Inform. Systems Vol. 12, No. |, pp. 11-15, 1987
Printed in Great Britain

0306-4379/87 $3.00 + 0.00
Pergamon Journals Ltd

APPROXIMATING THE NUMBER OF UNIQUE VALUES OF
AN ATTRIBUTE WITHOUT SORTING

MORTON M. ASTRAHANT
IBM San Jose Research Laboratory, 5600 Cottle Road, San Jose, CA 95193, U.S.A.

and

MaRrIo SCHKOLNICK] and KYU-YOUNG WHANG]
IBM Thomas J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598, U.S.A.

(Received 30 November 1985; in revised form 26 June 1986)

Abstract—Counts of unique values are frequently needed information in database systems. Especially,
they are essential in query optimization and physical database design. Traditionally, exact counts were
obtained by sorting, which is an expensive operation. In this paper we present three algorithms for
counting unique values by probabilistic methods. These algorithms require only one pass over the data,
and produce approximations to the true count with certain standard deviations. For deviations acceptable
in practical environments (~ 10%), the algorithms require only modest amounts of memory space and
computation time. We have implemented all three algorithms in System R. We also present the results
of the experiments on accuracy and performance of these algorithms.

INTRODUCTION

Many papers have appeared on relational system
query optimization, join processing and database
design. Most of them involve data models that make
use of statistics on the stored information. Typically,
these statistics are used for estimating the selectivities
of the predicates and the cardinalities of the result
relations [1-5]. One of the most commonly required
statistics is column cardinality, the number of distinct
values stored for a column or attribute. An exact
measurement of column cardinality requires sorting,
an expensive operation in both instruction executions
and I/O operations. Where an index exists, column
cardinality can be calculated as a by-product of the
sorting required for index creation, Creating and then
dropping an otherwise unneeded index would be a
convenient way of calculating column cardinality
without incurring the cost of maintaining the index.
However, we will show that there are cheaper ways
of obtaining column cardinality.

In this paper we explore several techniques for
obtaining approximations to column cardinality.
Since the data models are themselves only approxi-
mations, they do not require exact statistics. Each of
the techniques is useful under some conditions. Initial
measurements show one of them to be most generally
advantageous. All of the techniques analyzed here are
based on hashing. Hashing has the important prop-
erty of eliminating duplicates without a need to sort.

tCurrent address: 2896 Gardendale Dr., San Jose, CA
95125, U.S.A.

tMost work was done while the authors were at IBM San
Jose Research Laboratory.

11

It also requires only one visit to each element of the
set being counted.

In the following discussion of counting algorithms,
we will talk about a single column although it is
understood that the algorithms can be applied in
parallel to more than one column, limited only by the
amount of virtual storage allocated for the data
structures.

LINEAR COUNTING

Linear counting is a straightforward application of
hash transformation. It requires a bit map which is
initially set to all zeros. The relation being counted is
scanned (i.e. tuples are accessed one by one) and a
hash function maps each data value of the column
into a position in the bit map. The addressed bit is
set to “1”. Figure 1 illustrates this process for one
column of a four-tuple relation. If there were no hash
collisions (different data values mapping to the same
bit position), the final count of “1”* bits would be the
desired column cardinality. In Fig. 1, this count is
three.

For a given bit map size y, we can calculate the
expected number of collisions that will occur when
we hash a set of elements whose cardinality is x.
Assuming that distinct values are transformed by the
hash function randomly over the range of hash
values, the expected number of distinct hash values,
E(z’), is given by

E@)=yx[1—1-=1/y)]), M

where y is the number of bits in the map [5]. Thus,
having measured z‘, the number of “1"'s in the map

12 MORTON M. ASTRAHAN et al.

COLOR HASHING FUNCTION MAP
BEFORE SCAN AFTER SCAN
RED V] {
BLUE o o)
GREEN o) |
RED 0 [

CARDINALITY = 3

Fig. I. Linear counting.

after the scan, we can intuitively estimate x as

x'= =y xIn(l -z'[y), 03]

assuming y>» 1, where x” is the random variable
representing the estimation of x.

The expected accuracy of the estimation depends
on the map size and on the ratio of column cardi-
nality to map size, called the loading factor. An
analysis shows that for a loading factor less than one,
the standard error is less than 0.85//y [6] The
standard error is defined as the standard deviation of
the random variable representing the estimation of
the column cardinality divided by its true value. For
example, for a map size of 100 bits and a loading
factor of one, we can expect a standard error of
about 8.5%. Note that the expected error is inversely
proportional to the square root of thc map size,
becoming very small for large maps.

Linear counting performs very well when the cardi-
nality of the set being measured is not extremely big.
In practice, for reasonable accuracy over a large
range of relation sizes, the loading factor should be
kept below two. In order to ensure this, we must
use a map having at least half as many bits as the
number of tuples in the relation. For a 200K -tuple
relation, this means each map requires approximately
three pages of 4K bytes. If the map pages do not all
fit in the system’s available real memory, then each
page must be fetched into the memory for each tuple
of the relation. Thus, the size of available real
memory limits the number of columns that can be
processed simultaneously. For a relation cardinality
over 20 million, the storage required can become
impractical for even a single column.

LOGARITHMIC COUNTING

Logarithmic counting is described in reports by
Flajolet and Martin [7,8]. (In the references it is
called probabilistic counting). The hash space y is
made sufficiently large so that the number of col-
lisions is expected to be negligible. We found a space
of size 2*' to be convenient. However, one does not
keep a hash table of this size. Rather, a 32-bit word

is used to capture statistical information about the
result of the hashing process. This 32-bit word is
called a map. For each data value, a hash value is
calculated, as illustrated in Fig. 2. For convenience,
only the leftmost 3 bits are shown. Each has value 1s
transformed by a function which leaves only the
leftmost *“1”* bit unchanged, all other bits being set to
“0”, The transformed values are OR'd into the map.
After the scan, the average length n of the leftmost
string of uninterrupted “1's” for each column is
proportional to the logarithm of the desired count.
The referenced analysis shows that if n is the position
of the leftmost “*0”" in the map after the scan, starting
with position 0 on the left, then the column cardi-
nality can be estimated as

Cardinality = 2"/0.7735. 3)

In the illustration, the actual cardinality is 6 and the
measured value is 5.2.

One can get an intuitive understanding of this by
considering the leftmost bits of the map. The leftmost
bit will be “1* only if the leftmost bit of one of the
hash values is “1”". This ought to happen in every
second value on the average, so the count of distinct
values is at least 2'. The pattern “11”" occurs at the
leftmost bits of a map only if the patterns “01...”
and “1...” occurred as the left-hand bits of hash
values. The pattern “01 ..." would be expected once
in every 4 values. If the final pattern of the leftmost
bits is “110” as illustrated, then 001" did not occur
as the left-hand bits of any hash value, implying that
the count is likely to be less than 2°,

An error analysis [8] shows that, with a single map,
we expect the standard error of the estimated count
to be 0.78. This means that we expect the estimated
count to be within 78% of the true count about 67%
of the time, assuming a normal distribution. How-
ever, the error can be reduced by using m maps, with
a different hash function for each. By taking » as the
average value obtained from m independent maps,
the standard error becomes 0.78/,/m. By using 64
maps we can reduce the expected standard error from
78% t0 9.8%. There are several ways to achieve this
benefit without having to use m completely different

Unique values of an attribute 13

BIT STRING
HASH * WITH ONLY
COLOR VALUE THE LEFTMOST 'I'
RED 1 100 7
GREEN 101 100
RED 1l 100
BLUE ol oo | % - 110
PINK 000 000 K-
BLUE o1l 010 BIT POSITION O | 2+«
WHITE 1o 100
YELLOW 010 010 J

POSITION OF THE LEFTMOST '0'=2
MEASURED CARDINALITY = 22/0.7735 =5.2

ACTUAL CARDINALITY =6

Fig. 2. Logarithmic counting.

hash functions. Flajolet and Martin [7] use part of the
hashed value to select one of m maps and then update
that map using the remainder of the hashed value.
Whang uses a table of m random numbers. Each
number is XOR’d with the hashed value and the
result is used to update the corresponding map.

Logarithmic counting uses much less virtual stor-
age than linear counting but requires more com-
putation. It is suited to relations having more tuples
or columns than can be conveniently represented by
the virtual storage bit maps of linear counting.

SAMPLE COUNTING

Sample counting is based upon a suggestion by
Wegman [9]. As with the previous methods, the
relation is scanned and a hash function is applied to
each data value. As illustrated in Fig. 3, a list is
maintained of the hash values already encountered.
Subsequent values are compared with those in the list
and are put into the list if not already there. However,
only a fraction of the hash values are eligible to be
entered into the list. They are chosen by means of
sampling parameter K and a sample reference pat-
tern. The values chosen must have K bits that exactly
match the corresponding K bits of the reference
pattern. In the illustration, K is 3 and only those
values whose rightmost 3 bits are “1"s are chosen.
The sampling fraction is thus 1/2%, and the cardi-
nality is found by multiplying the final length of the
list by 2%, Note that there is a granularity in the
calcualted cardinality since it must be an integer
multiple of 2%,

The list space must be large enough to hold 1/2* of
the actual column cardinality. However, since the
cardinality is what we are calculating, it is not known
in advance. We therefore start with an initial length
L for the list. We start with X =0, counting all
values. When the list is full, we increase K and purge

the list of all values that fail the more stringent test.
If we increase K by 1, we expect to remove half the
entries. When all the tuples have been tested, the
entries in each list are exactly what they would have

COLOR HASH VALUE
RED ce 10011
GREEN =+ ++001101 ——X
RED ce-100111
BLUE ++-010110 X
PINK +++111000 X
TAN ceelOLINY
LIST
<.+ 100111 |
cee 1O 11| |

N -

-—

1

illﬂ.l'

3l

K=

L

X INDICATES THAT THE ENTRY DOES NOT
MATCH THE REFERENCE PATTERN.

n = NUMBER OF ENTRIES IN THE LIST
CARDINALITY =2 x 2%

Fig. 3. Sample counting.

REFERENCE PATTERN

14 MoORTON M. ASTRAHAN e al.

been if we had started processing each column with
its final value of K. Analysis shows ‘that, when the
sampling fraction is much less than | (i.e. K> 1), we
can expect a standard error of 1.2//L [10]. For a
100-element list, this is about 12%.

As with linear and logarithmic countings, we can
compensate for hash collisions by using equation (2)
with z as the measured count and y as the number of
possible hash values. The correction is less than
1% if z/y <0.02. Hence, when y is 2 =1, no
compensation is needed until z > 2%,

HASHING

All the counting algorithms examined require an
efficient hashing function that can be applied to all
data types encountered. In System R environment
these are the SQL data types (binary, decimal, float,
fixed and variable character string). We choose a
hashing function that is a member of the Universal-2
class of functions [11]. The basic algorithm is to take
two 31-byte pieces of the input string at a time, add
a random number to each piece, and then multiply
the two pieces together. The resultant product is then
taken modulo 2*' — 1, and added to the previously
generated hash value. The sum is then taken modulo
23! — 1. Ideally, an entire class of hashing functions
should be used with an independent list for each.
However, through all the tests we have made, the
performance of this single function has proved to be
satisfactory.

MEASUREMENTS

The authors implemented all three counting algor-
ithms in system R from 1981 to 1982. Whang's
version of the logarithmic counting was used. We
made accuracy measurements for linear and logar-
ithmic counting, using five columns of a 2053-tuple
and of a 24,359-tuple relation. For linear counting,
with a loading factor less than one (thus, the memory
space used for the data structures was 257 bytes/
column and 3045 bytes/column, respectively), the
errors averaged over the five columns were 1.0% and
0.4% of the true count, respectively. Logarithmic
counting, with 64 maps (256 bytes/column) for each
column, resulted in average errors of 10.7% and
11.6%.

Two relations were generated to test the accuracy
of sample counting. Relations A and B had a cardi-
nality of 100K and 7 columns each. All the basic data
types were represented among the columns, but the
relations differed in their column cardinalities. Re-
lation A had a key column (cardinality 100K) and an
average cardinality of 74K over the other 6 columns.
Relation B also had a key column and had an average
cardinality of 10K over the other 6 columns. All
measurements were made in the environment of
System R and VM370 on an IBM 3033. Performance
was measured by Virtual CPU time (VCPU). Using

relations A and B and a list size of 100 (400 bytes/
column), sample counting showed errors averaged
over the 7 columns of 4,1% and 5.2% respectively.
Notice that the errors obtained were rather favorable
compared with the prediction because the reference
pattern chosen turned out to be favorable to the key
sets used for the experiments.

CONCLUSIONS

We have presented three algorithms for counting
unique values by probablistic methods. All three
algorithms show error bounds acceptable in practical
environments (~ 10%), while using a modest amount
of memory space and computation time. Linear
counting, which is the simplest, provides the highest
accuracy of all, but the performance degrades for
extremely large relations. Logarithmic counting pro-
ves to be fairly accurate without being limited by the
sizes of relations. We have found, however, it is
somewhat inaccurate when the column cardinality is
very small (e.g. less than 30). This problem occurs
because some approximations used in the analysis are
no longer valid when the column cardinality is too
small. Sample counting provides the best result,
satisfying all the requirements: memory storage
space, performance, and accuracy. In the measure-
ment, Sample counting took 14sec plus 3sec per
column to process a 100K-tuple relation with 6
columns (Relation B). This result indicates that sam-
ple counting is much less costly compared with the
method of creating indexes. Creating indexes would
have cost 114 sec to process the same relation.

All three algorithms have been implemented run-
ning successfullly in System R. We believe this paper
provides many designers of database management
systems with a valuable new approach to obtaining
column cardinalities.

Acknowledgements—The authors wish to thank Glen
Foster, Nigel Martin, Philippe Flajolet and Mark Wegman
for their contributions at various stages of the project. The
authors are grateful for thoughtful comments from Shel
Finkelstein on an earlier version of this paper.

REFERENCES

(1] M. Hammer and A. Chan, Index selection in a self-
adaptive database management system. In Proc. Int.
Conf. on Management of Data, Washington, D.C.,
ACM SIGMOD pp. 1-8 (1976).

2] R. Krishnamurthy and S. Morgan, Query processing
on personal computers: a pragmatic approach. In Proc.
10th Ini. Conf. Very Large Data Bases, Singapore
(1984).

[3) M. Schkolnick and P. Tiberio, Estimating the cost of
updates in a relational database, Ass. comput. Mach.
Trans. Database Systems 10(2), 959-965 (1985).

[4] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin,
R. A. Lorie and 1. G. Price. Access path selection in a
relational database management system. In Proc. Int.
Conf. on Management of Data, Boston, MA., ACM
SIGMOD pp. 23-24 (1979).

Unique values of an attribute 15

[5]1 K. Whang, G. Wiederhold and D. Sagalowicz, Esti-
mating block accesses in database organizations—a
closed noniterative formula. Commun. Ass. comput.
Mach. 26(1), 940-944 (1983).

[6] K. Whang, H. Taylor and B. Vander-Zanden, Linear
counting: a detailed analysis. In preparation.

[7] P. Flajolet and N. Martin, Probabilistic counting. In
Proc. 24th IEEE Symp. on Foundations of Computer
Science, pp. 76-82 (1983).

[8] P. Flajolet and N. Martin, Probabilistic Counting for

Database Applications, Rapports de Recherche No.
313, INRIA, Le Chesnay, France (1984).

[9] M. Wegman, Sample counting, Private communication
(December 1983).

[10] P. Flajolet, On Wegman's adaptive sampling algor-
ithm, draft (1984).

[11] J. Carter and M. Wegman, Universal class of hash
functions. J. Comput. Systems Sci. 18(2), 143-154
(1979).

