
ARTICLE IN PRESS
Information Systems 30 (2005) 151–166
$Recomman

*Correspond

E-mail addre

kywhang@moz

kaist.ac.kr (Y.-

oh@kpu.ac.kr

0306-4379/$ - se

doi:10.1016/j.is
A formal approach to lock escalation$

Ji-Woong Changa,*, Kyu-Young Whanga, Young-Koo Leea, Jae-Heon Yanga,
Yong-Chul Ohb

aDepartment of Computer Science and Advanced Information Technology Research Center (AITrc),

Korea Advanced Institute of Science and Technology (KAIST), 373-1, Kusong-Dong, Yusong-gu, Taejon 305-701, South Korea
bDepartment of Computer Engineering, Korea Polytechnic University, South Korea

Received 14 December 2001; received in revised form 20 October 2003; accepted 24 October 2003

Abstract

Since database management systems(DBMSs) have limited lock resources, transactions requesting locks beyond the

limit must be aborted, degrading the performance abruptly. Lock escalation is considered a solution to this problem.

However, existing lock escalation methods have been designed in an ad hoc manner. So, they do not provide a complete

solution. In this paper, we propose a formal model of lock escalation. Using the model, we analyze the roles of lock

escalation formally and solve the problems of the existing methods systematically. In particular, we introduce the

concept of the unescalatable lock that cannot be escalated due to conflicts. We identify that the unescalatable lock is the

major cause of exhausting lock resources. We then analyze the reasons why unescalatable locks are generated and

propose a new lock escalation method, adaptive lock escalation, which controls lock escalation based on the number of

unescalatable locks. Through extensive simulation, we show that adaptive lock escalation significantly outperforms

existing methods reducing the number of aborts and the average response time and increasing the throughput to a great

extent. Adaptive lock escalation drastically reduces (more than 10 fold) the number of lock resources required to

maintain the same level of throughput and average response time. At the same time, the throughput and average

response time when using adaptive lock escalation are rather insensitive to the number of lock resources. Existing

methods rely on users to estimate this number accurately at system initialization time. Adaptive lock escalation greatly

alleviates this burden.

r 2003 Elsevier Ltd. All rights reserved.

Keywords: Concurrency control; Lock escalation; Database management systems
ded by Bettina Kemme.

ing author. Fax: +82-42-869-3510.

sses: jwchang@mozart.kaist.ac.kr (J.-W. Chang),

art.kaist.ac.kr (K.-Y. Whang), yklee@mozart.

K. Lee), jhyang@cs.kaist.ac.kr (J.-H. Yang),

(Y.-C. Oh).

e front matter r 2003 Elsevier Ltd. All rights reserve

.2003.10.009
1. Introduction

Locking is a widely used technique for con-
currency control in DBMSs. In most cases, locks
are managed in shared memory. Normally, the
system’s shared memory cannot be allocated
dynamically; instead, it is preallocated at system
initialization time. Therefore, it is important for
the system administrator to estimate accurately the
d.

ARTICLE IN PRESS

J.-W. Chang et al. / Information Systems 30 (2005) 151–166152
size of the shared memory required by the DBMS
for locking.

Since the size of the shared memory is fixed at
runtime [1], DBMSs have limited lock resources1

When locks are requested excessively, the
transactions that are not able to secure locks
should be aborted [2]. We call this situation lock

resource exhaustion. If the amount of lock
resources is underestimated, lock resource exhaus-
tion easily occurs. It is very difficult to accurately
estimate the amount of lock resources needed
because the number of locks depends on the
number of concurrent transactions and the num-
ber of locks acquired by each transaction, which
are widely varying according to not only the types
of the applications but also the size of the
database.

Lock resource exhaustion may cause a transac-
tion to fall in cyclic restart [3,4]. In the worst case,
all transactions could fall in cyclic restart and none
of them commits. We call this situation live halt.
Theoretically, live halt can occur even though
there are a large amount of lock resources if a
proportionately large number of transactions are
running concurrently. Live halt is a fatal situation
where the system becomes paralyzed.

We may consider various methods to solve the
lock resource exhaustion. A query processor can
determine the lock granularity before initiating a
transaction or an aborted transaction can use
coarse lock granularity when it is restarted. Those
methods can solve the problem partially. However,
they cannot solve the problem completely since
they use ad hoc approaches. There has been no
formal approach proposed in the literature. In this
paper, we propose a solution with a formal model.

Lock escalation used with multigranularity
locking [5] is considered a solution to lock resource
exhaustion. Lock escalation reduces the number of
locks in use by converting many fine granularity
locks to a coarse granularity lock [4]. However,
one should not execute needless lock escalation
since it decreases the concurrency by increasing the
lock granule [6]. Existing lock escalation methods
[6,7] use a kind of local approach, in which
1We use the term lock resource to distinguish free locks in the

lock pool from the locks actively in use.
individual transactions determine whether or not
to execute lock escalation.

This local approach has several problems. First,
it decreases the concurrency by executing needless
lock escalations, even when there are sufficient
extra lock resources available. Second, it causes
needless transaction aborts by preventing the
transactions from executing lock escalation, even
if there are no more extra lock resources. Third, it
cannot prevent live halt.

As a simple solution, we may consider a global
approach, global lock escalation [8], in which the
system determines whether or not to execute lock
escalation based on the total number of locks.
However, this method does not solve the problems
completely as we see in Section 2.2.

Even though lock resource exhaustion has been
introduced in several literatures [2,4,6,9], it has
been overlooked. To handle the problem of lock
resource exhaustion, many DBMSs rely on the
system administrators. They stop all locking
operations and wait the system administrators to
reset the maximum number of lock resources [9].
They also recommend the users to make transac-
tions shorter or to lower the degree of isolation [6].
These kinds of remedy are not desirable since a lot
of burden is imposed on the users, who are not
knowledgeable on the system’s internals.

Although lock escalation has been employed in
many conventional DBMSs, there has been no
formal model of lock escalation proposed in the
literature. In this paper, we propose a general
model for lock escalation by analyzing system-
atically the underlying mechanisms of lock escala-
tion. Especially, we present the new notion of the
unescalatable lock, which cannot be escalated due
to conflicts, and show that the unescalatable lock
is the determining factor in lock resource exhaus-
tion. We further analyze the reasons why unesca-
latable locks are generated and then propose a new
lock escalation method, adaptive lock escalation,
that controls lock escalation based on the number
of unescalatable locks. Adaptive lock escalation
significantly increases the number of concurrent
transactions allowable given the same amount of
lock resources without sacrificing performance.
Moreover, it drastically reduces the number of
lock resources required for the same number of

ARTICLE IN PRESS

J.-W. Chang et al. / Information Systems 30 (2005) 151–166 153
concurrent transactions. At the same time, the
throughput and the average response time of
adaptive lock escalation is rather insensitive to
the maximum number of lock resources. This
effect is very useful for self-tuning DBMSs since
the accuracy in estimating the maximum number
of lock resources is not critical for performance.
Adaptive lock escalation guarantees there be no
live halt under excessive lock requests gradually
transiting to a serial execution of transactions.

The paper is organized as follows. In Section 2,
we briefly review multigranularity locking and
existing lock escalation methods. In Section 3, we
propose a general model for lock escalation and
introduce the notion of the unescalatable lock. In
Section 4, we identify the causes that generate
unescalatable locks and propose techniques to
counter them. In Section 5, we present the
adaptive lock escalation algorithm that utilizes
the concept of the unescalatable lock. In Section 6,
we perform extensive experiments through simula-
tion. Finally, in Section 7, we summarize the
results and conclude the paper.
2. Backgrounds

2.1. Multigranularity locking and lock escalation

Multigranularity locking provides several lock
granules in a DBMS to allow a transaction to
determine lock granularity for itself. These lock
granules form a hierarchy(lock hierarchy, in short).
The lock on a higher-level granule implicitly locks
those at the lower levels. Coarse granularity has
the advantage of low locking overhead when
accessing a large number of records, but has the
disadvantage of low concurrency. In contrast, fine
granularity has the disadvantage of high locking
overhead, but has the advantage of high con-
currency [5,10,11].

Refs. [11–13] have reported the simulation
results on which lock granularity should be used
for better performance depending on the char-
acteristics of the transactions. Nevertheless, there
has not been significant research on lock escalation
as a method for managing lock resources.
Most DBMSs using multigranularity locking
provide a two-level hierarchy involving the file and
the record as lock granules. We also assume a two-
level hierarchy using the term file for the coarse
granule and the term record for the fine granule to
help readers understand this paper. However, the
proposed model and the lock escalation algorithm
can be adapted to more-than-two-level hierarchies
of lock granules.

Since a DBMS cannot predict how many
records a transaction will access without addi-
tional information, it tends to favor record locks
and then adopt file locks only on specific demand
[4]. As the number of record locks acquired by
transactions grows, all the locks may become in
active use. Lock escalation can be used to alleviate
this situation. Lock escalation consists of two
steps: lock conversion and lock release. Lock

conversion is the step for converting the mode of
the lock (lock mode, in short) on the file from
intension shared (IS) mode to shared (S) mode or
from intention exclusive (IX) mode to exclusive
(X) mode. Lock release is the step for releasing all
the locks on the records that belong to the file.
Lock escalation is especially useful in practice
when there are no more lock resources remaining.

2.2. Existing lock escalation methods

Since existing lock escalation methods have been
largely designed in an ad hoc manner, it is difficult
to come up with a nice classification. However, we
attempt to classify them into three categories: (1)
lock escalation based on the number of locks per
transaction and per file (LETF) and (2) lock
escalation based on the number of locks per
transaction (LET), and (3) lock escalation based
on the total number of locks (Global).

In LETF, a transaction executes lock escalation
for a file when it requests record locks that belong
to that file over the predetermined lock escalation
threshold [7]. In LET, a transaction selects one of
the files it accesses and executes lock escalation for
that file when the total number of locks it requests
goes over the lock escalation threshold [6]. Both
LETF and LET have the following problems
because transactions execute lock escalation in-
dividually without global consideration.

ARTICLE IN PRESS

J.-W. Chang et al. / Information Systems 30 (2005) 151–166154
First, they might execute needless lock escala-
tion when a transaction requests record locks over
the threshold even though there are extra lock
resources available. Second, a transaction might
not execute lock escalation because the number of
locks requested is less than the threshold even
when there are no more lock resources available. If
many transactions execute concurrently, lock
resources could be exhausted even though no one
transaction requests locks over the threshold. LET
can possibly alleviate this problem by allowing the
transaction requesting a lock to execute lock
escalation when there are no more lock resources
available even though it has requested locks below
the threshold [6]. Considering the total number of
locks as in this method, however, does not solve
the problem completely. When there are no more
lock resources remaining, but the transaction is
not able to execute lock escalation because of lock
conflicts, the transaction is aborted even though it
is still possible that other transactions execute lock
escalation instead. These problems are caused by
not considering the global status of the lock
resources. A naive method to solve the problems
of LETF and LET, which are based on local
decisions, would be a global approach selecting an
appropriate transaction and a file to execute lock
escalation when the total number of locks exceeds
the lock escalation threshold. We call this method
global lock escalation [8]. Here, lock escalation
threshold is set to a value smaller than the
maximum number of lock resources (say, 80%).
The reason for this is as follows. Suppose the lock
escalation threshold is set to the maximum number
of lock resources. Then, when the total number of
locks reaches the lock escalation threshold, if the
transaction is not able to execute lock escalation
due to lock conflicts, it must be aborted. If the
threshold is smaller, however, the transaction can
continue using the extra lock resources while
waiting for the lock conflict to be resolved.

Global lock escalation does not have the
problem of aborting a transaction unnecessarily
since it considers the total number of lock
resources available and globally determines the
transaction to execute lock escalation and the
target file. Nevertheless, it still has drawbacks. It
reserves some extra lock resources for the situation
where transactions cannot execute lock escalation
due to lock conflicts. However, those reserved lock
resources are not used unless this situation occurs.
This means that the effective amount of lock
resources is reduced by the reserved amount in
normal cases. Therefore, transactions execute lock
escalation early decreasing concurrency. More-
over, global lock escalation cannot prevent cyclic
restart and live halt because the reserved lock
resources can also be exhausted.
3. A formal model for lock escalation

In this section we present a formal model of lock
escalation. We make a simplifying assumption
without loss of generality. A transaction does not
request an S or X mode lock on a file except when
the request is made through lock escalation. We
define the states of a file according to how lock
escalation can be handled.

Definition 1. A free state is a state of the file where
no locks are held by any transaction. A free file is a
file in a free state.

Definition 2. An escalatable state is a state of the
file, the locks held on whose records can be
escalated without causing lock conflict. An esca-

latable file is a file in an escalatable state. An
escalatable lock is a record lock that is held on a
record in an escalatable file.

Definition 3. An unescalatable state is a state of the
file, the locks held on whose records cannot be
escalated because of lock conflict. An unescalatable

file is a file in an unescalatable state. An
unescalatable lock is a record lock that is held on
a record in an unescalatable file.

Definition 4. A fully escalated state is the state of
the file, on which only file locks are held. There-
fore, there is no record lock that belongs to the file
in the fully escalated state. A fully escalated file is a
file in a fully escalated state.

We can identify the state of a file by the
combination of the lock modes on the file. Typical

ARTICLE IN PRESS

J.-W. Chang et al. / Information Systems 30 (2005) 151–166 155
lock modes for a file are the S, X, IS, and IX
modes. Table 1 represents the compatibility
between lock modes [4]. The row means the lock
mode acquired, and the column the one requested.
Table 2 shows the relationship between the states
of a file and the combinations of the lock modes on
the file. It contains all possible combinations
feasible under the assumption made earlier.

The combination of the lock modes on the file,
and accordingly, the state of the file varies by
granting a new lock, releasing a lock, and
executing lock escalation. Fig. 1 shows the state
transition diagram for a file. In Fig. 1, each node
represents the combination of the lock modes on
the file. NL (no lock) means that there is no
granted lock on the file. There are five kinds of
arrows in Fig. 1. A double line arrow means lock
escalation; a single solid line arrow granting a
lock; and a single broken line arrow releasing a
Table 1

The compatibility between lock modes

IS IX S X

IS T T T F

IX T T F F

S T F T F

X F F F F

T: compatible; F: incompatible.

Table 2

The state of a file and the possible combinations of the lock

modes on the file

State of a file Combination of the locks

modes on the file

Free state None

Fully escalated states fXg1

fSg1þ

Unescalatable states fIXg2þ

fIXg1þ; fISg1þ

Escalatable states fIXg1

fISg1þ

fSg1; fISg1þ

A1: only one A mode lock is granted; Anþ: n or more A mode

locks are granted; Anþ; Bmþ: n or more A more locks and m or

more B mode locks are granted.
lock. The label on the arrow indicates the lock
mode except for ‘E’, which means lock escalation.

In Fig. 1, the nodes ½fIXg1�; ½fISg1þ�; and
½fSg1þ; fISg1þ� all represent escalatable states,
but there are minute differences. The node
½fIXg1� or ½fISg1þ� is converted to an unescalatable
state when a new lock is granted: the node ½fIXg1�
can be converted to ½fIXg2þ� or ½fIXg1þ; fISg1þ�;
which is an unescalatable state, when an IX lock or
IS lock is newly granted; the node ½fISg1þ� to
½fIXg1þ; fISg1þ�; an unescalatable state, when an
IX lock is granted. In contrast, the node
½fSg1þ; fISg1þ� is not directly converted to an
unescalatable state by one lock request because a
request on an IX lock will not be granted due to
conflict with the S lock. From the observation, we
can classify the escalatable states into two cate-
gories as in Definitions 5 and 6.

Definition 5. An unsafe escalatable state is an
escalatable state that can be directly converted into
an unescalatable state. An unsafe escalated file is a
file in an unsafe escalatable state.

Definition 6. A safe escalatable state is an escala-
table state that cannot be directly converted into
an unescalatable state. A safe escalatable file is a
file in a safe escalatable state.

Fig. 2 is a simplified version of Fig. 1 redrawn
with an emphasis on the file states. Nodes
represent states of the file with arrows having the
same meaning as in Fig. 1. Bullet-ended solid and
broken lines are added to represent granting and
releasing record locks. These arrows for record
locks are needed for explaining the causes of
generating unescalatable locks in Section 4, but do
not affect the state of the file.

Let us make a few interesting observations
on lock escalation. First, we note that lock
escalation can be executed only for an escala-
table file, but cannot be done for a free, fully
escalated, or unescalatable file. Lock escalation
for an unescalatable file conflicts with other
locks, and the transaction will be blocked until
all conflicting locks are released converting the
file state to an escalatable state. Second, lock
resource exhaustion only occurs when there are

ARTICLE IN PRESS

NL

{IX}1

{IS}1+

{IX}2+

{IX}1+, {IS}1+

{S}1+

{S}1+, {IS}1+

{X}1

IX

E

IS

IX

IS

IX

E

E

IX

IX/ISIS

IS

IS

IX

IS

IS
EE

IS

IS

IS

IX

IX

IX

IX/IS

IS/S

S

S

S

IS

X

S

E

lock escalation

granting a file lock

releasing a file lock

Fig. 1. State transition diagram for a file.

Fig. 2. The simplified state transition diagram of the file.

J.-W. Chang et al. / Information Systems 30 (2005) 151–166156
no more escalatable locks because locks can
always be made available by executing lock
escalation as long as there are escalatable locks
remaining. Therefore, we conclude that the un-
escalatable lock is the determining factor in lock
resource exhaustion and that the lock resources
must be managed based on the number of
unescalatable locks rather than simply based on
the total number of locks.
4. Unescalatable locks

In this section, using the proposed lock escala-
tion model, we analyze the reasons why unescala-
table locks are generated. We then examine the
effect of lock escalation on the growth of
unescalatable locks and propose the mechanisms
to control the growth of unescalatable locks.

Fig. 3 is the part of Fig. 2 that involves the
unescalatable state. The arrows labeled ‘Cause 1’,
‘Cause 2’, and ‘Cause 3’ represent different causes
of the growth of unescalatable locks.

Cause 1 (State conversion): As the state of the
file is converted from an unsafe escalatable state to
an unescalatable state, all the locks that belong to
the file are converted from the escalatable locks to
unescalatable ones.

Cause 2 (Granting additional unescalatable

locks): As a transaction accessing an unescalatable
file acquires additional record locks, these locks
automatically become unescalatable locks.

Cause 3 (Increasing the number of transactions):
As transactions accessing an unescalatable file are

ARTICLE IN PRESS

Fig. 3. The part of the state transition diagram that involves the unescalatable state.

J.-W. Chang et al. / Information Systems 30 (2005) 151–166 157
added, the record locks they acquire become
unescalatable locks.

The existing research has treated lock escalation
simply as a method of controlling the number of
locks being actively used regardless whether they
are escalatable or unescalatable. Here, based on
the proposed lock escalation model, we analyze the
effect of lock escalation on unescalatable locks.
The double line arrows starting from the unsafe
escalatable state in Fig. 2 represent the lock
escalations that convert a file in the unsafe
escalatable state to one in the safe escalatable
state or in the fully escalated state. These transi-
tions eliminate Cause 1 by preventing the file state
from drifting to the unescalatable state. In con-
trast, the lock escalation at the safe escalatable
state only plays the role of releasing the locks.
Therefore, to suppress the growth of unescalatable
locks, we need to execute lock escalation for a file
in the unsafe escalatable state. Since the existing
lock escalation methods do not distinguish the
states of a file, they cannot effectively control the
number of unescalatable locks.

Now, based on the above analysis, we consider
mechanisms to counter the causes for the growth
of unescalatable locks. We can eliminate all causes
by blocking the lock requests that generate
unescalatable locks.

First, as a solution for eliminating Cause 1, we
propose the notion of semi-lock escalation to block
the lock requests that convert the file state from the
unsafe escalatable state into the unescalatable state.

Definition 7. Semi-lock escalation is lock escala-
tion in which only the first step (lock conversion) is
executed.

Semi-lock escalation is a simple operation that
eliminates Cause 1 like regular lock escalation. The
part of lock escalation effective in eliminating
Cause 1 is the first step (lock conversion) defined in
Section 2. The first step changes the combination
of lock modes on the file, and accordingly, blocks
the lock requests that convert the file state into the
unescalatable state. Therefore, to control the
number of unescalatable locks, executing the first
step suffices.

Next, as a solution for eliminating Cause 3, we
propose the notion of meta-locking to block the
lock requests for the unescalatable file. Meta-
locking eliminates Cause 3 by explicitly prohibit-
ing the grant of new locks on an unescalatable file,
i.e., by blocking the transactions requesting new
locks even if the modes of the new locks are
compatible with existing lock modes.

Definition 8. Meta-locking is an operation that
prevents a new lock from being granted regardless
of the compatibility of lock modes. Meta-unlock-

ing is the reverse operation cancelling the effect of
meta locking.

Finally, as a solution to Cause 2, we propose
selective relief. While Causes 1 and 3 are due to
granting a new file lock, Cause 2 is due to granting
new record locks. In spite of semi-lock escalation
and meta-locking, the number of unescalatable
locks may increase due to Cause 2, and lock
resource exhaustion could happen. To solve this
problem, when there are no more lock resources
available, we may block the transaction requesting
a lock until some locks are returned instead of
aborting the transaction. However, this method
does not solve the problem completely. The reason
is as follows. If there is no escalatable file, lock
escalation cannot be executed, and locks are
returned only when a transaction terminates. If
all the transactions request locks, however, all of

ARTICLE IN PRESS

J.-W. Chang et al. / Information Systems 30 (2005) 151–166158
them are blocked, and locks are not returned.
Thus, the only way to resolve the situation is to
select a victim and abort it. Now, we define
selective relief in Definition 9.

Definition 9. Selective relief is a method that
guarantees completion of a transaction by except-
ing it from the candidates for victims and by
executing lock escalation on all the files it accesses.
We call this transaction the immortal transaction.
To guarantee the completion of the immortal
transaction, all the transactions having locks
conflicting with lock escalation as well as acquisi-
tion of new locks by the immortal transaction are
aborted. In case the immortal transaction accesses a
new file, it also executes lock escalation for the file.

By definition, the immortal transaction does not
have lock conflicts any longer and will not wait for
the lock, due to lock conflict, or lock resource.
Since at least one transaction, i.e., the immortal
transaction, can complete without getting into
cyclic restart, it is guaranteed that the system does
not become paralyzed.

We note that the immortal transaction reduces
the number of unescalatable locks. Aborting the
transactions that have locks conflicting with lock
escalation of the immortal transaction converts the
state of the file for which lock escalation is
executed from unescalatable to escalatable. Thus,
all locks belonging to the file are converted from
being unescalatable to escalatable.

The concepts of semi lock escalation, meta
locking, and selective relief are rather simple.
However, we note that the contributions of those
operations are significant in that they have been
derived from formal analysis for the purpose of
controlling the number of unescalatable locks.
5. Adaptive lock escalation

In this section, based on the proposed model
and the mechanisms, we propose a new lock
escalation method that we call adaptive lock

escalation. Adaptive lock escalation extends global
lock escalation by adopting the notion of the
unescalatable lock and by determining execution
of lock escalation based on the number of
unescalatable locks. In addition to this basic
extension, adaptive lock escalation uses semi lock
escalation and meta locking to suppress the
growth of unescalatable locks more effectively. If
there are no more lock resources available in spite
of using these methods, selective relief is used.

We present the adaptive lock escalation algo-
rithm in Fig. 4. The algorithm consists of three
parts. The first part is activated by each lock
request operation; the second by the demon
process detecting the situation where all the
transactions are blocked waiting for the lock or
lock resource; the third by each lock release
operation.

In the first part, in step A1, the transaction
requesting a lock controls the number of unesca-
latable locks with semi-lock escalation (in step
A1.1) and meta locking (in step A1.2) when the
lock escalation threshold is exceeded. In step A1.1,
we execute semi lock escalation for all unsafe
escalatable files to prevent their states from being
converted to the unescalatable state (eliminating
Cause 1). In step A1.2, we execute meta locking for
all unescalatable files to prevent new transactions
from accessing the file. This prevents increase of
transactions accessing these files (eliminating
Cause 3). Step A2 describes what to do when
there are no more lock resources available. Step
A2.1 is for the case where there are files for which
semi-lock escalation has been executed, but lock
release has not. In this case, we select one of these
files and complete lock escalation by executing
lock release to get lock resources returned. Step
A2.2 is for the case where there are no files for
which semi-lock escalation has been executed, but
there are escalatable files. In steps A2.1 and A2.2,
we select a safe escalatable file that releases the
largest number of record locks.

This case can occur since, even though all the
lock resources are used, the number of unescala-
table locks may not exceed the threshold. In this
case, we select one of these files and execute lock
escalation to get lock resources returned. Step
A2.3 is for the case where there are no files for
which semi-lock escalation has been executed and
there are no escalatable files. In this case, the
transaction requesting the lock is blocked until

ARTICLE IN PRESS

Fig. 4. The adaptive lock escalation algorithm.

J.-W. Chang et al. / Information Systems 30 (2005) 151–166 159
some locks are released since it cannot secure a
lock resource.

The second part (step B) is activated only when
there are no more lock resources available, all the
transactions are blocked waiting for the lock or
lock resource, and there are no escalatable files. In
this case, we use selective relief.2

The third part (step C) is the action to take when
the number of unescalatable locks decreases below
the threshold. In step C.1, we undo semi lock
escalation (i.e., deescalate) by reverting the lock
modes of the files for which lock release has not
2Here, we simply elect the oldest transaction as the immortal

transaction. Many heuristic methods can be developed for

optimally electing the immortal transaction. Since the details

are not the focus of this paper, we leave it as a further study.
been performed yet. In step C.2, we execute meta
unlocking reverting the actions taken in step A1.
These actions allow all the transactions that have
been put on hold through semi-lock escalation or
meta locking to continue.

Activation of mechanisms in adaptive lock
escalation such as semi lock escalation or meta-
locking is based on the total number of un-
escalatable locks rather than on the total number
of locks. Thus, as long as the number of
unescalatable locks is held below the threshold,
the total number of locks is free to exceed the
threshold being only limited by the total amount
of lock resources. This means that adaptive
lock escalation does not have the problem
that lock resources are underutilized as in global
lock escalation.

ARTICLE IN PRESS

J.-W. Chang et al. / Information Systems 30 (2005) 151–166160
In the algorithm, we assume a two-level
hierarchy using the file and the record locks. In
case where the lock hierarchy consists of more
than two levels, we can extend the algorithm in a
straightforward manner. The possible states of a
higher-level lock granule are the same as those of a
file defined in Chapter 3 since they have the same
possible combinations of the lock modes. Thus, we
can adapt the proposed lock escalation model to
all higher-level lock granules. Semi-lock escalation
and meta-locking can be applied to all levels of
lock granules. For example, in step A1, we execute
semi-lock escalation for all escalatable higher-level
granules and meta-locking for all unescalatable
higher-level granules.3

The adaptive lock escalation algorithm can be
easily implemented in the existing lock manager.4

Semi-lock escalation can be implemented in a
way similar to lock conversion. Meta locking can
be implemented by setting a flag indicating that a
new lock for the given file must be blocked
regardless of the compatibility of lock modes.
Selective relief can be implemented by extending
the deadlock resolution algorithm choosing as
victims all the transactions conflicting with the
immortal transaction.

The overhead of running the adaptive lock
escalation algorithm is negligible. The reasons are
as follows. The number of unescalatable locks
must be maintained whenever a transaction
acquires a lock, releases a lock, or executes lock
escalation. The operation for maintaining the
number of unescalatable locks consists of checking
the status of the given file and changing the
counter for the number of unescalatable locks.
This operation is much simpler than the operation
of acquiring a lock, releasing a lock, or executing
lock escalation. Moreover, semi-lock escalation is
simpler than lock escalation since it does not
execute lock release, the second step of lock
3 In case where the lock hierarchy consists of more than two

levels, many heuristic methods can be developed for optimally

selecting lock granules for which lock escalation will be

executed. However, the details are not the focus of this paper,

and we leave it as a further study.
4The algorithm has been implemented in the storage manager

of the Odysseus object-relational DBMS being developed at

KAIST [14].
escalation, whose overhead is heavier. Meta lock-
ing is also simple since it just sets a flag and
checking the flag is a small fraction of locking.
Selective relief can have some overhead since it
chooses many transactions as victims to prevent
cyclic restart. However, this overhead is much
lighter than that of cyclic restart, which would
occur otherwise.
6. Performance evaluation

We have performed extensive experiments.
Section 6.1 describes system architecture and
environment used for the experiments; Section
6.2 presents the experimental results.

6.1. System architecture and environment

Fig. 5 shows the experimental system consisting
of a server and multiple clients. The transaction
generator, a component of the client, generates
transactions one after another as soon as the
previous one commits.

The server consists of a transaction manager,
lock manager, and resource manager. The transac-
tion manager executes the transactions generated
by clients. The lock manager handles the transac-
tions’ lock requests. The lock escalation manager,
being a part of the lock manager, handles lock
escalation. The resource manager manages re-
quests for the CPU and disks in the first-come-
first-served (FCFS) manner. The lock manager
used for the experiments is a real implementation.
However, to experiment various cases by control-
ling the parameters, the transaction manager
and the resource manager are implemented as
simulators.

Transactions follow strict 2-phase locking. We
use the multigranularity locking protocol with the
file and the record locks forming the lock
hierarchy. We assume that there are two types of
transactions: read-only and read-and-write. The
former requests only an IS mode lock for the file
and the latter only an IX mode lock. An S or X
mode lock for the file is requested only by lock
escalation. We also assume that a transaction is
aborted only when it becomes a victim or when it

ARTICLE IN PRESS

Fig. 5. Experimental system architecture.

Table 3

System parameters

Number of files 100

Number of records per file 100 000

Number of disks 5

Number of files accessed by a

transaction

2

Number of records accessed by a

transaction

Exponential

distribution with the

average of 100

CPU cost per operation 3 ms

DISK I/O cost per operation 9 ms

Buffer hit ratio 0.66

J.-W. Chang et al. / Information Systems 30 (2005) 151–166 161
is not able to get the lock it needs, but is not
aborted voluntarily. An aborted transaction is
restarted immediately.

Table 3 shows the system parameters used in the
experiments. The database consists of 100 files,
each containing 100 000 records stored in five
disks. The number of files accessed by each
transaction is 2. The number of records accessed
by each transaction has an exponential distribu-
tion with the average of 100. This number is the
same as the number of record locks that would be
acquired by the transaction if it did not execute
lock escalation. The operations of a transaction
consist of (1) the CPU operations of the user
transaction, (2) disk I/O’s, and (3) locking and
lock escalation operations. We assume that the
CPU operations and disk I/O’s of the user
transaction among algorithms are identical with
a ratio of 1:1. The lock escalation operation is not
part of the user transaction, and thus, is not
included in the CPU/disk ratio of the user
transaction. On the other hand, the locking and
lock escalation time is incorporated as the real
time spent for locking and lock escalation opera-
tions in the total elapsed time measured.

We compare five cases: (1) no lock escalation
done (No escalation); (2) lock escalation based on
locks per transaction and per file (LETF); (3) lock
escalation based on locks per transaction (LET);
(4) global lock escalation (Global), and (5)
adaptive lock escalation (Adaptive). The lock
escalation threshold for LETF is set to 80% of
the average number of records in a file accessed by
a transaction, and that for LET to 80% of the
average total number of records accessed by a
transaction. The threshold for Global and Adap-
tive is set to 80% of the total number of lock
resources.

A run in an experiment continues until 10 000
transactions commit. In Experiment 1, in a
commercial DBMS [9], we measure the number
of concurrent transactions causing lock resource
exhaustion as we vary the number of lock
resources provided by the DBMS from 1000 to
4000. In Experiment 2, we measure the perfor-
mance as we vary the number of concurrent
transactions when the number of lock resources
provided by the DBMS is set to 1000. We use the
average number of aborts per committed transac-
tion (=the total number of aborts/the number of
commits), the average response time for the
transactions, and the number of transactions that

ARTICLE IN PRESS

Table 5

Number of concurrent transactions causing lock resource

exhaustion

Number of lock resources Number of concurrent

transactions causing lock

resource exhaustion

1000 16

2000 30

3000 45

4000 57

Table 4

Experimental parameters in Experiment 1

Number of files 100

Number of records per file 100 000

Number of files accessed by a

transaction

2

Number of records accessed by a

transaction

Exponential

distribution with the

average of 100

Number of disks 1

Lock escalation threshold 40

The ratio of the numbers of read-only

transactions and read-and-write

transactions

8:2

J.-W. Chang et al. / Information Systems 30 (2005) 151–166162
commit per unit time (throughput) as the perfor-
mance measures. In Experiment 3, we measure the
throughput and average response time as we vary
the number of lock resources provided by the
DBMS from 1000 to 100 000, when 512 transac-
tions are running concurrently. In Experiment 4,
we compare the throughputs between Adaptive
and Global with different amount of lock
resources.

6.2. Experimental results

6.2.1. Experiment 1: lock resource exhaustion in a

commercial DBMS

In a commercial DBMS [9], we measure the
number of concurrent transactions causing lock
resource exhaustion as we vary the number of lock
resources provided by the DBMS from 1000 to
4000. When lock resource exhaustion occurs, the
DBMS stops all running transactions and waits for
the administrator to reset the number of lock
resources.

Table 4 shows the experimental parameters used
in Experiment 1. The number of files, the number
of records per file, the number of files accessed by a
transaction, and the number of records accessed
by a transaction are equal to those in Table 3. The
number of disks is 1 and the lock escalation
threshold is set to 40 (80% of the average number
of records in a file accessed by a transaction). The
ratio of the numbers of read-only transactions and
read-and-write transactions (read:write in short) is
8:2.

Table 5 shows the experimental results. In Table
5, when 16 transactions are running concurrently,
lock resource exhaustion occurs and the system
become paralyzed. As the number of lock
resources increases, more transactions can run
concurrently. However, increasing lock resources
cannot guarantee there be no lock resource
exhaustion as we see in Table 5.

6.2.2. Experiment 2: effect of the number of

concurrent transactions

We first perform experiments for typical cases
where read:write is 8:2 and 2:8. We then perform
experiments varying other parameters to analyze
sensitivity: the file size, the number of files accessed
by a transaction, the ratio of the CPU time over
the disk time, and the number of disks. Since
the results show similar trends, we omit the
detailed results here. Interested readers are
referred to Ref. [15].

Fig. 6 shows the experimental results when
read:write is 8:2 and the number of lock resources
is 1000. Fig. 6 (a) shows the throughput, Fig. 6 (b)
the average number of aborts per committed
transaction, and Fig. 6 (c) the average response
time. In Fig. 6, when the number of concurrent
transactions is 1, i.e., when transactions are
executed serially, the throughput is 0.5. The
throughput increases as the number of concurrent
transactions increases at the initial stage for all
lock escalation methods, but does not increase
further after a certain point, and decreases in the
end. This is because transactions are aborted more
frequently being unable to acquire lock resour-
ces as the number of concurrent transactions

ARTICLE IN PRESS

0.5
1.0
1.5
2.0
2.5
3.0

1 4 8 16 32 64 128 256 512 1024 2048
T

hr
ou

gh
pu

t (
T

R
/s

ec
)

Number of concurrent transactions

No Escalation
LETF

LET
Global

Adaptive

0.01

1.00

64.00

1 4 8 16 32 64 128 256 512 1024 2048

A
bo

rt
 R

at
io

Number of concurrent transactions

No Escalation
LETF

LET
Global

Adaptive 2

64

512

4096

1 4 8 16 32 64 128 256 512 1024 2048

R
es

po
ns

e
T

im
e

(s
ec

)

Number of concurrent transactions

No Escalation
LETF

LET
Global

Adaptive

(a)

(b) (c)

Fig. 6. Performance comparison of lock escalation methods when read:write is 8:2: (a) throughput; (b) average number of aborts per

committed transaction; (c) average response time.

J.-W. Chang et al. / Information Systems 30 (2005) 151–166 163
increases. Since the aborted transaction is re-
started, the average response time increases, and
the throughput decreases.

In No escalation, when eight concurrent trans-
actions are running, the system become paralyzed,
the average number of aborts per committed
transaction and the average response time become
infinite, and the throughput becomes 0. When four
transactions are running concurrently, the abort
ratio is close to 1. Four concurrent transaction
may access much more than 400 records (say,
more than 1000) since the number of records
accessed by a transaction has an exponential
distribution with the average of 100. If a transac-
tion accesses more records than the total number
of lock resources (in this case, 1000), lock resource
exhaustion occurs even though only a few transac-
tions are running concurrently.

In LETF, LET, and Global, the performances
degrade abruptly when more than 32, 64, and 128
concurrent transactions are running, respectively.
While there are abrupt changes in these methods,
in Adaptive, the performance degrades gracefully
as the number of concurrent transactions in-
creases, and the system does not become paralyzed
even when 2048 transactions are running concur-
rently. When there are excessively many concur-
rent transactions, most of them will be blocked
waiting for the lock resource and only a small
number of transactions will be able to progress. In
the worst case, only the immortal transaction
survives. This case is equivalent to a serial
execution of transactions. We note that in
Adaptive, the throughput with 2048 concurrent
transactions (0.61) is similar to that of a serial
execution (0.5).

LETF shows somewhat lower performance than
LET. This is because LETF does not consider the
total number of locks being actively used. LET
executes lock escalation when there are no more
lock resources available even if the lock escalation
threshold is not exceeded. Here, we observe that
global consideration on the total number of locks
being used plays an important role in enhancing
the performance.

Fig. 7 shows the throughputs of lock escalation
methods when read:write is 2:8. The trend in Fig. 7
is similar to that in Fig. 6(c). However, the
performance decreases more dramatically in the
existing lock escalation methods, with the max-
imum number of transactions that can be run
concurrently decreasing by 25%. This is because
read-and-write transactions request more IX mode
locks for files, making lock escalation more
difficult.

6.2.3. Experiment 3: effect of the number of lock

resources

Figs. 8(a) and (b) show the throughput and
average response time for the lock escalation

ARTICLE IN PRESS

J.-W. Chang et al. / Information Systems 30 (2005) 151–166164
methods as the number of lock resources varies.
The number of concurrent transactions is 512 and
read:write is 8:2. In all methods, as the number of
lock resources increases, the throughput increases.
Here, we make an interesting observation that the
throughput and average response time for Adap-
tive are rather insensitive to the number of lock
resources compared to those of other existing
methods. Thus, the accuracy in estimating the
number of lock resources is not critical for the
throughput or average response time. This effect is
very useful in practice since it relieves the users of
the responsibility to estimate the amount of lock
resources accurately at system initialization time.
0.5

1.0

1.5

2.0

2.5

3.0

1000 5000 10000 20000 50000 100000

T
hr

ou
gh

pu
t (

T
R

/s
ec

)

Number of lock resources

No Escalation
LETF

LET
Global

Adaptive

R
es

po
ns

e
T

im
e

(s
ec

)

(a) (b)

Fig. 8. Performance comparison of the lock escalation me

0.5

1.0

1.5

2.0

2.5

3.0

1 4 8 16 32

T
hr

ou
gh

pu
t (

T
R

/s
ec

)

Number of concu

Adaptive-1000
Adaptive-10000

Global-10000
Global-100000

Fig. 9. Comparison of throughputs between Adaptive an

0.5

1.0

1.5

2.0

2.5

3.0

1 4 8 16 32 64 128 256 512 1024 2048

T
hr

ou
gh

pu
t (

T
R

/s
ec

)

Number of concurrent transactions

No Escalation
LETF

LET
Global

Adaptive

Fig. 7. Comparison of the throughputs of the lock escalation

methods when read:write is 2:8.
6.2.4. Experiment 4: number of lock resources

required

Fig. 9 compares the throughputs for four cases
as the number of concurrent transactions varies:
(1) Adaptive with 1000 lock resources (Adaptive-
1000); (2) Adaptive with 10 000 lock resources
(Adaptive-10000); (3) Global with 10 000 lock
resources (Global-10000), and (4) Global with
100 000 lock resources (Global-100’000). As we see
in Fig. 9, Adaptive-10000 shows almost the same
throughput as Global-100000. Adaptive-1000 also
closely matches with Global-10000. This result
indicates that Adaptive offers the same throughput
with only less than 10% of lock resources that
existing methods require, drastically reducing the
requirement for lock resources. Here, we note that
Global offers the best performance among existing
methods.
7. Conclusions

We have addressed the problems of existing lock
escalation methods: decreasing concurrency by
256

512

1024

2048

1000 5000 10000 20000 50000 100000
Number of lock resources

No Escalation
LETF

LET
Global

Adaptive

thods when 512 concurrent transactions are running.

64 128 256 512 1024 2048
rrent transactions

d Global with different amounts of lock resources.

ARTICLE IN PRESS

J.-W. Chang et al. / Information Systems 30 (2005) 151–166 165
needless lock escalation, needless transaction
aborts by indolent lock escalation, and abrupt
performance degradation by lock resource exhaus-
tion. In this paper, we have proposed a general
solution to these problems through systematic
analysis and formal understanding of the under-
lying mechanisms. We summarize the contribu-
tions of the paper below.

First, we have proposed a formal model of lock
escalation. To the extent of the authors’ knowl-
edge, there has been no research in the past
proposing a formal model of lock escalation.
Instead, lock escalation has simply been treated
as a tool to have locks returned for availability.
Using the model, we have analyzed the roles of
lock escalation formally and have solved the
problems of the existing methods systematically.
In the model, we have proposed the concept of the
unescalatable lock and identified it as the primary
cause making the transactions to abort.

Second, we have analyzed the reasons why
unescalatable locks are generated and proposed
techniques to counter them: semi lock escalation,
meta locking, and selective relief. Based on these
techniques, we have proposed adaptive lock
escalation, which controls lock escalation based
on the number of unescalatable locks.

Third, through extensive simulation, we have
shown that adaptive lock escalation indeed out-
performs the existing lock escalation methods. The
results show, compared with the existing ones,
adaptive lock escalation significantly reduces the
number of aborts and the average response time
and, at the same time, increases the throughput.
Furthermore, under excessive lock requests, adap-
tive lock escalation provides graceful performance
degradation—gradually transiting to a serial ex-
ecution of transactions—while existing methods
suffer from abrupt changes in performance. Over-
all, the results indicate that adaptive lock escala-
tion drastically (more than 10 fold) reduces the
number of lock resources needed to maintain the
same level of throughput and average response
time. Moreover, the result shows that the through-
put and average response time of adaptive lock
escalation are rather insensitive to the number of
lock resources. Existing lock escalation methods
rely on the users to handle the problems of
excessive lock requests obliging them to estimate
the necessary amount of lock resources. In
contrast, adaptive lock escalation relieves the users
of this responsibility to a great extent by providing
graceful performance degradation through auto-
matic control of unescalatable locks and by
providing insensitivity to the number of lock
resources.
Acknowledgements

This work was supported by the Korea Science
and Engineering Foundation (KOSEF) through
the Advanced Information Technology Research
Center (AITrc).
References

[1] K.-Y. Whang, R. Krishnamurthy, Query optimization in a

memory-resident domain relational calculus database

system, ACM Trans. Database Systems 15 (1) (1990)

67–95.

[2] B. Klotz, R. Bamford, Method and apparatus for dynamic

lock granularity escalation and de-escalation in a computer

system, United States Patent 6144983, November 7, 2000.

[3] P. Bernstein, M. Schkolnick, Concurrency Control and

Recovery in Database Systems, Addison-Wesley, Reading,

MA, 1987.

[4] J. Gray, A. Reuter, Transaction Processing: Concepts and

Technology, Morgan Kaufmann, Los Altos, CA, 1993.

[5] J. Gray, R. Lorie, G. Putzolu, Granularity of locks in a

shared data base, in: Proceedings of the International

Conference on Very Large Data Bases, Boston, September

1975, pp. 428–451.

[6] IBM, IBM DB2 Universal Database Administration

Guide, Version 6, ftp://ftp.software.ibm.com/ps/products/

db2/info/vr6/htm/db2d0/index.htm, 2000.

[7] UniSQL, Database Administration Guide (all products),

1996.

[8] J.-W. Chang, Y.-K. Lee, K.-Y. Whang, Global lock

escalation in database management systems, Information

Processing Letters, pp. 179–186, May 2002.

[9] Sybase, System Administration Guide (Adaptive Server

Enterprise12.5), September 2002.

[10] C. Papadimitriou, The Theory of Database Concurrency

Control, Computer Science Press, Rockville, MD, 1986.

[11] D.R. Ries, M.R. Stonbraker, Locking granularity revis-

ited, ACM Trans. Database Systems 4 (2) (1979) 210–227.

[12] W. Kohler, K. Wilner, J. Stankovic, An experimental

comparision of locking policies in a testbed database

system, Proceedings of the International Conference on

ftp://ftp.software.ibm.com/ps/products/db2/info/vr6/htm/db2d0/index.htm
ftp://ftp.software.ibm.com/ps/products/db2/info/vr6/htm/db2d0/index.htm

ARTICLE IN PRESS

J.-W. Chang et al. / Information Systems 30 (2005) 151–166166
Management of Data, ACM SIGMOD, San Jose, CA,

May 1983, pp. 108–119.

[13] D.R. Ries, M.R. Stonbraker, Effects of locking granularity

in a database management system, ACM Trans. Database

Systems 2 (3) (1977) 233–246.

[14] W. Han, K. Whang, Y. Moon, I. Song, Prefetching based

on the type-level access pattern in object-relational
DBMSs, in: Proceedings of the International Conference

on Data Engineering, Heidelberg, April 2001, pp. 651–660.

[15] J.-W. Chang, Y.-K. Lee, K.-Y. Whang, J.-H. Yang, A

formal approach to lock escalation, Technical Report

01-11-002, Advanced Information Technology Research

Center (AITrc), KAIST, 2001 (available at http://aitrc.

kaist.ac.kr/research/search.html).

http://aitrc.kaist.ac.kr/research/search.html
http://aitrc.kaist.ac.kr/research/search.html

	A formal approach to lock escalation
	Introduction
	Backgrounds
	Multigranularity locking and lock escalation
	Existing lock escalation methods

	A formal model for lock escalation
	Unescalatable locks
	Adaptive lock escalation
	Performance evaluation
	System architecture and environment
	Experimental results
	Experiment 1: lock resource exhaustion in a commercial DBMS
	Experiment 2: effect of the number of concurrent transactions
	Experiment 3: effect of the number of lock resources
	Experiment 4: number of lock resources required

	Conclusions
	Acknowledgements
	References

