
consists of a keyword index and posting lists. The keyword index is a B+-Tree indexing
all the keywords in the entire set of documents where each keyword points to a posting
list. A posting in the posting list represents the information for a document such as the
document identifier (docID) and term frequency (TF). In the head of the posting list, we
store the document frequency (DF), which is the frequency of documents containing the
corresponding keyword among the entire set of documents.

A large-scale search engine partitions the inverted index to multiple components storing
them in multiple nodes. There are two types of index partitioning: 1) document parti-
tioning [14] and 2) keyword partitioning [14]. In document partitioning, we partition the
inverted index using document identifiers as the partitioning criterion. Figure 4 shows an

sti T T
apostie Sub-index (for each posting list)

DFE(i.e., # postings)[ docID, offsets | docID,, offsets | - |

Keyword B a posting list

Figure 3 The structure of an inverted index [30]
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example document partitioning where an inverted index is partitioned into two components:
1) one for documents 1, 2, 3 and 2) another for documents 5, 7, 8. We call each parti-
tioned index component obtained by document partitioning an index shard. To process a
keyword query, we need to search all the shards for a complete answer. An advantage of
document partitioning is that we can process a query in parallel by simultaneously accessing
all the index shards. On the other hand, its disadvantage is that we must access all the index
shards to process a query adversely affecting the throughput of the system and incurring an
overhead of unioning the search results from all the shards.

In keyword partitioning, on the other hand, we partition the inverted index using key-
words as the partitioning criterion. Figure 5 shows an example keyword partitioning where
the inverted index is partitioned into two components: 1) one for documents containing
‘apple’ and 2) the other for those containing ‘orange.” We call each partitioned index com-
ponent obtained by keyword partitioning an index fragment. Here, to process each query, we
need to access only those index fragments that correspond to the query keywords. Hence,
the advantage of keyword partitioning is that the query load is naturally distributed over
index fragments. Its disadvantage is that it does not allow us to process a single-keyword
query in parallel among index fragments.

3 Two-dimensional indexing

Two-dimensional indexing is a two-dimensional (n x m) way of storing the inverted index,
partitioning it into n shards and partitioning each shard into m fragments. The purpose of
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Figure 5 An example keyword partitioning
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two-dimensional indexing is to provide a one-integrated-memory view of distributed mem-
ory storing the inverted index. In Section 3.1, we explain the architecture of two-dimensional
indexing. In Section 3.2, we explain the concept. In Section 3.3, we present the query
processing method for single-keyword queries in two-dimensional indexing.

3.1 Architecture

Figure 6 shows the architecture of two-dimensional indexing. It is a 3-level architecture
consisting of one supermaster, n shard masters, and n x m slaves. We call a set of n x
m slaves that store the entire index the slave grid. Slave; ; indicates the (7, j)th element in
the slave grid where i indicates the number for the index shard and j the number for the
index fragment. The supermaster manages all the slaves by communicating with the shard
masters each of which, in turn, manages a column of the slave grid. Here, each supermaster
and each shard master keeps meta information of nodes that they manage in their catalogs.
In the global database catalog for a supermaster, we store the database schema and the 1P
addresses of the shard masters that the supermaster manages. In the local database catalog
for each shard master, we store the database schema, the IP addresses of the slave nodes that
the shard master manages, and the keyword ranges of those slave nodes.

3.2 Concept

In two-dimensional indexing, we employ document partitioning and keyword partitioning in
a two-dimensional way, as we explained in Section 2.2. Hence, we partition the entire index
in two-phases as shown in Figure 7. The first phase uniformly partitions the entire index
into n index shards by document partitioning. The purpose of this phase is to enable parallel
processing among index shards. The second phase partitions each index shard into m index
fragments by keyword partitioning. The purpose of this phase is to distribute the query
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Shard master Shard master,
CPU (
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Figure 6 The architecture of two-dimensional indexing
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Figure 7 Two-dimensional indexing

load to the index fragments. Here, we partition each index shard into m index fragments so
that each index fragment has the same number of postings.> Thus, we obtain the number
of postings for each index fragment according to (1) where n-total-postings is the total
number of postings and m the number of slaves in each shard.

n-total-postings

n-postingSindex-fragment = S m N

Then, we calculate the keyword range for each index fragment so that index fragments
in an index shard are evenly responsible for disjoint keyword ranges, and the query load
is evenly distributed among index fragments. We finally distribute the partitioned index
fragments to the slaves and load them in main memory (i.e., DBMS buffer) of each slave.
By allocating sufficient amount of main memory to each slave, we make sure those index
fragments stay in main memory during query processing. Specifically, when we load the
DBMS pages for the index fragment in the DBMS buffer, we fix them with the LongFix flag
and control those pages not to be selected as a victim by the buffer replacement algorithm.*

We summarize the strength of two-dimensional indexing as follows.

—  Two-dimensional indexing provides a one-integrated-memory view of distributed main
memory. That is, it makes collective main memories of a large distributed system look
like one large integrated main memory of a single system.

— Two-dimensional indexing is a new scalable in-memory IR indexing architecture for
massively-parallel search engines, which has not been introduced in the literature
before. Since most existing in-memory IR methods are based on a single-node, they are
not scalable and are unsuitable for massively-parallel search engines. In contrast, the
two-dimensional indexing architecture can be easily scaled-out by adding new machines
as it stores the entire IR index into collective main memories of multiple machines.

—  We can reduce dependency on cache servers for a search engine. The existing methods
for massively-parallel search engines use a disk-based architecture and heavily rely on
cache servers such as Memcached [17] at various levels (i.e., web server, index server,
document server) to reduce the query response time. In contrast, two-dimensional

3For simplicity, we assume that all slave machines have the same amount of main memory. However, in
the case where slave machines have different amounts of main memory, we can partition the index shard in
proportion to the amount of main memory each slave has.

4The number of LongFixed pages is limited to 100% of the size of the index fragment. We allocate 2GB of
more pages for the ordinary buffer without LongFix. Any page loaded after the LongFixed buffer is full is
treated as an ordinary buffer page without LongFix. Thus, they may be swapped out later if necessary.
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indexing can obtain a low query response time without cache servers as it processes the
query efficiently using the inverted index where all the index fragments are stored in
main memory.

—  We can inherit the advantages of traditional index partitioning methods: parallelism and
load distribution. Thus, we can efficiently process search queries on large-scale data in
a massively-parallel manner.

3.3 Single-keyword query processing

Each (disjoint) index fragment in two-dimensional indexing represents a part of the entire
index. Thus, we can select only those nodes that contain index fragments relevant for
processing a specific query. The method of selecting those nodes depends on the index
partitioning method used as we have explained in Section 2.2.

Figure 8 shows the processing method of a single-keyword query (e.g., Qorange) Using
two-dimensional indexing. First, the supermaster copies the query Qorange and distributes
it to shard masters. Second, each shard master selects a slave to process the given keyword
‘orange’ by referring to the keyword ranges of the slaves and routes the query to the one
selected. Later, the supermaster obtains the final result by unioning the results for the shard
masters.

4 One-memory point

We store an index fragment generated by two-dimensional indexing into the memory space
of each node. Since the sizes of index fragments vary, the total memory space requirement

D Index fragment Qorange

on disk
Index fragment
in main memory

Supermaster
Qorange Qorange Qorange
Index shard 17 Index shard 2 Index shard n
» 4
+ Shard master, ‘ + Shard master, ‘
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Figure 8 Processing a single-keyword query in two-dimensional indexing
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tends to be larger than the size of the entire index. We first define the one-memory sys-
tem as a single node system storing the entire index in main memory. Next, we define the
one-memory point as the amount of memory space required for a system with distributed
memory to completely store the entire index in main memory providing a one-integrated-
memory view. We further illustrate this notion in Figure 9. If the memory space of the
distributed system is lower than the one-memory point, the query processing speed will
slow down since some posting lists are not properly loaded into main memory. Therefore,
we should be able to project the exact one-memory point and provide sufficient amount of
memory space to distributed nodes. At the one-memory point, two-dimensional indexing
can provide nearly the same performance as that of the one-memory system.

We now investigate the one-memory point of two-dimensional indexing by examining
the actual dataset we use. Table 1 shows the size of the index fragments for a set of 100
million documents. Specifically, the document set is partitioned into two shards each with
50 million documents evenly. Each shard is partitioned into index fragments where each
index fragment has almost the same number of postings. While the sizes of index shards
can vary since they are built with different document subsets, the sizes of index fragments
within an index shard are almost the same since they are partitioned so that the postings
are evenly distributed over fragments. Table 2 shows the one-memory point that is derived
from Table 1. The size of the required memory for the one-memory system is calculated as
SUM(| fragmentl|, ..., | fragment6|) = 459.75GB while that of two-dimensional index-
ing is calculated as MAX (| fragmentl|, ..., | fragment6|) x nFragments = 460.90GB
assuming that every slave has the same amount of main memory. One-memory point is cal-
culated as MAX(I%“,%?’? 1 ;lgmerlzjtc fﬁffﬁf}"rfgﬂfgxg(;g"’e” S =100.25%. In other words, if we have
0.25% of additional memory, we can process every single-keyword query in main mem-
ory. As we showed, the one-memory point for single-keyword queries is close to 100%
for a dataset of a large size and can even be computed statistically from the deviations in
the uniformity of the size of index fragments partitioned. However, for multiple-keyword
queries, the one-memory point can be much larger than 100%. We will discuss this issue in
Section 5.4.

Table 1 The sizes of index
fragments Index fragment size(GB)

Shard 1 Fragment 1 76.50  Shard2  Fragment 4 76.42

Fragment 2 76.70 Fragment 5 76.59
Fragment 3 76.81 Fragment 6 76.70
Total 230.02  Total 229.72
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Table2 One-memory point
Required memory size(GB)

One-memory system 459.75
Two-dimensional indexing 460.90
One-memory point 100.25%

5 Multiple-keyword query processing

In Sections 3 and 4, we have discussed the architecture and model of two-dimensional index-
ing in terms of only single-keyword queries. In practice, however, multiple-keyword queries
represent a large portion of the query load in a search engine, and they must be incorpo-
rated in the model. In this section, we extend two-dimensional indexing so as to incorporate
multiple-keyword queries. We first present two processing methods for multiple-keyword
queries: Pre-Join and Semi-Memory Join. Then, we discuss the issues arising from the
proposed methods: selection of multiple-keywords to be pre-joined, extra memory space
required for multiple-keyword queries, required buffer size(i.e., one-memory point), and the
expected hit ratio. We define the hit ratio as the probability that a query can be processed
by accessing a pre-joined multiple-keyword set.

5.1 Pre-join

The basic idea of pre-join is that we join the posting lists for multiple keywords and store
the results in the index in advance. This way, a multiple-keyword query can be processed
just like a single-keyword query. We call a pre-calculated posting list a pre-joined posting
list. We denote the memory space for storing the pre-joined posting lists by Spacepre-joined-

Figure 10 shows an example of pre-join for a multiple-keyword query consisting of two
keywords. This process is just the same as a general process of joining posting lists of a
multiple-keyword query. Then, we assign a unique keyword to the pre-joined posting list
for storing and querying. We generate the unique keyword by concatenating the multiple
keywords in a specific order. We note that using a simple alphabetical order will make the
distribution of the posting lists highly skewed since a larger portion of the pre-joined post-
ing lists will be assigned to the former slaves than the latter ones. To avoid this problem,

Keyword
‘apple’
4% ‘ docl0 ‘ docl4 ‘ docl5 ’ ‘ doc30 ’ doc35 ‘ doc49 ‘ doc50 ‘
Posting list
Keyword
‘orange’
4’{ docl0 ‘ docll ‘ docl14 ‘ docl5 { doc30 ‘ doc32 ‘ doc38 ‘ I doc49 ‘

Generating a
pre-joined posting list
Keyword
‘apple-orange’

docl10 ‘ docl4 ‘ docl5 ‘ doc30 ‘ doc49

Figure 10 Generating a pre-joined posting list by joining two posting lists
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Figure 11 Semi-memory join

we generate the unique keyword by concatenating the multiple keywords by first apply-
ing a hash function, and then, ordering them in the order of resulting hash values. For
example, a multiple-keyword consisting of two keywords ‘apple’ and ‘banana’ would be
transformed into one composite-keyword ‘banana-apple’ if the hash value of ‘apple’ were
bigger than that of ‘banana’. This way, we can distribute the pre-joined posting lists evenly
to slaves. Then, we insert the composite-keyword and the pre-joined posting list into the
inverted index just like a single keyword. Thus, when processing the query, we do not need
to distinguish the composite-keyword from the single-keyword as long as we transform the
multiple-keyword query to a composite-keyword query by using the same algorithm for
concatenation.

5.2 Semi-memory join

Processing a multiple-keyword query could easily incur the need to join multiple posting
lists that are stored in fragments in different nodes, causing inter-node communication as
we explained in Section 2.1. To avoid inter-node communication, we propose a join method
that joins a posting list stored in main memory with another posting list stored in disk within
the same node. We call this method the semi-memory join. To implement semi-memory
join, we duplicate an entire index shard to disks of all the slaves in the same column of
the slave grid shown in Figure 8.7 Then, we join a posting list in the index fragment stored
in main memory with another posting list in the index shard stored in disk in the same
machine. Thus, query keywords that are included in the keyword range of the index fragment
are processed in main memory while those outside the keyword range are processed by
accessing disk (Figure 11). This way, we can avoid more costly inter-node communication
at a lesser cost of disk access. As we explained in Section 3.2, we store the index fragment
in the DBMS buffer with the LongFix flag. Thus, we can ensure the index fragment is not
swapped out to disk even if we access posting lists stored in disk.

When we process a multiple-keyword query, we need to select a specific slave to process
the query among the slaves storing the same index shard in disk. Since the slaves store the
posting lists in different keyword ranges in main memory, the number of postings that are
required to be read from the memory depends on which slave is selected. Naturally, it is

SThe disk space required for duplication is proportional to the number of fragments (m) used in the column.
These replicas play a role as replication servers for fault-tolerance as well as the semi-memory join. That
is, even if a failure occurs on one machine in the column, the shard master can process any queries on disk
by adjusting the keyword range. We note that it is common for large-scale search engines that adding search
engines in parallel as replication servers to handle large volumes of search queries. We are exploiting those
redundant replication servers to two-dimensional indexing.
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the most efficient to select the slave that can read the largest number of postings from main
memory. Thus, we select the slave having the largest collective number of postings of the
query keywords. The collective number of postings can be obtained by summing up the
document frequencies(DF) of the query keywords included in the index fragment, which
can be easily obtained by referring to a hash table® of (keyword, DF) and the keyword range
that are managed by the shard master.

5.3 Pre-joined multiple-keyword set

Although we can achieve a higher hit ratio if we use a larger pre-joined multiple-keyword
set, the number of possible combinations for multiple-keywords is nearly infinite(2", n is
the total number of distinct keywords in the document set) while the memory space for
storing pre-joined posting lists is limited. Therefore, we cannot store the pre-joined posting
lists for all the combinations of multiple-keywords in main memory. Thus, we need to select
a set of multiple-keywords that have a high probability of being used frequently.

Since it is difficult to theoretically analyze the expected hit ratio according to the size
of the pre-joined multiple-keyword set, we empirically examine a well-known query set,
namely, the AOL search query set’[22] and generate pre-joined multiple-keyword sets for
simulating expected hit ratios. Specifically, we select a set of top-X % of multiple-keyword
queries having high frequencies of occurrence from the AOL search query set. We call this
set MKSet-X. Then, we generate the pre-joined posting lists of the multiple-keyword queries
in MKSet-X and add them to the inverted index as composite-keywords. We then measure
the memory space required for storing the pre-joined posting lists of MKSet-X, which we
denote by Spaceny kser (X). When processing other multiple-keyword queries not included
in MKSet-X, we use semi-memory join. We now discuss issues related to MKSer-X and
Spacepk se (X) in detail.

— MKSet-X: We find that most multiple-keyword queries can be processed in mem-
ory by using a relatively small size of MKSet-X since a small set of frequent queries
covers most of the total query frequency. Figure 12 shows the distribution of the fre-
quencies of the multiple keyword queries in the AOL search query set. The horizontal
axis represents the ranking based on the occurrence frequency, and the vertical axis the
occurrence frequency of each multiple keyword. As shown in the graph, the multiple-
keyword queries used in the search engine follows the power-law distribution. The
total frequency of the multiple keyword queries in MKSet-20, MKSet-30, and MKSet-
40 over that of the entire set of the multiple-keyword queries in the AOL search query
set is 66.45%, 74.68%, and 80.58% respectively. It means that if we select top 40% of
multiple-keyword queries as a pre-joined multiple-keyword query set, we can achieve
the hit ratio of 80.58% by using the pre-joined posting lists. In Section 6, we measure
the query processing performance through experiments as X in MKSet-X is varied to
show the effect of using using pre-join.

OThe shard master initializes it by executing a query “SELECT keyword, nPostings FROM
(inverted_ index name)” that reads DFs of all posting lists (shown in Figure 3 in Section 2.2) in the slave
database.

7The AOL(America On-line) search query set is a collection of search queries consisting of 35,020,000
queries collected from 650,000 users over 3 months. The portion of single-keyword queries is 36.43%. For
other specific application domains, a similar query set can be collected over a period of time.

@ Springer



World Wide Web

100,000 , . ; , . .
10,000 | §
-~
)
2
=
2
21,000 F i
@
&
)
i
2
& 100t 1
10 F .
-
-
-_—
—_—
. ‘ . . ‘ . .
1 10 100 1,000 10,000 100,000  1e+06 le+07

Query ranking

Figure 12 The distribution of AOL search query set[22]

—  Spaceykse(X): At the first thought, one might think that Spacepsk ser (X) would be
much smaller than the memory space for the entire index including all the single key-
words since it is normally expected that a pre-joined posting list would be short being
the intersection of the posting lists of multiple keywords. However, we find, in practice,
that Spaceprk se: (X) is not small since each keyword in a popular multiple-keyword
query 1) tends to have very a high document frequency (DF), and 2) tends to be highly
correlated with one another. Thus, intersecting the posting lists does not significantly
reduce the size of the result. Our strategy for solving this problem is to store only top-
500 postings in the LongFixed buffer for pre-joined posting lists. Choosing a larger k
value results in better search results but at the same time increases the space overhead.
The minimum k value required to satisfy the users of the search engine, from the per-
spective of the quality of search results, tends to be determined by habitual behavior
of the search engine user. Therefore, theoretical analysis of the appropriate k value is
left as a future work. Instead, we directly examined the case of Google and selected the
appropriate k value as 500.8 This strategy is very space efficient with a marginal per-
formance loss since most users are interested only in a few top results, and low-ranked
results are rarely retrieved. In case we need more than top-500 results, the system just
issues a normal multiple-keyword query rather than a composite-keyword query. Then,
we can compute the result by dynamic join.

We now discuss the tradeoff between the size of MKSet-X and the performance. We
can easily expect that a larger MKSer-X yields a better query processing performance,
eventually outperforming the one-memory system, but instead, the space overhead(i.e.,
Spacepk ser (X)) will increase. Thus, we need to find the most effective MKSet-X by con-
sidering both the performance and the space overhead. In Section 6.2.2, we find the relevant

8Specifically, we tested the maximum number of search results that Google provided and observed that they
provided up to top-500 search results.
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Table 3 The size of index fragments with pre-joined posting lists(Top-500)

Index fragment MKSet-20 MKSet-30 MKSet-40 MKSet-60 MKSet-80 MKSet-100

size(GB)

Shard 1 Fragment 1  78.98 79.83 80.72 82.24 83.61 84.73
Fragment2  78.95 79.89 80.74 82.25 83.63 84.88
Fragment 3~ 78.98 79.94 80.74 82.25 83.64 85.03

Total 236.91 239.66 24221 246.74 250.87 254.64

Shard 2 Fragment I ~ 78.88 79.75 80.65 82.15 83.53 84.65
Fragment2  78.87 79.80 80.64 82.16 83.53 84.78
Fragment 3~ 78.87 79.81 80.63 82.13 83.52 84.91

Total 236.62 239.36 241.91 250.58 252.52 254.34

X in MKSet-X that makes the performance of two-dimensional indexing equivalent to that
of the one-memory system through experiments.

5.4 Discussion on one-memory point

In Section 4, we have defined the one-memory point as the amount of memory space
required for a system with distributed memory to completely store the entire index in
main memory providing a one-integrated-memory view. With multiple-keyword queries,
the one-memory point become larger since index size increases to store pre-joined post-
ing lists for composite-keywords, i.e., the pre-joined multiple-keyword set. We note that,
from the perspective of the buffer size, the one-memory point implies the size of the
buffer required to store the desired amount of pre-joined posting lists, which determines
the hit ratio. In Section 5.5, we will discuss practical issues on the method of managing
composite-keywords in a buffer of a limited size and the expected hit ratio.

Table 3 shows the size of the index fragments for 100 million documents with the pre-
joined posting lists. Table 4 shows the one-memory point as X is varied. As we can see in
Table 4, despite that we store pre-joined posting lists, the one-memory point is relatively
low. For example, if we use MKSet-40, the one-memory point is 105.37%. In other words, if
we allocate 5.37% of additional memory compared to the one-memory system, we can treat
80.58% of the multiple-keyword queries as single-keyword queries, and they can be pro-
cessed in main memory. In Section 6.2, we will verify through experiments the correctness
of the one-memory point examined.

We note that, as the size of the document set increases (say, beyond 100 million), we
can store more top-k postings in main memory where k is bigger than 500 while main-
taining a small one-memory point. Table 5 shows the trend of the index size as k in top-k

Table 4 One-memory point examined with pre-joined posting lists(Top-500)

Required memory MKSet-20  MKSet-30  MKSet-40 ~ MKSet-60  MKSet-80 ~ MKSet-100
size(GB)

One-memory system  459.75 459.75 459.75 459.75 459.75 459.75
ODYS/2D-Indexing 473.89 479.61 484.46 493.52 501.81 510.18

One-memory point 103.07% 104.32% 105.37% 107.35% 109.15% 110.97%
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Table 5 The trend of the index size as k in top-k for the hot part varies

Index size(GB) for document sets 10 million 100 million
Top-10 Entire index(w/o pre-join) 44.52 459.75
Spacepkser (X = 100) 1.17 1.69
MKSet ratio 2.62% 0.37%
Top-100 Entire index(w/o pre-join) 44.52 459.75
Spaceprk ser (X = 100) 7.09 13.16
MKSet ratio 15.93% 2.86%
Top-1000 Entire index(w/o pre-join) 44.52 459.75
Spacepk ser (X = 100) 31.80 83.27
MKSet ratio 71.42% 18.11%

for the hot part varies. We observe that the ratio of Spacejks.:(X) over the entire index
size (MKSet ratio) stays in a similar range as both & in top-k and the size of the document set
are increased by the same factor. For example, for the set of 10 million documents, the ratio
of Spacepk se:(X=100) for top-100 (top-10) pre-joined posting lists is 15.93% (2.62%).
For the set of 100 million documents, the ratio is 18.11% (2.86%) for top-1000 (top-100).
By extending this observation, we can project that, for a set of 1 billion (10 billion) docu-
ments, we can store top-10000 (top-100000) pre-joined posting lists without significantly
increasing the MKSet ratio. Thus, we have sufficiently large k in top-k for a real-life large
database so that we may additionally employ various query dependent ranking measures
without limitation.

5.5 Load balancing and dynamic update of pre-joined multiple-keyword set

We have discussed on the concept of two-dimensional indexing. However, in a real-life
search engine, the query keywords used in the search engine can dynamically change as
the users’ current interests change, and this might incur various performance optimization
issues, which requires a lot of space to illustrate them. Therefore, here, we only briefly
explain the issues and possible solutions leaving the details as a future work.

— Dynamic Index Partitioning:

According to (1) in Section 3.2, we partition each index shard into multiple index
fragments by the document frequency (DF) so that each index fragment has the same
number of postings. In this scheme, the memory space is balanced among slaves, but
the query loads are not since the query load is proportional to the frequency of queries
processed in a slave, which we define as Query Keyword Frequency (QKF). QKF
dynamically changes as time passes since it reflects users’ current interests. To accom-
modate this change, we can balance the query load among the slaves by dynamically
adjusting the keyword ranges for the index fragments. If we partition the index shard
by QKEF, the query load among slaves is balanced. Instead, the memory space becomes
unbalanced. Then, we should allocate to all the slaves the maximum of the memory
requirement among index fragments. Thus, balancing the memory space and the query
loads is a trade-off.

We present the result of brief experiments in Section 6.2.1. If load balancing is
employed, the performance is improved by 1.00% ~ 90.55% as the arrival rate varies,
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but 22.29% of more memory space is required. Thus, we conclude that load balancing
can be employed without allocating an excessive amount of memory space.
— Dynamic Update of In-Memory MKSet:

In Sections 5.3 and 5.4, we have discussed on the selection of MKSet-X and have
noted their one-memory points are relatively low. For instance, if we pre-join all the
multiple-keywords occurring in the query set (i.e., MKSer-100), one-memory point is
110.97%. This indicates that, without much space overhead, we can pre-join a large
number of the multiple-keyword queries and store them in main memory. However, in
a real-life search engine, all the pre-joined multiple-keyword queries cannot be main-
tained in main memory since multiple-keyword queries that have not been issued and
stored in main memory previously can be newly generated anytime. We define the
set of multiple-keyword queries whose results have been brought into the in-memory
buffer the in-memory MKSet. Thus, we need to dynamically update the in-memory
MKSet with new multiple-keyword queries. We employ the Least Recently Used (LRU)
policy for selecting victims to delete and updating the in-memory MKSet. This is
easily implemented by enforcing a separate LRU policy only for the buffer pages
that are LongFixed. Updating the in-memory MKSet involves dynamically creating
the pre-joined posting lists of new multiple-keyword queries and inserting them as
composite-keywords in the inverted index stored in disk, and unLongFixing from the
buffer those composite keywords deleted.

Table 6 shows the the cost of dynamic updating the in-memory MKSet by the
LRU policy. We process 24 multiple-keyword queries(consisting of 2 ~ 4 keywords)
retrieving top-500 results over a database consisting of 50 million Web documents and
measure the average elapsed time of 1) deleting a pre-joined posting list, 2) inserting a
pre-joined posting list, 3) processing dynamic join, and 4) total query processing time.
As we can see in the experimental result, the time required for dynamic update of the
inverted index and the in-memory MKSet is limited to tens of milliseconds, which is
relatively small compared to that of dynamic join.

The expected buffer hit ratio and the performance of query processing depends on
how often we update the in-memory MKSet with new multiple-keywords. By examin-
ing the AOL search query set, we find that dynamically updating the in-memory MKSet
yields a hit ratio of 74.14% when we store queries accumulated for a three-month period
in main memory. Moreover, we find that we can achieve a higher hit ratio if we have a
larger(i.e., dense) query set during the same period. For instance, Google achieves typ-
ically 70 ~ 90% of hit ratio using Google Global Cache (GGC) for various services
including the search engine [11]. As illustrated in Table 7, we can use MKSer-30 for
simulating the hit ratio of 74.68% (close to the hit ratio of the AOL query set), and
MKSet-60 for simulating the hit ratio of 88.18% (close to the hit ratio of Google). In

Table 6 The cost of dynamic update of in-memory MKSet

#keywords in #retrieved time elapsed (ms)
the query results

delete insert dynamic join total
2 500.00 67.40 24.56 126.46 218.41
3 500.00 43.81 18.17 588.08 650.07
4 301.21 46.26 57.07 8702.08 8805.41
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Table 7 The expected buffer hit ratio as MKSer-X varies

MKSet-X MKSet-20  MKSet-30  MKSet-40  MKSet-60  MKSet-80  MKSet-100

Query freq. in MKSet-X 12,332,323 13,859,600 14,956,104 16,365,616 17,462,120 18,558,625
Query freq. in MKSet-100 18,558,625 18,558,625 18,558,625 18,558,625 18,558,625 18,558,625

Buffer size (one-memory  103.07% 104.32% 105.37% 107.35% 109.15% 110.97%
point)

Hit ratio(%) 66.45% 74.68% 80.58% 88.18% 94.09% 100.00%

Section 6.2.3, we will simulate the performance of two-dimensional indexing by using
both MKSet-30 and MKSet-60.

6 Performance evaluation
6.1 Experimental data and environment

Through experiments, we show two-dimensional indexing effectively provides the view
of one integrated memory. We implement two-dimensional indexing in the ODYS search
engine [32], which we call ODYS/2D-Indexing.” The experiments are organized in three
parts: 10 1) experiments for a set of single-keyword queries, 2) experiments for a set of real-
world queries consisting of single-keyword queries and multiple-keyword queries, and 3)
performance comparison with a disk-based search engine without two-dimensional index-
ing. For parts 1 and 2, we first show the effect of two-dimensional indexing and associated
algorithms. Then, we find the one-memory point through experiments and compare the
result with the examined result that we obtained in Section 4. In part 3, we compare
ODYS/2D-Indexing with the ODYS search engine [32] with an equivalent amount of main
memory buffer but without extension of two-dimensional indexing.

We have built a prototype of ODYS/2D-Indexing, One-Memory-System, and ODYS
according to the architecture shown in Figure 13. Since we must use only one slave for One-
Memory-System, for the fairness, we use instead the same number of CPU cores for each
system (six cores with hyper-threading disabled). For ODYS/2D-Indexing and ODYS, we
use six slave machines. Each slave is a Linux machine with a quad-core 2.4 GHz CPU (with
only one core enabled) and 96 GB of main memory. Therefore, the slaves in the slave grid
can store 576 GB of data in their collective main memory. Each slave has an internal RAID
5 disk array. The disk array has 10 disks (disk transfer rate: average 81.2 MB/s) with a total
of 5 TB, a cache of 256 MB, and the 768 MB/s bandwidth. For One-Memory-System, we
use one Linux machine with two quad-core 2.4 GHz CPUs (with only six cores enabled)

9The goal of the experiment is to show the net effect of applying two-dimensional indexing, but is not
a comprehensive performance comparison of parallel search engines. Therefore, we used the same search
engine(i.e., ODYS) to test the net effect of using two-dimensional indexing.

19Dynamic update of the multiple-keyword query set in the buffer is not incorporated in the experiments
to obviate the need to recover the database to the initial state for a number of repeated experiments, which
takes significant time. It takes only tens of milliseconds of additional time to dynamically update a multiple-
keyword query in the in-memory MKSet as we have shown in Table 6.
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Figure 13 The architecture of ODYS/2D-Indexing, One-Memory-System, and ODYS used in the
experiments

and 192 GB of main memory. For all slaves, we use Odysseus DBMS/search engine!! with
IR features tightly integrated into the DBMS [31]. In all these systems, each slave runs 100
Odysseus processes.

In ODYS/2D-Indexing, we use two supermasters and two shard masters to avoid their
becoming the bottleneck and to focus on the performance of the slaves. We use two masters
for One-Memory-System and ODYS for the same reasons. The supermasters (or masters)
are Linux machines with a octa-core 3.00GHz CPU and 16 GB of main memory, and the
shard masters are Linux machines with a quad-core 3.06 GHz CPU and 6 GB of main
memory. All nodes are connected by a 1-Gbps network hub.

We use a dataset reduced from the one used in [32], which originally consists of 114
million Web documents crawled from all over the world. Table 8 shows the statistics of
the reduced dataset. We partition the entire index into two index shards (i.e., n = 2) with
each index shard duplicated in the disks of the slaves in the same column of the slave grid.
We also partition each index shard into three index fragments (i.e., m = 3) with each index
fragment stored in the main memory of a slave in the column of the slave grid.

For the query sets, from the AOL search query set [22], we generate two subsets consist-
ing of 10,000 queries: AOL-QUERY-SUBSET(SK) and AOL-QUERY-SUBSET. We first
generate the former, which consists of single-keyword queries only, by randomly select-
ing the ones among the single-keyword queries appearing in the AOL search query set.
Then, we generate the latter, which is a mix of single-keyword and multiple-keyword
queries, by randomly selecting the ones from the entire AOL search query set. We use
AOL-QUERY-SUBSET to simulate real-world queries.

To simulate a steady-state environment, we first initialize by loading the entire index in
main memory(i.e., DBMS buffer) of each machine. Specifically, for ODYS/2D-Indexing,
we allocate a sufficient amount of main memory required to store the entire index as shown

Ty ODYS [32], the authors show that a massively-parallel search engine can be built using a DBMS tightly
integrated with IR features (Odysseus).
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Table 8 The document set used

in experiments Document set
Number of documents 100,000,000
Size of documents 667.96GB
Number of unique keywords 104,029,346
Number of total postings 20,568,950,762
Size of total postings 459.75GB
Average DF 197.72

in Tables 2 and 4 according to MKSet-X used in each experiment (e.g., 89.29GB for for each
slave when we use MKSet-100: 85.03GB(510.18GB/6) for the index fragment + 2.26GB
for the keyword index + 2GB for the ordinary buffer), and then, load posting lists into the
DBMS buffer of each machine according to the keyword range assigned. For ODYS, we
allocate memory and load the index in the same way as for ODY S/2D-Indexing, but we note
that a large range of posting lists must be swapped out because an ODYS slave does not
have sufficient memory to accommodate the (unpartitioned) entire index. In case of One-
Memory-System, we were not able to store the entire index(459.75GB) in main memory due
to our machine limitation that can accommodate only 192GB. To get around this problem,
we loaded the entire index first, and then, run the query set a priori so as to ensure the set!?
of all the posting lists required by test queries are completely loaded in main memory.

In the experiments, we issue the queries in the test query set to each system and measure
its average query response time. The query response time defined as the elapsed time from
the time of the query arrived at the waiting queue of the supermaster to the time of the
supermaster obtaining the top-k document IDs as the final query result. To simulate an
environment of a real-life search engine, we generate queries with a Poisson arrival and
issue them from a separate machine. We adjust the query load by varying the arrival rate.
We retrieve the top-500 results for each query.'3

6.2 Results of experiments

6.2.1 Comparison of ODYS/2D-indexing with one-memory-system(single-keyword
queries)

In this section, we discuss the effect of two-dimensional indexing for single-keyword
queries. We first show two-dimensional indexing can provide as close performance for
single-keyword queries as that of One-Memory-System. Then, we find the one-memory
point of ODYS/2D-Indexing through experiments and compare it with the analytic result
derived in Section 5.4.

—  Effect of Two-Dimensional Indexing
Figure 14 shows average query response times of ODYS/2D-Indexing and One-
Memory-System for the query set AOL-QUERY-SUBSET(SK) as the query arrival rate
is varied from 1 to 90 million queries/day. In Figure 14, we note that the performance

2The size is much smaller (maximum 51.74GB) than those of the entire index(459.75GB) and the
buffer(192GB).
13We use top-500 results to allow for additional query-dependent rankings (e.g., TF-IDF).
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Figure 14 Performance of ODYS/2D-Indexing(w/w or w/o load balancing) vs. One-Memory-System for
AOL-QUERY-SUBSET(SK)(single-keyword queries)

of ODYS/2D-Indexing is comparable to that of One-Memory-System. At higher arrival
rates, we even see that ODY S/2D-Indexing shows a better performance (i.e., at over 60
million queries/day). This result is due to the difference in the architecture of resource
sharing among CPU cores even if we use the same number of CPU cores for each sys-
tem. Specifically, in ODYS/2D-Indexing, every CPU core has an independent memory
channel and an L3 CPU cache. In One-Memory-System, on the other hand, multiple
CPU cores have to competitively share those system resources, rendering some of them
to finally become a bottleneck.

If we employ load balancing, which we call ODYS/2D-Indexing(LB), the average
query response time is improved by 1.00% ~ 90.55% over that of ODYS/2D-Indexing
as the arrival rate is varied from 1 to 84 million queries/day. However, the total memory
space required is also increased by 22.29%!'# since the maximum memory require-
ment of a slave increases (see Figure 15). We use ODYS/2D-Indexing for all other
experiments to focus on the core concept of two-dimensional indexing.

—  One-Memory Point

To measure the one-memory point, we find the specific memory amount where the
query processing speed is saturated(flattened) with no further improvement as the mem-
ory size is varied. We conduct experiments at a low arrival rate (1 million queries/day)
to obtain elaborate results. High arrival rates can distort the experimental results as
some system component (e.g., the memory bus) becomes a bottleneck.

Figure 16 shows the one-memory point of ODYS/2D-Indexing for AOL-QUERY-
SUBSET(SK). It is identified between 100% ~ 105% of the memory requirement of
One-Memory-System as the average query response time flattens in this range. This
result coincides with the analytic result of 100.25% in Section 4.

14Since we let every machine have the same amount of main memory, the total required memory space
of ODYS/2D-Indexing(LB) is calculated by 93.7GB x 6 = 562.2GB while that of One-Memory-System is
459.7GB.
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6.2.2 Comparison of ODYS/2D-indexing with one-memory-system(multiple-keyword
queries)

For multiple-keyword queries, we use real-world queries (AOL-QUERY-SUBSET) con-
taining both single-keyword and multiple-keyword queries. Here, we employ pre-join and
semi-memory join. We first compare the performance of ODYS/2D-Indexing with that of
One-Memory-System. Next, we measure the one-memory point of the former.

—  Two-Dimensional Indexing with Semi-Memory Join
Figure 17 shows the performance comparison of ODYS/2D-Indexing using only
semi-memory join with One-Memory-System for AOL-QUERY-SUBSET. The average
query response time of the former is 2.71 ~ 12.04 times higher than that of the latter
due to the disk access cost. We do not have figures for higher arrival rates since they
exceed the system’s maximum throughput.
— Two-Dimensional Indexing with Pre-Join and Semi-Memory Join
Figure 18 shows the performance comparison of ODYS/2D-Indexing with pre-
join and semi-memory join vs. One-Memory-System for AOL-QUERY-SUBSET. In

Arrival rate: 1 million queries/day

25 r

20 r

one-memory point

Average query response time (ms)

0 1 1 1 L L
0 25 50 75 100 125 150

Memory size of ODYS/2D-Indexing
/ memory requirement of One-Memory-System(%)

Figure 16 One-memory point of ODYS/2D-Indexing for AOL-QUERY-SUBSET(SK)
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Figure 17 Performance of ODYS/2D-Indexing using only semi-memory join vs. One-Memory-System for
AOL-QUERY-SUBSET

Figure 18, we observe that ODYS/2D-Indexing outperforms One-Memory-System as
X in MKSet-X increases. One-Memory-System can process queries at a maximum of 6
million queries/day since the CPU cost is rapidly increasing as it processes dynamic join
in main memory. On the other hand, the performance of ODYS/2D-Indexing is much
more solid even at higher arrival rates since it avoids dynamic join by pre-joining a large
portion of multiple-keyword queries. Moreover, when we use MKSet-20, ODYS/2D-
Indexing shows a performance comparable to that of One-Memory-System. This result
means that, if we pre-join only 20% of multiple-keyword queries, we can obtain a
performance comparable to that of One-Memory-System having a large integrated
memory.

1200
-©-One-Memory-System
1000 (r -0~ MKSet-20 0
~—MKSet-30 g
300 ——MKSer-40 | E
2 MKSet-60 a
600 - MKSet-80 E
B MKSet-100 | O
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Figure 18 Performance of ODY S/2D-Indexing using both pre-join and semi-memory join vs. One-Memory-
System for AOL-QUERY-SUBSET
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Figure 19 Performance of ODY S/2D-Indexing using both pre-join and semi-memory join vs. One-Memory-
System using pre-join for AOL-QUERY-SUBSET (real-world queries)

Figure 19 shows the cases where both systems use pre-join. Here, we observe
that One-Memory-System generally outperforms ODYS/2D-Indexing. This happens
because ODY S/2D-Indexing needs to read posting lists from disk using semi-memory
join while One-Memory-System reads all of them from main memory when the
given multiple-keyword query is not in MKSet-X. In the case of MKSer-100, however,
ODYS/2D-Indexing shows a performance better than that of One-Memory-System
since it also can process every query in main memory as if it were a single-keyword
query(see Figure 14). Considering the fact that One-Memory-System is infeasible with
real-life big data where the data size certainly exceeds the main memory size of one
machine, ODYS/2D-Indexing is very worthwhile for its fast performance and, more
important, scalability. For comparison purpose, we use One-Memory-System without
pre-join for the rest of this section.

—  One-Memory Point

Figure 20 shows the one-memory point of ODYS/2D-Indexing for AOL-QUERY-
SUBSET at an arrival rate of 1 million queries/day. The one-memory point measured
and the one examined are also consistent. In the case of MKSet-40, for example, it is
between 105% and 110% coinciding with the examined result of 105.37% in Table 4,
Section 5.4.

— Finding a Relevant MKSet-X

Figure 21 shows the average query response time at the one-memory point and the
memory size required as X in MKSet-X varies for AOL-QUERY-SUBSET at an arrival
rate of 1 million queries/day. It shows that, as X increases, the average query response
time decreases while the memory size required increases. Thus, there is a trade-off
between the two measures. In particular, at MKSet-20, the average query response time
of ODYS/2D-Indexing becomes smaller than that of One-Memory-System. Thus, we
can conclude that MKSer-20 is a minimum requirement to achieve a comparable per-
formance as that of One-Memory-System. Obviously, if more memory space can be
spared, we can achieve a better performance by increasing X as we have discussed in
Section 5.5.
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Figure 20 One-memory point for AOL-QUERY-SUBSET

6.2.3 Comparison of ODYS/2D-indexing with ODYS

In this section, we compare the performance of ODY S/2D-Indexing with that of ODYS [32].
We configure an ODYS system consisting of two shards and three ODYS Sets as illustrated

in Figure 13 to make a fair comparison with ODY S/2D-Indexing.

Figure 22 shows the effect of two-dimensional indexing compared with ODYS for
AOL-QUERY-SUBSET. Figure 22a shows average query response times of ODYS and
ODYS/2D-Indexing when neither of them uses pre-join (i.e., using MKSet-0). The effect of
two-dimensional indexing turns out to be 1.09 ~ 2.33 times as the arrival rate varies 1 ~
2 million queries/day. Figure 22b shows the effect of two-dimensional indexing when we
employ pre-join (i.e., using MKSet-100) in both systems, which turns out to be 2.84 ~ 6.05
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Figure 21 The trade-off between the average query response time and the memory size required
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Figure 22 Effect of Two-Dimensional Indexing for AOL-QUERY-SUBSET

times of performance improvement as the arrival rate varies 1 ~ 72 million queries/day.
We have these results because ODYS/2D-Indexing processes most queries in main memory
while ODYS processes a large portion of queries in disk despite that ODYS uses the DBMS
buffer whose collective size is equivalent to that of ODYS/2D-Indexing. We further expect
this ratio will increase as we add more replicas to handle a much larger query load (say, 1
billion queries/day) since, in this case, the buffer size of an individual slave of ODYS would
become much smaller degrading the performance of ODYS. In contrast, the performance of
ODYS/2D-Indexing will not degrade since the keyword range of an individual slave is also
proportionally reduced.

Now, we finally compare the overall performance of ODYS/2D-Indexing with that of
ODYS. Figure 23 shows the performance comparison for AOL-QUERY-SUBSET(SK);
Figure 24 the comparison for AOL-QUERY-SUBSET. In Figure 24, for ODYS/2D-
Indexing, we use MKSet-20, which makes the performance equal to that of One-Memory-
System, MKSet-60, which simulates the buffer hit ratio of a practical search engine (i.e.,
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Average query response time (ms)

O 1 1
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Figure 23 Performance Comparison of ODYS/2D-Indexing with ODYS for AOL-QUERY-SUBSET(SK)
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Figure 24 Performance Comparison of ODYS/2D-Indexing using MKSet-X (X = 20, 30, 60, 100) with
ODYS for AOL-QUERY-SUBSET

the buffer hit ratio = 88.18%1), and MKSez-100, which represents the ideal case where the
search engine keeps every multiple-keyword query in the in-memory buffer as a pre-joined
composite-keyword query (i.e., the buffer hit ratio = 100%).!® Figures 23 and 24 show
the experimental results. Figure 23 shows that ODYS/2D-Indexing outperforms ODYS
by 2.84 ~ 6.05 times for AOL-QUERY-SUBSET(SK). Figure 24 shows that ODYS/2D-
Indexing outperforms ODYS that does not use pre-join by 3.69 ~ 14.62 times for MKSet-20,
by 8.51 ~ 39.57 times for MKSet-60, and by 99.66 ~ 535.54 times for MKSet-100 for
AOL-QUERY-SUBSET.

7 Conclusions

In this paper, we have proposed a scalable in-memory IR indexing architecture of rwo-
dimensional indexing that aims at providing the one-integrated-memory view of collective
memories distributed over multiple slave nodes. We have implemented the two-dimensional
indexing architecture in ODYS—namely, ODYS/2D-Indexing—which is a massively-
parallel in-memory search engine using distributed memory. For two-dimensional indexing,
we partition the entire index into a two-dimensional array of multiple index fragments and
completely store them into main memories of the multiple machines. As a result, two-
dimensional indexing achieves low query response time as it processes all the queries in
main memory. Moreover, as two-dimensional indexing inherits the merits of traditional
index partitioning methods—parallelism and load distribution—we can efficiently pro-
cess search queries on large-scale data in a massively-parallel manner, and can effectively
distribute the query loads.

We have also proposed the new concept of the one-memory point, which is the amount of
memory space required for a system with distributed memory to completely store the entire

35The values are calculated when we use multiple-keyword queries only. If we consider single-keyword
queries together, which always achieves 100% of hit ratio, the overall hit ratio becomes 92.49%.
16We note that Google achieves typically 70 ~ 90% of hit ratio using Google Global Cache(GGC)[11].
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index in main memory providing a one-integrated-memory view. We have investigated the
one-memory point of ODYS/2D-Indexing by examining an actual dataset and comparing
with the result of experiments, which largely coincide with each other.

Then, we have extended the notion of two-dimensional indexing to accommodate
multiple-keyword queries. We have proposed two efficient multiple-keyword query pro-
cessing methods in distributed memory. Pre-join reduces the cost of dynamic join by
treating multiple-keyword queries as single-keyword ones. Semi-memory join guarantees
elimination of costly inter-node communication at a lesser cost of local disk access.

Through experiments, we have shown that ODYS/2D-Indexing can provide an effect
comparable to or better than that of One-Memory-System, a system with one large inte-
grated main memory. We have further shown that ODYS/2D-Indexing significantly outper-
forms ODYS[32] that has an equivalent amount of main memory buffer but without exten-
sion of two-dimensional indexing. For real-world queries(i.e., AOL-QUERY-SUBSET),
ODYS/2D-Indexing outperforms ODYS by 3.69 ~ 535.54 times as X in MKSet-X varies
from 20 to 100. We expect this improvement will further increase as we handle a much
larger data set (equivalently, as the number of replicas in each shard increases).
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