
Page-Differential Logging: An Efficient and DBMS-
Independent Approach for Storing Data into Flash Memory

Yi-Reun Kim

yrkim@mozart.kaist.ac.kr

Kyu-Young Whang
Department of Computer Science

Korea Advanced Institute of Science and Technology (KAIST)
Daejeon, Korea

kywhang@cs.kaist.ac.kr

Il-Yeol Song
College of Information Science

and Technology
Drexel University

Philadelphia, USA
songiy@drexel.edu

ABSTRACT
Flash memory is widely used as the secondary storage in
lightweight computing devices due to its outstanding ad-
vantages over magnetic disks. Flash memory has many ac-
cess characteristics different from those of magnetic disks,
and how to take advantage of them is becoming an impor-
tant research issue. There are two existing approaches to
storing data into flash memory: page-based and log-based.
The former has good performance for read operations, but
poor performance for write operations. In contrast, the
latter has good performance for write operations when up-
dates are light, but poor performance for read operations.
In this paper, we propose a new method of storing data,
called page-differential logging, for flash-based storage sys-
tems that solves the drawbacks of the two methods. The pri-
mary characteristics of our method are: (1) writing only the
difference (which we define as the page-differential) between
the original page in flash memory and the up-to-date page
in memory; (2) computing and writing the page-differential
only once at the time the page needs to be reflected into
flash memory. The former contrasts with existing page-
based methods that write the whole page including both
changed and unchanged parts of data or from log-based
ones that keep track of the history of all the changes in
a page. Our method allows existing disk-based DBMSs to
be reused as flash-based DBMSs just by modifying the flash
memory driver, i.e., it is DBMS-independent. Experimental
results show that the proposed method is superior in I/O
performance, except for some special cases, to existing ones.
Specifically, it improves the performance of various mixes
of read-only and update operations by 0.5 (the special case
when all transactions are read-only on updated pages) ∼ 3.4
times over the page-based method and by 1.6 ∼ 3.1 times
over the log-based one for synthetic data of approximately
1Gbytes. The TPC-C benchmark also shows improvement
of the I/O time over existing methods by 1.2 ∼ 6.1 times.
This result indicates the effectiveness of our method under

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’10, June 6–11, 2010, Indianapolis, Indiana, USA.
Copyright 2010 ACM 978-1-4503-0032-2/10/06 ...$10.00.

(semi) real workloads. We note that the performance ad-
vantage of our method can be further enhanced up to two
folds by obviating the need to write to the spare area of the
page a second time.

Categories and Subject Descriptors
H.2.m [DATABASE MANAGEMENT]: Miscellaneous

General Terms
Algorithms, Design, Performance

Keywords
Flash memory, Page-Differential, DBMS-Independent

1. INTRODUCTION
Flash memory is a non-volatile secondary storage that is

electrically erasable and reprogrammable [4, 7]. Flash mem-
ory has outstanding advantages over magnetic disks: lighter
weight, smaller size, better shock resistance, lower power
consumption, and faster access time [7, 13, 26]. Due to these
advantages, the flash memory is widely used in embedded
systems and mobile devices such as mobile phones, MP3
players, and digital cameras [13, 14].

Flash memory is much different from a magnetic disk in
access characteristics [11]. It does not have seek and rota-
tion latency because it is made of electronic circuits without
mechanically moving parts [11]. It provides three kinds of
operations—read, write, and erase. In order to overwrite
existing data in a page, an erase operation must be per-
formed before writing new data on the page [11, 13]. The
write and erase operations are much slower than the read
operation [13, 17].

There have been a number of studies [2, 3, 8, 12, 13, 25]
on the method of storing updated pages into flash mem-
ory for flash-based storage systems. In this paper, we refer
to such methods as page update methods. The page up-
date methods are classified into two categories [26]—page-
based [3, 12] and log-based [2, 13, 25]. Page-based methods
write the whole page including unchanged as well as changed
parts of data into flash memory when an updated page needs
to be reflected into flash memory (e.g., when the page is
swapped out from the DBMS buffer to the database) [3, 12,
26]. Thus, they have poor write performance. However, they
have good read performance because they read only one page
when recreating a page from flash memory (e.g., reading it
into a DBMS buffer). Log-based methods write only the

363

changes (which we call an update log 1) in the page into the
write buffer, which in turn is written into flash memory when
the buffer is full [2, 13, 25]. Thus, compared with page-based
methods, log-based ones have good write performance when
updates are not heavy 2 [26]. They, however, have relatively
poor read performance because they need to read multiple
pages when recreating a page from flash memory.

In this paper, we propose a page update method called
page-differential logging (PDL) for flash-based storage sys-
tems. A page-differential (simply, a differential) is defined as
the difference between the original page in the flash memory
and the up-to-date page in memory. This novel method is
much different from page-based methods or log-based ones
in the following ways. (1) We write only the differential
of an updated page. This characteristic stands in contrast
with page-based methods that write the whole page includ-
ing changed and unchanged parts of data or log-based ones
that keep track of the history of all the changes (i.e., multi-
ple update logs) in a page. Furthermore, we compute and
write the differential only once at the time the updated page
needs to be reflected into flash memory. The overhead of
generating the differential is relatively minor because, in
flash memory, the speed of read operation is much faster
than those of write or erase operations. (2) When recreat-
ing a page from flash memory, we need fewer read operations
than log-based ones do because we read at most two pages:
the original page and the single page containing the differ-
ential. (3) When we need to reflect an updated page into
flash memory, we need fewer write operations than others
do because we write only the differential. A side benefit is
that the longevity of flash memory is also improved due to
fewer erase operations resulted from fewer write operations.
(4) Our method is loosely-coupled with the storage system
while the log-based ones are tightly-coupled. The log-based
methods need to modify the storage management module
of the DBMS because they must identify the changes in a
page whenever it is updated. These changes can be iden-
tified only inside the storage management module because
they are internally maintained by the system. On the other
hand, our method does not need to modify the module of the
DBMS because it computes the differential outside the stor-
age management module by comparing the page that needs
to be reflected with the original page in the flash memory.
We elaborate on this point later in Section 4.

The contributions of this paper are as follows. (1) we
propose a new notion of “differential” of a page. Using this
notion, we then propose a new approach to updating pages
that we call page-differential logging [24]. (2) Our method
is DBMS-independent. (3) Through extensive experiments,
we show that the overall read and write performance of our
method is mostly superior to those of existing ones.

Hereafter, in order to reduce ambiguity in this paper, we
distinguish logical pages from physical pages. We call the
pages in memory logical pages and the ones in flash memory
physical pages. For ease of exposition, we assume that the
size of a logical page is equal to that of a physical page.

The rest of this paper is organized as follows. Section 2
introduces flash memory. Section 3 describes prior work re-

1An update log contains the changes in a page resulted in a single
update command.
2When pages are frequently updated, the log-based methods
could be poorer in performance as we see in the experiments in
p. 10, Figure 9.

lated to the page update methods for flash-based storage
systems. Section 4 presents a new page update method
called page-differential logging. Section 5 presents the re-
sults of performance evaluation. Section 6 summarizes and
concludes the paper.

2. FLASH MEMORY
Based on the structure of memory cells, there are two

major types of flash memory [6]: the NAND type and the
NOR type. The former is suitable for storing data, and
the latter for storing code [15]. In the rest of this paper,
we use the term ‘flash memory’ to indicate the NAND type
flash memory, which is widely used in flash-based storage
systems 3.

Figure 1 shows the structure of flash memory. The flash
memory consists of Nblock blocks, and each block consists
of Npage pages. A page is the smallest unit of reading and
writing data, and a block is the smallest unit of erasing
data [26]. Each page consists of a data area used for storing
data and a spare area used for storing auxiliary information
such as the valid bit, obsolete bit, bad block identification,
and error correction check (ECC) [15].

page block

data area spare area

flash memory

Figure 1: The structure of flash memory.

We consider three operations: read, write, and erase [6].

• The read operation : returns all the bits in the ad-
dressed page

• The write operation : changes a set of bits selected
in the target page from 1 to 0

• The erase operation : sets all the bits in the ad-
dressed block to 1

The operations in flash memory are different from those in
the magnetic disk in two ways. First, all the bits in flash
memory are initially set to 1. Thus, writing to flash memory
means selectively changing some bits in a page from 1 to 0.
Next, the erase operation in flash memory changes the bits
in a block back to 1. Each block can sustain only a lim-
ited number of erase operations before becoming unreliable,
which is restricted to about 100,000 4 [13, 14].

Due to the restriction of the write and erase operations, a
write operation is usually preceded by an erase operation in
order to overwrite a page [11, 13]. We first change all the bits
in the block to 1 using an erase operation, and then, change
some bits in the page to 0 using a write operation. We note
that the erase operation is performed in a much larger unit
than a write operation, i.e., the former is performed on a

3In this paper, we focus on flash memory but not on solid state
disks (SSD’s) [18], which have controllers with their own page up-
date methods.
4Due to this characteristic, there have been a number of studies
on wear-leveling [7] and bad block management [15]. However,
we do not address them in this paper, but these studies can be
applied to the storage system independently of the page update
methods discussed in this paper.

364

block while the latter on a page. The specific techniques
for overwriting a page depend on the page update method
employed. These techniques are discussed in Section 3.

Based on the capacity of memory cells, there are two types
of flash memory [11]: Single Level Cell (SLC)-type and Multi
Level Cell (MLC)-type. The former is capable of storing one
data bit per cell, while the latter is capable of storing two (or
even more) data bits per cell. Thus, MLC-type flash memory
has greater capacity than SLC-type one and is expected to
be widely used in high-capacity flash storages [11]. Table 1
summarizes the parameters and values of MLC flash memory
we use in our experiments. We note that the size of a page
is 2,048 bytes, and a block has 64 pages. In addition, the
access time of operations increases in the following order:
read, write, and erase. The read operation is 9.2 times faster
than the write operation, which is 1.5 times faster than the
erase operation.

Table 1: The parameters and values of flash
memory∗.

Symbols Definitions Values

Nblock the number of blocks 32, 768
Npage the number of pages in a block 64
Sblock the size of a block (bytes) 135, 168

(= Npage × Spage) (= 64 × 2, 112)
Spage the size of a page (bytes) 2, 112

(= Sdata + Sspare) (= 2, 048 + 64)
Sdata the size of data area in a page 2, 048

(bytes)
Sspare the size of spare area in a page 64

(bytes)
Tread the read time for a page (µs) 110
Twrite the write time for a page (µs) 1010
Terase the erase time for a block (µs) 1500

∗ Samsung K9L8G08U0M 2Gbytes MLC NAND flash mem-
ory [17]

3. RELATED WORK
The Page-Based Approach

In page-based methods [3, 12], a logical page is stored into
a physical page. When an updated logical page needs to
be reflected into flash memory, the whole logical page is
written into a physical page [26]. When a logical page is
recreated from flash memory, it is read directly from a phys-
ical page. These methods are loosely-coupled with the stor-
age system because they can be implemented in a middle
layer, called the Flash Translation Layer (FTL) [3], which
maintains logical-to-physical address mapping between log-
ical and physical pages. The FTL can be implemented as
hardware in the controller residing in SSD’s, or can be im-
plemented as software in the operating system for embedded
boards 5.

In page-based methods, there are two update schemes [14]—
in-place update and out-place update—depending on whether
or not the logical page is always written into the same physi-
cal page. When a logical page needs to be reflected into flash
memory, the in-place update overwrites it into the specific
physical page that was read [14], but the out-place update
writes it into a new physical page [4, 26].

In-Place Update: As explained in Section 2, the write
operation in flash memory cannot change bits in a page to

5Commercial FTL’s for SSD’s or embedded boards typically use
page-based methods [1].

1. Therefore, when overwriting the logical page l1 that was
read from the physical page p1 in the block b1 into the same
physical page p1, we do the following four steps: (1) read all
the pages in b1 except p1; (2) erase b1; (3) write l1 into p1;
(4) write all the pages read in Step (1) except l1 in the cor-
responding pages in b1. The in-place update scheme suffers
from severe performance problems and is rarely used in flash
memory [14] because it causes an erase operation and mul-
tiple read and write operations whenever we need to reflect
a logical page into flash memory.

Out-Place Update: In order to overcome the drawback of
in-place update, when we need to reflect the logical page l1
into flash memory, the out-place update scheme first writes
l1 into a new physical page p2, and then, sets p1 to obso-
lete 6. When there is no more free page in flash memory,
a block is selected and obsolete pages in it are reclaimed
by garbage collection [6], which converts obsolete pages to
free pages. The out-place update scheme is widely used in
flash-based storage systems [26] because it does not cause an
erase operation when a logical page is to be reflected into
flash memory.

The Log-Based Approach
In log-based methods [2, 13, 25], a logical page is generally

stored into multiple physical pages [13]. Whenever logical
pages are updated, the update logs of multiple logical pages
are first collected into a write buffer in memory [26]. When
this buffer is full, it is written into a single physical page.
Thus, when a logical page is updated many times, its update
logs can be stored into multiple physical pages. Accordingly,
when recreating a single logical page, multiple physical pages
may need to be read and merged. The log-based methods are
tightly-coupled with the storage system because the storage
system must be modified to be able to identify the update
logs of a logical page.

Among log-based methods, there are Log-structured File
system (LFS) [16], Journaling Flash File System (JFFS) [25],
Yet Another Flash File System (YAFFS) [2], and In-Page
Logging (IPL) [13]. In LFS, JFFS, and YAFFS, the update
logs of a logical page can be written into arbitrary log pages
in flash memory while, in IPL, the update logs should be
written into specific log pages. IPL divides the pages in each
block into a fixed number of original pages and log pages. It
writes the update logs of a logical page into only the log
pages in the block containing the original (physical) page
of the logical page. Therefore, when recreating the logical
page, IPL reads the original page and only the log pages
in the same block. When there is no free log page in the
block, IPL merges the original pages with the log pages in
the block, and then, writes the merged pages into pages in a
new block (this process is called merging [13]). The old block
is subsequently erased and garbage-collected. Consequently,
IPL improves read performance by reducing the number of
log pages to read from flash memory when recreating a log-
ical page because log pages do not increase indefinitely (i.e.,
is bound) due to merging. The performance of IPL is similar
to other log-based methods since IPL inherits the advantages
and drawbacks of log-based methods other than the effect
of merging and bound read performance.

6We set a page to obsolete by changing the obsolete bit in the
spare area of the page from 1 to 0 as in Gal et al. [6].

365

4. THE PAGE-DIFFERENTIAL LOGGING
APPROACH

In this section, we propose page-differential logging (PDL)
for flash-based storage systems. Section 4.1 explains the de-
sign principles, and then, presents PDL, which conforms to
these principles. Section 4.2 and 4.3 present the data struc-
tures and algorithms. Section 4.4 discusses the strengths
and limitations. Section 4.5 discusses crash recovery.

4.1 Design Principles
We identify three design principles for PDL in order to

guarantee good performance for both read and write oper-
ations. These principles overcome the drawbacks of both
the page-based methods and the log-based methods in the
following ways.

• writing difference only : We write only the differ-
ence when a logical page needs to be reflected into flash
memory.

• at-most-one-page writing : We write at most one
physical page when a logical page needs to be reflected
into flash memory even if the page has been updated
in memory multiple times.

• at-most-two-page reading : We read at most two
physical pages when recreating a logical page from
flash memory.

Page-differential logging method conforms to these three
design principles. In this method, a logical page is stored
into two physical pages—a base page and a differential page.
Here, the base page contains a whole logical page, which
could be the old version, and the differential page contains
the difference between the base page and the up-to-date log-
ical page. A differential page can contain differentials of
multiple logical pages. Thus, the differentials of two logical
pages could be stored in the same differential page.

The differential has the following advantages over the list
of update logs in the log-based methods. (1) It can be com-
puted without maintaining all the update logs, i.e., it can
be computed by comparing the updated logical page with
its base page only when the updated logical page needs to
be reflected into flash memory. (2) It contains only the dif-
ference from the original page for the part that has been
updated multiple times in a logical page. When a specific
part in a logical page is updated in memory multiple times,
the list of update logs contains all the history of changes
while the differential contains only the difference between
original data and the up-to-date data. For instance, let us
assume that a logical page is updated in memory twice as
follows: ... aaaaaa ... → ... bbbbba ... → ... bcccba Here, the
list of update logs contains two changes bbbbb and ccc while
the differential contains only the difference bcccb.

In PDL, when an updated logical page needs to be re-
flected into flash memory, we create a differential by compar-
ing the logical page with the base page in flash memory, and
then, write the differential into the one-page write buffer,
which is subsequently written into flash memory when it is
full. Therefore, it conforms to the writing-difference-only
principle.

We note that, when a logical page is simply updated, we
just update the logical page in memory without recording

the log. Instead, we defer creating and writing the differen-
tial until the updated logical page needs to be reflected into
flash memory. Thus, our method satisfies the at-most-one-
page writing principle.

Theoretically, the size of the differential cannot be larger
than that of one page. However, practically, it could be
larger if a large part of the page has been updated. This
case can occur since the differential contains not only the
changed data but also the meta data such as offsets and
lengths. In this case, we discard the created differential and
write the updated logical page itself into flash memory as
a new base page in order to satisfy the at-most-one-page
writing principle. (In this special case, PDL becomes the
same as the page-based method.)

When recreating a logical page from flash memory, we
read the base page and its corresponding differential page,
and then, merge the base page with its differential in the
differential page. However, we need to read only one physical
page if the base page has not been updated (i.e., there is
no differential page). Thus, we need to read at most two
physical pages, and accordingly, PDL conforms to the at-
most-two-page reading principle.

When there is no more free page in flash memory, ob-
solete pages are reclaimed by garbage collection. Here, we
select one block for garbage collection. Since it may contain
valid base or differential pages, before erasing the block, we
move those valid pages into a new block, which is reserved
for the garbage collection process [6]. For differential pages,
however, we move only valid differentials into a new differ-
ential page, i.e., we do compaction here. Our method re-
quires fewer write operations than page-based or log-based
ones do because it satisfies the writing-difference-only and
at-most-one-page writing principles. Thus, our method in-
vokes garbage collection less frequently than other methods
do.

Figure 2 shows an example of PDL. Here, we have base page
(p), differential page(p), and differential(p) for the logical
page p. Figure 2 (a) shows the logical pages l1 and l2 in
memory. Figure 2 (b) shows the updated logical pages l1
and l2, and the process of writing them into flash mem-
ory. When l1 and l2 need to be reflected into flash mem-
ory, we perform the following three steps: (1) read the base
pages p1 and p2 from flash memory; (2) create differential(l1)
and differential(l2) by comparing l1 and l2 with the base
pages p1 and p2, respectively; (3) write differential(l1) and
differential(l2) into the write buffer, which is subsequently
written into the physical page p3 when the buffer is full. We
note that l1 and l2 from different logical pages are written
into the same differential page p3. Figure 2 (c) shows the
logical page l1 recreated from flash memory by merging the
base page p1 with differential(l1) in p3

7.

4.2 Data Structures
The data structures used in flash memory are base pages,

differential pages, and differentials. A base page stores a log-
ical page in its data area and stores the page’s type, physical
page ID, and creation time stamp in its spare area. Here,
the type indicates whether the page is a base one or differ-
ential one, and the physical page ID represents the unique

7Conceptually, we require an assembly buffer in order to merge
the base page with the differential. But, in practice, we can use
the logical page itself as the assembly buffer.

366

flash memory

the page-differential logging method

main memory

block b1

logical
page

p1 p2

l1 l2

l1 l2p1comp.

differential(l1)

p2

base_page(l1)

base_page(l1)

physical
page

differential
write buffer

p3

differential(l1)
differential(l2)

base page

base_page(l2)

differential(l2)
differential(l1)

differential_page(l1)

differential page

logical page l1

comp.

differential(l2)

base_page(l2)
logical page l2

main memory

logical
page l1 l2

flash memory

the page-differential logging method

main memory

logical
page

p1 p2

l1 l1

p1 +

differential(l1) in p3

base_page(l1)

physical
page

p3

differential(l2)
differential(l1)block b1

base_page(l1)
differential_page(l1)

base page

base_page(l2)

differential page

(a) The logical pages (b) The updated logical pages l1 and l2, and the process of (c) The logical page l1 recreated

l1 and l2 in memory. writing them into the differential page p3 in flash memory. from flash memory.

Figure 2: An example of the differential-based approach.

identifier of a page in the database. The creation time stamp
indicates when the base page was created.

A differential page stores differentials of logical pages in
its data area and stores the page’s type in its spare area.
A physical page ID and a creation time stamp are stored
also in a differential to identify the base page to which
the differential belongs and when the differential was cre-
ated. Therefore, the structure of a differential is in the form
of < physical page ID, creation time stamp, [offset, length,
changed data]+>.

The three data structures used in memory are the physi-
cal page mapping table, the valid differential count table, and
the differential write buffer. The physical page mapping table
maps a physical page ID into < base page address, differen-
tial page address>. This table is used to indirectly reference
a base and differential page pair in flash memory because,
in flash memory, the positions of the physical pages can be
changed by the out-place scheme.

The valid differential count table counts the number of
valid differentials (i.e., those that have not been obsoleted)
in a differential page. When the count becomes 0, the differ-
ential page is set to obsolete and made available for garbage
collection.

The differential write buffer is used to collect differentials
of logical pages into memory and later writes them into a
differential page in flash memory when it is full. The dif-
ferential write buffer consists of a single page, and thus, the
memory usage is negligible. Figure 3 shows the data struc-
tures for PDL.

4.3 Algorithms
In this section, we present the algorithms for writing a

logical page into flash memory and for recreating a logical
page from flash memory. We call them PDL Writing and
PDL Reading, respectively.

Figure 4 shows the algorithm PDL Writing. The inputs to
the algorithm are the logical page p and its physical page ID
pid. The algorithm consists of the following three steps. In
Step 1, we read base page(pid) from flash memory. In Step 2,
we create differential(pid) by comparing base page(pid) with
p given as an input. In Step 3, we write differential(pid)
into the differential write buffer. If old differential(pid) re-
sides in the buffer, we first remove the old one, and then,
write the new one. Here, there are three cases according to

pid1 <p1 , p3>

physical page mapping table

logical page

differential write buffer
(one-page)

differential1

differential2

physical
page ID

<base page address,
differential page address>

flash memory

P1 P2 P3

base_page(pid1) differential_page(pid1) containing
the differential of base_page(pid1)

physical
page

block

the page-differential logging method
(main memory)

main memory

p3 3

valid differential count table
differential

page address
count of

valid differentials

Figure 3: The data structures for PDL.

the size of differential(pid). First, when the size of differ-
ential(pid) is equal to or smaller than the free space of the
buffer (Case 1), we just write differential(pid) into the buffer.
Second, when it is larger than the free space of the buffer but
is equal to or smaller than Max Differential Size 8(Case 2),
we execute the procedure writingDifferentialWriteBuffer()
in Figure 5, clear the buffer, and then, write differential(pid)
into the buffer. Here, Max Differential Size is defined as the
the maximum size of differentials to be stored in differen-
tial pages. The procedure writingDifferentialWriteBuffer()
consists of the following two steps. In Step 1, we write the
buffer’s contents into the differential page q that is newly al-
located in flash memory. In Step 2, we update the physical
page mapping table ppmt and the valid differential count ta-
ble vdct. For each differential d in the buffer, we decrement
the count for the old differential page dp in vdct by execut-
ing the procedure decreaseValidDifferentialCount(). Here,
if the count becomes 0, we set the differential page to ob-

8In Section 4.1, for ease of exposition, we have explained PDL
on the assumption that Max Differential Size = the size of one
physical page. However, in practice, we can adjust it according
to the workload. We will show the performance while varying
Max Differential Size later in the experiment section (Section 5).

367

Algorithm PDL_Writing:
Inputs: (1) p /* updated logical page */

(2) pid /* physical page ID of p */
Algorithm:
/* Step 1. Reading the base page by looking up the physical page mapping table ppmt */
bp := ppmt(pid).base_page;
Read bp from flash memory;
/* Step 2. Creating a differential */
Create differential(pid) by comparing bp read from flash memory with

the updated logical page p given as an input;
/* Step 3. Writing the differential into the differential write buffer dwb */
IF old differential(pid) resides in dwb THEN

Remove old differential(pid);
END /* IF */
IF the size of differential(pid) £ free space of dwb THEN /* Case 1 */

Write differential(pid) into dwb;
ELSE IF the size of differential(pid) > free space of dwb AND

the size of differential(pid) £ Max_Differential_Size THEN /* Case 2 */
Call writingDifferentialWriteBuffer();
Clear dwb;
Write differential(pid) into dwb;

ELSE IF the size of differential(pid) > Max_Differential_Size THEN /* Case 3 */
Discard differential(pid);
Call writingNewBasePage();

END /* IF */

Figure 4: Writing a logical page into flash memory
in PDL.

solete 9 and make it available for garbage collection. We
then set differential page(pid d) in ppmt to the new differ-
ential page q and increment the count for q in vdct. Here,
pid d is the physical page ID of the base page to which
the differential d belongs. Third, when it is larger than
Max Differential Size (Case 3), we discard differential(pid)
and execute the procedure writingNewBasePage() in Fig-
ure 5. The procedure consists of the following two steps. In
Step 1, we write the logical page p itself into the base page q
that is newly allocated in flash memory. In Step 2, we update
ppmt and vdct. We set the old base page bp to obsolete mak-
ing it available for garbage collection. We then decrement
the count for the old differential page dp in vdct by execut-
ing the procedure decreaseValidDifferentialCount() and set
base page(pid) and differential page(pid) in ppmt to q and
null, respectively. Figure 5 shows the procedures for the
PDL Writing algorithm.

Figure 6 shows the algorithm PDL Reading. The input to
PDL Reading is the physical page ID pid of the logical page
to read. The algorithm consists of the following three steps.
In Step 1, we read base page(pid) from flash memory. In
Step 2, we find differential(pid) of the base page(pid). Here,
there are two cases depending on the place where the differ-
ential(pid) resides. First, when the differential(pid) resides
in the differential write buffer, i.e., when the buffer has not
been yet written out to flash memory, we find it from the

9For the spare area in a page, a write operation that changes
a set of bits from 1 to 0 can be repeatedly performed up to at
least two times without an erase operation [6]. However, some
recent NAND flash memory does not allow writing the spare area
multiple times. In this case, we maintain obsolete bits in memory
setting a page to obsolete by updating the obsolete bit in memory.
When a system failure occurs, we can unambiguously reconstruct
the obsolete bits by using the valid bits and creation time stamps
stored in physical pages while recovering the physical page map-
ping table and the valid differential count table. By maintaining
the obsolete bits in main memory, we can even reduce the num-
ber of page updates by half, potentially enhancing the update
performance of PDL up to two folds.

Procedure writingDifferentialWriteBuffer():
Input: dwb /* differential write buffer */
Algorithm:
/* Step 1. Writing dwb into flash memory as a differential page */
Write its contents into the physical page q that is newly allocated in flash memory;

/* Step 2. Updating the physical page mapping table ppmt and the valid differential count table vdct */
FOR EACH differential d in dwb DO
BEGIN

pid_d := physical page ID of the base page to which the differential d belongs;
dp := ppmt(pid_d).differential_page;
IF dp „ null THEN /* if the differential page already exists */

Call decreaseValidDifferentialCount(dp); /* decrement the valid differential count for dp */
END /* IF */
ppmt(pid_d).differential_page := q; /* set the differential page containing d to the new

differential page q */
vdct(q).count := vdct(q).count + 1; /* increment the valid differential count for q */

END /* FOR */

Procedure decreaseValidDifferentialCount():
Input: dp /* differential page */
Algorithm:
vdct(dp).count := vdct(dp).count – 1; /* decrement the valid differential count for dp */
IF vdct(dp).count = 0 THEN

Set dp to obsolete;
END /* IF */

Procedure writingNewBasePage():
Inputs: (1) p /* logical page */

(2) pid /* physical page ID of p */
Algorithm:
/* Step 1. Writing p into flash memory as a new base page */
Write p into the physical page q that is newly allocated in flash memory;

/* Step 2. Updating the physical page mapping table ppmt and the valid differential count table vdct */
bp := ppmt(pid).base_page;
dp := ppmt(pid).differential_page;
Set bp to obsolete;
IF dp „ null THEN

Call decreaseValidDifferentialCount(dp); /* decrement the valid differential count for dp */
END /* IF */
ppmt(pid).base_page := q; /* set the base page for the logical page p to the new base page q */
ppmt(pid).differential_page := null; /* set the differential page for p to null */

Figure 5: The procedures for the PDL Writing al-
gorithm in Figure 4.

buffer. Second, when we cannot find it from the buffer, we
read differential page(pid) from flash memory, finding differ-
ential(pid) from it. In Step 3, we recreate a logical page p by
merging base page(pid) read in Step 1 with differential(pid)
found in Step 2.

4.4 Discussions
PDL has the following four advantages. (1) As com-

pared with the page-based methods, it has good write per-
formance, i.e., it requires fewer write operations, when we
need to reflect an updated logical page into flash memory.
This is due to the writing-difference-only principle. (2) As
compared with the log-based methods, it has good write
performance when a logical page is updated multiple times.
This is due to the at-most-one-page writing principle. (3)
As compared with the log-based methods, it has good read
performance when recreating a logical page from flash mem-
ory. This is due to the at-most-two-page reading principle.
(4) Moreover, it allows existing disk-based DBMSs to be
reused without modification as flash-based DBMSs because
it is DBMS-independent.

The log-based methods need to modify the storage man-
agement module of the DBMS so as to write the update log
whenever the page is updated. On the other hand, PDL
does not need to modify the DBMS but to modify only the

368

Algorithm PDL_Reading
Input: pid /* physical page ID */
Output: p /* logical page */
Algorithm:
/* Step 1. Reading the base page by looking up the physical page mapping table ppmt */
bp := ppmt(pid).base_page;
Read bp from flash memory;

/* Step 2. Finding the differential */
IF differential(pid) resides in the differential write buffer THEN

Find differential(pid) from the buffer;
ELSE

dp := ppmt(pid).differential_page;
IF dp „ null THEN

Read dp from flash memory;
Find differential(pid) from dp read from flash memory;

ELSE
Return bp as the result p; /* there is no differential page */

END /* IF */
END /* IF */

/* Step 3. Merging the base page with the differential */
Merge bp with differential(pid) to make p;
Return p;

Figure 6: Recreating a logical page from flash mem-
ory in PDL.

flash memory driver 10 because it computes the differential
by comparing the whole updated logical page with its base
page. Thus, it can be implemented inside the flash memory
driver without affecting the storage manager of the existing
DBMS.

PDL, however, has the following minor drawbacks. First,
when recreating a logical page from flash memory, PDL has
to read one more page than page-based methods do. How-
ever, this drawback is relatively minor because the speed of
read operation is much faster than that of write or erase
operations. Furthermore, if a database is used for read-only
access, PDL reads only one physical page just like page-based
methods since a differential page does not exist (i.e., the base
page has not been updated). Thus, in this case, the read
performance of PDL is as good as that of the page-based
methods. Second, the data size written into flash memory
in PDL could be larger than that in log-based methods. It
is because the differential contains all the difference between
an updated logical page and its base page, while the update
log in the log-based methods contains only the difference be-
tween an updated logical page and its immediate previous
version. However, in spite of this drawback, PDL improves
the overall performance significantly because the advantages
outweigh these drawbacks. We will show the performance
advantages later in the experiment section (Section 5).

4.5 Crash Recovery
Magnetic disk with cache normally supports the flush com-

mand (e.g., fsync() [19]), which flushes the data written into
the cache immediately out to disk. Thus, a DBMS that
uses disk with cache as the secondary storage can support
transactional database recovery by using the flush command
whenever persistency of data is required. For example, when
writing the ‘transaction commit’ log record, we write out
the log record, and then, call the flush command; if we per-
form a checkpoint, we need to call the flush command after

10This flash memory driver corresponds to the FTL.

collecting the system status. 11 When the flush command
is called, PDL flushes the differential write buffer out into
flash memory by executing the procedure writingDifferen-
tialWriteBuffer() in Figure 5. In flash memory, the page
writing is guaranteed to be atomic at the chip level [9].

When a system failure occurs, we lose the physical page
mapping table and the valid differential count table in mem-
ory. However, by one scan through physical pages in flash
memory, we can reconstruct those tables. Here, the tables
are recovered only to the state in which data were reflected
into flash memory. That is, the data retained in the write
buffer only but not written out to flash memory are not
recovered in the tables. This is analogous to the situation
where data retained only in the disk cache but not written
out to disk are not recovered after a system failure. Thus,
when persistency of data is required, a flush call must be
used.

If a system failure occurs when a base page (or the differ-
ential write buffer) is written into flash memory, but the old
base page (or the differential page that does not contain any
valid differential) has not yet been set to obsolete in Fig-
ure 4, the new base page (or differential page) and the old
base page (or differential page) might co-exist in flash mem-
ory. Thus, to identify the most up-to-date base page (or
differential page), we use the creation time stamp stored in
a base page and in each differential in a differential page as
in Chang et al. [5].

Figure 7 shows the algorithm for reconstructing the physi-
cal page mapping table ppmt and the valid differential count
table vdct. For every physical page r in flash memory, we
read the spare area of r and update ppmt and vdct only if r
is not obsolete. Here, there are two cases according to the
type of r. First, when r is a base page (Case 1), we check
whether ts(r) is more recent than ts(bp), where ts(r) is the
creation time stamp of r and ts(bp) is that of the base page
bp currently in ppmt. If so, r must be a more recent base
page. Thus, we set base page(pid) to r and set the old base
page bp to obsolete, where pid is the physical page ID of r.
We then check whether ts(r) is more recent than ts(dp, dif-
ferential(pid)), which is the time stamp of differential(pid) in
the differential page dp currently in ppmt. If so, the differen-
tial(pid) must be obsolete since we have a base page r that
is more recent. Thus, we set differential page(pid) to null
and decrement the count for the old differential page dp by
executing the procedure decreaseValidDifferentialCount().
If ts(r) is not more recent than ts(bp), we set r to obso-
lete. Second, when r is a differential page (Case 2), we read
the data area of r. For each differential d in r, we check
whether ts(d) is more recent than both ts(bp) and ts(dp, dif-
ferential(pid d)), where ts(d) is the time stamp of d, ts(bp)
is that of the base page bp currently in ppmt, and ts(dp,
differential(pid d)) is that of differential(pid d) in the differ-
ential page dp currently in ppmt. Here, pid d is the phys-
ical page ID of the base page to which the differential d
belongs. If so, d must be a more recent differential of bp
than differential(pid d) currently in ppmt. Thus, we set dif-
ferential page(pid d) to r, decrement the count for the old
differential page dp by executing the procedure decrease-

11Some DBMSs open disk with the ’O SYNC’ flag [19] to make ev-
ery write into the cache to be immediately flushed out to disk. To
fully utilize the advantage of page-differential logging, however,
the flush command rather than the ‘O SYNC’ option should be
used.

369

ValidDifferentialCount(), and increment the count for the
new differential page r. If r does not contain any valid dif-
ferential after processing all the differentials in r, we set r
to obsolete.

Algorithm PDL_RecoveringfromCrash
/* Reconstructing the physical page mapping table ppmt and

the valid differential count table vdct */
Initialize ppmt and vdct;
FOR EACH physical page r in flash memory DO
BEGIN

Read the spare area of r from flash memory;
IF IS_OBSOLETE_PAGE(r) THEN

CONTINUE;
END /* IF */
IF IS_BASE_PAGE(r) THEN /* Case 1: r is a base page */

pid := physical page ID of r;
bp := ppmt(pid).base_page;
dp := ppmt(pid).differential_page;
/* ts(x, y) returns the creation time stamp as follows:
(1) if x is a base page or a differential, returns the time stamp of x (here, y can be omitted)
(2) if x is a differential page, returns the time stamp of differential y in x */
IF ts(r) > ts(bp) THEN /* r is a more recent base page */

Set bp to obsolete;
ppmt(pid).base_page := r; /* set the base page with pid to the new base page r */
IF ts(r) > ts(dp, differential(pid)) THEN

/* r is more recent than differential(pid) in dp */
Call decreaseValidDifferentialCount(dp); /* decrement the valid differential

count for dp */
ppmt(pid).differential_page := null; /* set the differential page containing

differential(pid) to null */
END /* IF */

ELSE /* bp is a more recent base page */
Set r to obsolete;

END /* IF */
ELSE /* Case 2: r is a differential page */

Read the data area of r from flash memory;
FOR EACH differential d in r DO
BEGIN

pid_d := physical page ID of the base page to which the differntial d belongs;
bp := ppmt(pid_d).base_page;
dp := ppmt(pid_d).differential_page;
IF ts(d) > ts(bp) AND ts(d) > ts(dp,differential(pid_d)) THEN

/* d is more recent than bp and differential(pid_d) in dp */
Call decreaseValidDifferentialCount(dp); /* decrement the valid differential

count for dp */
ppmt(pid_d).differential_page := r; /* set the differential page containing d to

the new differential page r */
vdct(r).count := vdct(r).count + 1; /* increment the valid differential count for r */

END /* IF */
END /* FOR */
IF vdct(r). count = 0 THEN /* r does not contain any valid differential */

Set r to obsolete;
END /* IF */

END /* IF */
END /* FOR EACH */

Figure 7: The algorithm for reconstructing the phys-
ical page mapping table and the valid differential
count table upon system failure.

In Figure 7, we set two kinds of useless pages to obsolete:
(1) base pages that are not recent but have not been set to
obsolete and (2) differential pages that do not contain valid
differential but have not been set to obsolete. These pages
can occur in flash memory when a system failure occurs if a
base page (or the differential write buffer) has been written
into flash memory, but the old base page (or the differential
page that does not contain valid differentials) has not yet
been set to obsolete.

The algorithm PDL RecoveringfromCrash guarantees that
recovery is normally performed even when a system failure
repeatedly occurs during the process of restarting the sys-
tem. The reason is that the algorithm does not change data
in the flash memory except setting the useless pages (i.e.,

the pages that are no longer used, but have not been set to
obsolete) to obsolete. Setting useless pages to obsolete does
not affect the recovery process of reconstructing the physical
page mapping table and the valid differential count table.

Since scanning the entire flash memory of 1Gbytes takes
approximately 60 seconds (derived from Table 1 in Section 2),
the scan time can be practically accommodated. To recover
the physical page mapping table without scanning all the
physical pages in flash memory, we have to log the changes
in the mapping table into flash memory. We leave this ex-
tension as a further study.

5. PERFORMANCE EVALUATION
5.1 Experimental Data and Environment

We compare the data access performance of PDL proposed
in this paper with those of the page-based and log-based
methods discussed in Section 3. We use the wall clock time
taken to access data from flash memory (we call it the I/O
time) as the measure. Here, as the page-based method, we
use the one employing the out-place update (OPU) scheme
with the page-level mapping technique, which is known to
have good performance even though the method consumes
memory excessively [9]. We also compare with the in-place
update method (IPU). As the log-based method, we use the
in-page logging method (IPL) proposed by Lee and Moon [13].

We use the synthetic relational data of 1Gbytes and up-
date operations for comparing data access performance of
the four methods. We define an update operation as consist-
ing of the following three steps: (1) reading the addressed
page; (2) changing the data in the page; and (3) writing the
updated page. The reading step (1) creates a logical page
by reading physical pages from flash memory, and the writ-
ing step (3) writes the updated logical page as one or more
physical pages into flash memory. The experiments are de-
signed this way to exclude the buffering effect in the DBMS.
Therefore, we can measure read, write as well as overall per-
formance by executing only update operations.

The I/O time is affected by N updates till write and
%ChangedByOneU Op. Here, N updates till write is the
number of update operations applied to a logical page in
memory from the time it is recreated from flash memory un-
til the time it is reflected back into flash memory, %Changed-
ByOneU Op is the percentage of data changed in a logical
page by a single update operation. Here, the portion of
data to be changed is randomly selected. We also com-
pare the performance of various mixes of read-only and up-
date operations varying the percentage of the update opera-
tions (%UpdateOps). Besides, we measure the performance
as we vary the performance parameters of flash memory (i.e.,
the I/O times for read and write operations in Table 1). We
also compare the longevity of flash memory. Finally, we per-
form the TPC-C benchmark [20] as a real workload. Table 2
summarizes the experiments and parameters.

In each experiment, garbage collection is invoked when-
ever there is no more free page in flash memory 12. Here, the
cost (time) of garbage collection is amortized into that of the
write operation because garbage collection is incurred by the
accumulated effect of write operations. We repeatedly ex-
ecute experiments so that garbage collection is invoked for
each block at least ten times on the average after loading the

12In IPL, garbage collection is invoked during the process of merg-
ing.

370

Table 2: Experiments and parameters.
Experiments Parameters

Exp. 1 Read, write, and overall time per update operation %ChangedByOneU Op 2
N updates till write 1

Exp. 2 Overall time per update operation as N updates till write is varied %ChangedByOneU Op 2
N updates till write 1 ∼ 8

Exp. 3 Overall time per update operation as %ChangedByOneU Op is varied %ChangedByOneU Op 0.1 ∼ 100
N updates till write 1, 5

Overall time per operation for the mixes of read-only and update operations %ChangedByOneU Op 2
Exp. 4 as %UpdateOps is varied N updates till write 1, 5

%UpdateOps 0 ∼ 100
%ChangedByOneU Op 2

Exp. 5 Overall time per update operation as the parameters of flash memory N updates till write 1
are varied Tread 10 ∼ 1500

Twrite 500, 1000
Exp. 6 Number of erase operations per update operation as N updates till write %ChangedByOneU Op 2

is varied N updates till write 1 ∼ 8
1 ∼ 100Mbytes

Exp. 7 I/O time per transaction for TPC-C data as the DBMS buffer size is varied DBMS buffer size (0.1 ∼ 10% of
database size)

database in order to make the database to reach a steady
state.

For the experiments, we have implemented an emulator
of a 2-Gbyte flash memory chip using the parameters shown
in Table 1 13. We also have implemented the four meth-
ods: PDL (x), OPU, IPU, and IPL (y) 14 15. Here, x is
Max Differential Size (defined in Section 4.3 in p. 5), and
y is the amount of log pages in each block. We used the
Odysseus ORDBMS [21, 22, 23] as the storage system. Here,
PDL, OPU, and IPU are implemented outside the DBMS,
and IPL inside the DBMS. We conducted all experiments
on a Pentium 4 3.0GHz Linux PC with 2Gbytes of main
memory. We set the size of a logical page to be 2Kbytes,
which is the size of a physical page in flash memory. We also
test the case with a logical page of 8Kbytes as was done by
Lee and Moon [13].

5.2 Results of the Experiments
Experiment 1:
Figure 8 shows the read, write, and overall time per update
operation for the six methods: IPL (18KB), IPL (64KB),
PDL (2KB), PDL (256B), OPU, and IPU. For IPL (y), we
have varied y from 8Kbytes to 64Kbytes. Among them,
we select IPL (18KB) and IPL (64KB) because they have
the best and worst overall time for update operations, re-
spectively. For PDL, we select PDL (2KB) and PDL (256B)
because the amounts of differential pages in them are similar
to those of log pages in IPL (64KB) and IPL (18KB), respec-
tively. Specifically, IPL (64KB) and PDL (2KB) use 50% of
flash memory for storing log/differential pages. IPL (18KB)
and PDL (256B) use 14.1% and 11.1% of flash memory, re-
spectively.

Figure 8 (a) shows that the I/O time of the reading step
per update operation is in the following order: IPL (64KB),

13For each operation, the emulator returns the required time in
the flash memory, which is specified in Table 1, while writing and
reading the data to and from the disk. The data are in exactly the
same format in disk as would be stored in flash memory. Thus,
access time using the emulator must be identical to that using
the real flash memory.

14We set the size of log buffer for each logical page to the size of
a logical page× 1

16
as was used by Lee and Moon [13].

15We do not use wear-leveling in this paper, but the same wear-
leveling techniques can be applied to these methods. We use the
same garbage collection method suggested by Woodhouse [25].

IPL (18KB), PDL (2KB) /PDL(256B), and OPU/ IPU. This
result is consistent with what was discussed in Sections 3
and 4. OPU and IPU require one read operation. PDL re-
quires at most twice as many read operations. IPL requires
multiple read operations. We note that, when we perform
read-only operations, we can also achieve the same result as
is shown in Figure 8 (a).

(a) The I/O time of the reading step. (b) The I/O time of the writing step.

Slashed parts indicate the time for

garbage collection. Lighter areas

represent read time.

(c) The overall time per update operation including

read and write times in (a) and (b).

Figure 8: The read, write, and overall time
per update operation (N updates till write = 1,
%ChangedByOneU Op = 2, database size = 1Gbytes,
Tread = 110 µs, Twrite = 1010 µs).

Figure 8 (b) shows that the I/O time of the writing step is
in the following order: IPU, OPU, PDL (2KB), IPL (18KB),
IPL (64KB), and PDL (256B). Here, the slashed area indi-
cates the I/O time for garbage collection. The result is also
consistent with the discussions in Sections 3 and 4. For an
update operation, OPU requires two write operations: one
for writing the updated page into flash memory and another
for setting the original page to obsolete. However, IPL re-
quires only one write operation for writing the log buffer into
flash memory. PDL (2KB) requires two write operations ap-
proximately for every two update operations: one for writing

371

the differential write buffer into flash memory and another
for setting one (on the average) differential page to obso-
lete 16 because the size of a differential is approximately half
a page on the average 17. Thus, PDL (2KB) requires approx-
imately one write operation for an update operation on the
average. PDL (256B) requires a less number of write opera-
tions than PDL (2KB) does since the differential write buffer
is filled less frequently. But, PDL additionally requires one
read operation for reading the base page in from flash mem-
ory in order to create the differential. Here, each method
includes a certain amount of read cost, which is incurred by
garbage collection and amortized into the write cost. We
note that PDL (256B) outperforms the other methods due
to less frequent writing of the differential write buffer.

Figure 8 (c) shows the overall time per update operation
combining the I/O times shown in Figures 8 (a) and (b).
PDL (256B) has good read and write performance as shown
in Figures 8 (a) and (b), and thus, has the best overall time
for an update operation. (This corresponds to Figure 9 (a)
when N updates till write = 1.)

Experiment 2:
Figure 9 shows the overall time per update operation as
N updates till write is varied. First, the I/O time of OPU
and IPU is steady regardless of the parameter because they
always write the whole page when reflecting an updated log-
ical page into flash memory. Next, the I/O time of IPL
increases in a stepwise manner. The reason for this be-
havior is that the number of write operations for a logi-
cal page is computed as d the size of update logs

the size of log buffer
e. Here, the

size of the update logs to be written increases linearly as
N updates till write increases because IPL keeps all the
update logs of a logical page. (We note that this process of
writing is not bound by merging while the reading process
is.) Finally, the I/O time of PDL (2KB) increases only very
slightly as N updates till write increases because the size
of the overlap among the changed parts becomes larger as
N updates till write increases with the total size of the dif-
ference being limited to one page. The I/O time of PDL (256B)
increases approximately linearly as N updates till write in-
creases because the size of the overlap is small. As N updates-
till write increases, the I/O time of PDL (256B) approaches

that of OPU because the logical page itself (rather than the
differential) is written into flash memory as the size of the
differential becomes larger than Max Differential Size (Case
3 in Figure 4). As a result, PDL (256B) outperforms OPU,
IPU, and IPL. The result when the size of a logical page is
8Kbytes shows a tendency similar to that when the size of
a logical page is 2Kbytes.

Experiment 3:
Figure 10 shows the overall time per update operation as
%ChangedByOneU Op is varied. The result is consistent
with what we observed in Figure 9. We note that PDL (256B)
outperforms OPU, IPU, and IPL for the same reason as in
Figure 9. When %ChangedByOneU Op ≈ 100, the I/O
time of PDL (2KB) is slightly larger than that of OPU be-

16When the count of valid differentials in vdct becomes 0, we set
the differential page to obsolete.

17In PDL, since the size of a differential changes from 0 to
Max Differential Size and back to 0 (Case 3 in Figure 4) as updat-
ing a logical page is repeated, the size of a differential in a steady
state is approximately 1

2
×Max Differential Size on the average.

(a) size of a logical page = (b) size of a logical page =

2Kbytes. 8Kbytes.

Figure 9: The overall time per update operation as
N updates till write is varied (%ChangedByOneU Op =
2).

cause, while the two methods require the same number of
write operations, PDL (2KB) needs three times as many read
operations— for reading the base page and the differential
page when recreating a logical page from flash memory, and
then, for reading the base page again to create the differ-
ential when reflecting the updated logical page into flash
memory.

(a) N updates till write = 1. (b) N updates till write = 5.

Figure 10: The overall time per update operation as
%ChangedByOneU Op is varied (N updates till write =
1, 5).

Experiment 4:
Figure 11 shows the overall time per operation for the mixes
of read-only and update operations as %UpdateOps is var-
ied. When updates are rare (i.e., %UpdateOps ≈ 0), OPU
outperforms PDL and IPL (see Figure 8 (a)). As %UpdateOps
increases, PDL becomes superior to OPU because of its su-
periority in update performance (see Figure 8 (c)). We also
note that PDL always outperforms IPL. In summary, for var-
ious mixes of read-only and update operations, PDL (256B)
improves performance by 0.5 ∼ 3.4 times over OPU and by
1.6 ∼ 3.1 times over IPL (18KB) and by 2.0 ∼ 9.7 times over
IPL (64KB). We note that the case of 0.5 times over OPU
is the special case where all transactions are read-only (i.e.,
%UpdateOps = 0).

Experiment 5:
Figure 12 shows the overall time per update operation as the
Tread and Twrite parameters of flash memory are varied. We
observe that PDL (256B) always outperforms OPU and IPL.
As the read time (Tread) increases, OPU becomes superior
to PDL (2KB) or IPL. We have this result because OPU has
superiority in read performance (see Figure 8 (a)). We note
that PDL (256B) outperforms OPU and IPL regardless of
the Tread and Twrite parameters of flash memory.

372

(a) N updates till write = 1. (b) N updates till write = 5.

Figure 11: The overall time per operation for
the mixes of read-only and update operations as
%UpdateOps is varied (%ChangedByOneU Op = 2).

(a) Twrite = 500 µs. (b) Twrite = 1000 µs.

Figure 12: The overall time per update op-
eration as the Tread and Twrite parameters of
flash memory are varied (N updates till write =
1, %ChangedByOneU Op = 2, Terase = 1500 µs).

Experiment 6:
Figure 13 shows the number of erase operations per up-
date operation as N updates till write is varied. We ob-
serve that, when N updates till write = 1, the number
of erase operations per update operation is in the follow-
ing order: OPU, PDL (2KB), IPL (18KB), PDL (256B), and
IPL (64KB). Thus, IPL (64KB) has the best longevity among
the five methods. But, it has poor performance for the mixes
of read-only and update operations as shown in Figure 11.
PDL (256B) has good longevity next to IPL (64KB). Be-
sides, it has significantly good performance for the mixes
of read-only and update operations.

Figure 13: The number of erase operations per
update operation as N updates till write is varied
(%ChangedByOneU Op = 2).

Experiment 7:
Figure 14 shows the results of the TPC-C benchmark. We
observe that the I/O time is in the following order: IPL (64KB),

IPL (18KB), OPU, PDL (2KB), and PDL (256B). The result
shows that PDL outperforms other methods in real work-
loads as well.

Figure 14: TPC-C benchmark: I/O time per trans-
action as the DBMS buffer size is varied (database
size = 1Gbytes).

6. CONCLUSIONS
We have proposed a novel approach for storing data called

page-differential logging for flash-based storage systems. We
have defined the notion of the differential and presented the
algorithms for reading and writing pages into flash memory
using the differential.

We have identified three design principles: writing-difference-
only, at-most-one-page writing, and at-most-two-page read-
ing. These principles guarantee good performance for both
read and write operations. We have shown that our method
conforms to these principles.

Page-differential logging is DBMS-independent. In addi-
tion, it improves the longevity of flash memory by reducing
the number of erase operations compared with existing page-
based methods.

We have performed extensive experiments to compare the
performance of page-differential logging with existing meth-
ods. Through these experiments, we have shown that the
performance of our method is superior to those of page-
based and log-based methods—except when all transactions
are read-only on already updated pages. We also performed
experiments as the performance figures of read and write
operations change. The results show that our method (in
particular, PDL (256B)) is always superior to other meth-
ods. Thus, the results indicate that page-differential logging
can be the preferred technique for commercial products 18.
We also performed experiments to compare various methods
for the longevity of flash memory. The results show that
PDL (256B) improves the longevity of flash memory com-
pared with OPU and IPL (18KB). Finally, we performed the
TPC-C benchmark as the DBMS buffer size is varied. The
results show that PDL (256B) outperforms other methods
by 1.2 ∼ 6.1 times. This shows effectiveness of our method
under (semi) real workloads.

We note that we can enhance the I/O performance of PDL
by up to two folds by maintaining the obsolete bit in main
memory instead of in the spare area of the physical page 19.
When a system failure occurs, we can unambiguously recon-
struct the obsolete bits by using the valid bits and creation

18Commercial SSD’s offer average write time comparable to read
time by exploiting parallelism, but individual NAND flash chips
typically have asymmetric read/write times.

19We found this enhancement during the shepherding process, and
it was not reflected in the experiments presented in the current
version of the paper.

373

time stamps stored in the physical pages. We also note that
it enables support for some recent NAND flash memory that
does not allow multiple writes to the spare area obviating
the need for the multiple-write feature.

Currently, we are implementing page-differential logging
on a flash memory embedded board. Such an augmented
board is to be incorporated to our Odysseus DBMS [21,
22, 23]. The resulting system will facilitate various flash-
memory-dependent optimizations in various components of
the DBMS such as the indexes, buffer, sort module, and
query optimizer. We also note that, due to its DBMS-
independent nature, page-differential logging can be em-
ployed by the manufacturer in the FTL of commercial SSD’s.
We leave these issues as future work.

7. ACKNOWLEDGEMENT
This research was partially supported by the National Re-

search Lab program (Project No. 2009-0083120) through Na-
tional Research Foundation of Korea (NRF) funded by Min-
istry of Education, Science, and Technology (MEST). We
would like to thank the anonymous reviewers for their inci-
sive comments, which helped the readability and complete-
ness of this paper.

8. REFERENCES
[1] Agrawal, N. et al., “Design Tradeoffs for SSD

performance,” In Proc. USENIX Annual Technical
Conf., pp. 57–70, Boston, Massachusetts, June 2008.

[2] Aleph One Ltd., Yet Another Flash File System
(YAFFS), 2002. Available at http://www.yaffs.net

[3] Ban, A., Flash File System, US patent 5404485, 1995.

[4] Chang, L. and Kuo, T., “An Efficient Management
Scheme for Large-Scale Flash Memory Storage
Systems,” In ACM Symposium on Applied Computing
(SAC), pp. 862–868, Nicosia, Cyprus, Mar. 2004.

[5] Chang, L. and Kuo, T., “Efficient Management for
Large-Scale Flash-Memory Storage Systems with
Resource Conservation,” ACM Transactions on
Storage, pp. 381–418, Vol. 1, No. 4, 2005.

[6] Gal, E. and Toledo, S., “Algorithms and Data
Structures for Flash Memories,” ACM Computing
Surveys, pp. 138–163, Vol. 37, No. 2, 2005.

[7] Kawaguchi, A., Nishioka, S., and Motoda, H., “A
Flash-Memory Based File System,” In Proc. USENIX
Annual Technical Conference, pp. 155–164, New
Orleans, Louisiana, Jan. 1995.

[8] Kim, G. et al., “LGeDBMS: a Small DBMS for
Embedded System with Flash Memory,” In Proc. Int’l
Conf. on Very Large Data Bases (VLDB),
pp. 1255–1258, Seoul, Korea, Sept. 2006.

[9] Kim, J. et al.,“Design and Implementation of a Flash
Memory Based Storage System for Mobile Devices,”
Technical Report (SNU-CE-TR-2001-1), School of
Computer Science and Engineering, Seoul National
University, Korea, Apr. 2001.

[10] Kim, T. et al.,“Design of a Reliable NAND Flash
Software for Mobile Device,” In Proc. 9th Int’l Conf.
on Computer and Information Technology (CIT),
pp. 173–174, Bhubaneswar, India, Dec. 2006.

[11] Koltsidas, I. and Viglas, S. D., “Flashing Up the
Storage Layer,” In Proc. Int’l Conf. on Very Large

Data Bases (VLDB), pp. 514–525, Auckland, New
Zealand, Aug. 2008.

[12] Lee, S., Choi, W., Park, D., “FAST: An Efficient Flash
Translation Layer for Flash Memory,” In Proc. 1st Int’l
Workshop on Embedded Software Optimization (ESO),
pp. 879–887, Seoul, Korea, Aug. 2006.

[13] Lee, S. and Moon, B., “Design of Flash-Based DBMS:
An In-Page Logging Approach,” In Proc. Int’l Conf.
on Management of Data, pp. 55–66, ACM SIGMOD,
Beijing, China, June 2007.

[14] Nath, S. and Gibbons, P. B., “Online Maintenance of
Very Large Random Samples on Flash Storage,” In
Proc. Int’l Conf. on Very Large Data Bases (VLDB),
pp. 970–983, Auckland, New Zealand, Aug. 2008.

[15] Park, C. et al., “Cost-Efficient Memory Architecture
Design of NAND Flash Memory Embedded Systems,”
In Proc. Int’l Conf. on Computer Design (ICCD),
pp. 474–480, San Jose, California, Oct. 2003.

[16] Rosenblum, M. and Ousterhout, J. K., “The Design
and Implementation of a Log-Structured File System,”
ACM Transactions on Computer Systems (TOCS),
pp. 26–52, Vol. 10, No. 1, 1992.

[17] Samsung Electronics, Datasheet: 1Gx 8Bit /
2Gx 8Bit / 4Gx 8Bit NAND Flash Memory, 2005.
Available at http://www.DataSheet4U.com

[18] Samsung Semiconductor, Flash SSD, 2008. Available
at http://www.samsung.com/global/business/
semiconductor/products/flash/Products FlashSSD.html

[19] Stevens, W. R., Advanced Programming in the UNIX
Environment, Addison-Wesley, 1999.

[20] Transaction Processing Performance Council (TPC),
TPC Benchmark C Standard Specification, 2002.
Available at http://www.tpc.org/tpcc

[21] Whang, K. et al., “Odysseus: a High-Performance
ORDBMS Tightly-Coupled with Spatial Database
Features,” In Proc. 23rd IEEE Int’l Conf. on Data
Engineering (ICDE), pp. 1493–1494, Istanbul, Turkey,
Apr. 2007.

[22] Whang, K. et al., “Tightly-Coupled Spatial Database
Features in the Odysseus/OpenGIS DBMS for
High-Performance,” GeoInformatica (to appear), 2009
(on-line version at http://www.springerlink.com/
content/m6851246706v6n65).

[23] Whang, K. et al., “Odysseus: a High-Performance
ORDBMS Tightly-Coupled with IR Features,” In
Proc. IEEE Int’l Conf. on Data Engineering (ICDE),
Tokyo, Japan, pp. 1104–1105, Apr. 2005. This paper
received the best demonstration award.

[24] Whang, K and Kim, Y., A Method to Store Data into
Flash Memory in a DBMS-independent Manner Using
the Page-Differential, Korean Patent 10-0929371, Nov.
24, 2009.

[25] Woodhouse, D., “JFFS: The Journaling Flash File
System,” In Proc. Ottawa Linux Symposium, Ottawa,
Canada, July 2001.

[26] Wu, C., Kuo, T., and Chang, L., “An Efficient B-Tree
Layer for Flash-Memory Storage Systems,” ACM
Transactions on Embedded Computing Systems, Vol. 6,
No. 3, 2007.

374

