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Abstract There has been a lot of research on MapReduce for big data analytics. This
new class of systems sacrifices DBMS functionality such as query languages, schemas,
or indexes in order to maximize scalability and parallelism. However, as high functional-
ity of the DBMS is considered important for big data analytics as well, there have been a
lot of efforts to support DBMS functionality in MapReduce. HadoopDB is the only work
that directly utilizes the DBMS for big data analytics in the MapReduce framework, tak-
ing advantage of both the DBMS and MapReduce. However, HadoopDB does not support
sharability for the entire data since it stores the data into multiple nodes in a shared-nothing
manner—i.e., it partitions a job into multiple tasks where each task is assigned to a frag-
ment of data. Due to this limitation, HadoopDB cannot effectively process queries that
require internode communication. That is, HadoopDB needs to re-load the entire data to
process some queries (e.g., 2-way joins) or cannot support some complex queries (e.g., 3-
way joins). In this paper, we propose a new notion of the DFS-integrated DBMS where
a DBMS is tightly integrated with the distributed file system (DFS). By using the DFS-
integrated DBMS, we can obtain sharability of the entire data. That is, a DBMS process in
the system can access any data since multiple DBMSs are run on an integrated storage sys-
tem in the DFS. To process big data analytics in parallel, our approach use the MapReduce
framework on top of a DFS-integrated DBMS. We call this framework PARADISE. In PAR-
ADISE, we employ a job splitting method that logically splits a job based on the predicate
in the integrated storage system. This contrasts with physical splitting in HadoopDB. We
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also propose the notion of locality mapping for further optimization of logical splitting. We
show that PARADISE effectively overcomes the drawbacks of HadoopDB by identifying
the following strengths. (1) It has a significantly faster (by up to 6.41 times) amortized query
processing performance since it obviates the need to re-load data required in HadoopDB.
(2) It supports query types more complex than the ones supported by HadoopDB.

Keywords Big data analytics · MapReduce · DBMS · Distributed file system ·
Integration · HadoopDB

1 Introduction

1.1 Motivation

The era of big data, where a vast amount of information is continuously generated, has
arrived and this trend will surely continue for a long time in the future [11, 24]. It was
reported that the digital information content of the world amounted to 1.8 zettabytes in
2011 and was to increase by tens to hundreds of times in ten years [15]. The amount of
information itself is so large (hence, the name big data) that it is not easy to find specific
information that a user wants. Thus, the technology for extracting useful information from
big data (i.e., big data analytics) have become very important [19].

MapReduce is the state-of-the-art technology for big data analytics [9]. It provides a dis-
tributed/parallel programming framework that runs a user program in parallel. Users simply
write Map and Reduce functions, which will run in parallel over a cluster of commodity
hardware nodes. MapReduce facilitates petabyte scale big data analytics over thousands to
tens of thousands of nodes. In general, it stores and manages distributed data by using a
NoSQL-based system, especially, the distributed file system (simply, DFS) such as GFS [16]
and HDFS, or a key-value store such as BigTable [6]. The DFS provides not only scalabil-
ity, fault-tolerance, and load-balancing but also sharability for the slaves, i.e., allows each
slave to access the entire database through the network [16].

Compared to DBMSs, MapReduce applications are hard to implement and maintain
since the system provides a relatively low-level storage system API and simple function-
ality [29]. In order to resolve lack of DBMS functionality in MapReduce, there has been
a lot of efforts to combine MapReduce and the DBMS taking advantage of both systems.
These efforts can be classified into two categories: (1) supporting partial functionality of
the DBMS and (2) supporting full functionality of the DBMS. The former implements only
some specific functionality of the DBMS such as a query language, schema, or indexes
in MapReduce. Pig [26] or Hive [30] are the representative systems that support a query
language for MapReduce. However, they do not support other DBMS functionalities such
as secondary indexes or transactions. We have exhaustively investigated the MapReduce
systems that support functionality of the DBMS and concluded that, to the best of our
knowledge, all of them except HadoopDB [1] are classified as the former while HadoopDB
is the only work that is classified as the latter. We will describe them in Section 2 in detail.

HadoopDB directly uses the DBMS for parallel query processing using MapReduce [1].
HadoopDB partitions the entire set of data stored in the DFS into multiple fragments and
loads each fragment into the local DBMS of a slave node in a shared-nothing manner. Then,
it performs parallel query processing on those local DBMSs using the MapReduce frame-
work. Although HadoopDB is a new brand of research that uses the DBMS for big data
analytics, it does not support sharability for the entire set of data stored in the DFS. That is,
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a DBMS process can access only the data stored in the slave node where it is running. Thus,
HadoopDB splits the job according to the physical partition of data mapping one Map task
to one fragment database. We call this job splitting method physical splitting. Physical split-
ting can efficiently process queries that do not require accessing multiple slave nodes (e.g.,
scan for a relation) by partitioning the job into multiple tasks and processing those tasks in
parallel. Nevertheless, it is inefficient for some queries that require re-loading the entire data
(e.g., 2-way joins) or cannot support some complex queries (e.g., 3-way joins) that require
internode communications. Since HadoopDB partitions data based on the join attributes to
process a 2-way join so as to prevent internode communication, it needs to re-load the entire
data when it cannot use the current snapshot stored in local databases, i.e., when the join
attributes for an upcoming query are different from the current partitioning attributes.

We introduce a new storage system that tightly integrates the DBMS with the DFS and
supporting sharability of data. We call it a DFS-integrated DBMS.1 It supports not only
full functionality of the DBMS and scalability of the DFS but also sharability for the entire
data stored in the DFS. The salient point is that sharability allows us to regard the entire
data in the DFS as one integrated database. Since each DBMS process in a DFS-integrated
DBMS can access any data stored in the DFS, we do not have the limitations of HadoopDB
described above, i.e., having to re-load the entire data or being unable to support some com-
plex queries. In the literature, there have been no research effort using the DFS-integrated
DBMS for big data analytics. Furthermore, since physical splitting in HadoopDB assumes
multiple fragmented databases rather than one integrated database, we cannot directly apply
processing methods based on physical splitting to the DFS-integrated DBMS.

1.2 Our contributions

We propose a new approach to big data analytics using an integrated database in the
DFS, which we call PARADISE (Parallel Analytic framework for the Relational DBMS
And the Distributed file system Integrated to one Storage systEm). PARADISE consists
of the MapReduce framework providing efficient parallel processing of big data and the
DFS-integrated DBMS providing the DBMS functionality and one integrated database. In
addition, to resolve MapReduce job splitting issues for the DFS-integrated DBMS, we
employ a job splitting method suitable for an integrated database, which we call logical
splitting. This method splits a MapReduce job into multiple tasks based on a SQL predicate,
and thus, is independent of physical partitioning of the data over multiple nodes. Figure 1
shows the architecture of PARADISE compared with that of HadoopDB. One distinguished
difference of PARADISE from HadoopDB is that the former processes a MapReduce job
using an integrated database in the DFS while the latter does it using multiple fragmented
databases.

In this paper, we make the following contributions. First, we propose a new approach
PARADISE that consists of the MapReduce framework using the DFS-integrated DBMS
providing an integrated database. PARADISE effectively overcomes the drawbacks of
HadoopDB by supporting sharability of the entire data in the DFS. Specifically, PARADISE
has the following advantages compared with HadoopDB. (1) The amortized system perfor-
mance of PARADISE is far better than that of HadoopDB. PARADISE does not require
re-loading the entire data while HadoopDB does for processing certain kinds of queries.

1The notion of the DFS-integrated DBMS has been implemented in Odysseus/DFS [23]. Detailed issues for
tightly integrating the DFS and the DBMS in a DFS-integrated DBMS are presented in Kim et al. [23].
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Figure 1 An architectural comparison between PARADISE and HadoopDB

Overall, PARADISE enhances the performance of HadoopDB by up to 6.41 times for a
database of size 20Gbytes. (2) It supports more complex query types. Specifically, it can
process queries requiring internode communications such as 3-way joins and Cartesian
products, which cannot be supported by HadoopDB. Second, we propose a logical job
splitting method for the DFS-integrated DBMS. It enables efficient parallel query process-
ing by utilizing the MapReduce framework in an integrated database. We also propose the
notion of locality mapping for further optimization of logical splitting. Third, we analyze
the performance overheads of PARADISE compared with those of HadoopDB. Since PAR-
ADISE accesses an integrated database through the DFS, there is an additional overhead of
accessing data through the DFS.

The rest of the paper is organized as follows. In Section 2, we review the representative
systems using MapReduce or DBMSs for big data analytics. In Section 3, we present our
new approach for big data analytics, PARADISE. In Section 4, we present the results of
various experiments and analyze them to verify the efficiency of PARADISE. Finally, in
Section 5, we conclude the paper.

2 Related work

2.1 MapReduce

Google has introduced the DFS and MapReduce framework as parallel and scalable solu-
tions for large-scale data. We briefly introduce them for the architecture and the terminology
to be used in this paper. MapReduce has evolved to Hadoop [18], an open-source project.
Two major research thrusts utilizing Hadoop are implementations of Hadoop Distributed
File System (HDFS) [20], a clone of Google’s GFS, and utilization of the MapReduce
framework [17]. Specifically, HDFS consists of a NameNode (master), multiple DataNodes
(slaves), and Clients. A DFS NameNode has a role of maintaining metadata of DFS files.
A DFS DataNode has a role of maintaining DFS blocks, partitions of DFS files, in replica.
A DFS Client has a role of retrieving/storing DFS files to/from the user. Hadoop MapRe-
duce framework consists of a JobTracker (master) and multiple TaskTracker (slaves). A
JobTracker has a role of managing multiple tasks, and a TaskTracker a role of processing a
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task. Typical Hadoop cluster is deployed with one master node consisting of a DFS NameN-
ode and MapReduce JobTracker and multiple slave nodes consisting of a DFS DataNode,
DFS Client, and MapReduce TaskTracker. A user can process queries for large-scale data
in the DFS in parallel by writing Map and Reduce functions through high-level languages
such as Java.

2.2 Supporting DBMS functionality in MapReduce

We discuss on the existing methods supporting partial functionality of the DBMS in MapRe-
duce. These methods implement only some specific functionality of the DBMS. (1) There
have been several efforts for supporting high-level query languages (e.g., SQL). High-level
query languages provide a higher expressive power than MapReduce, and consequently,
allow us easy application development and maintainance [33]. Thus, techniques have been
proposed for managing parallel tasks in MapReduce using high-level languages. Specifi-
cally, they transform a user query into an equivalent MapReduce job and return the results
obtained by MapReduce to the user. Representative systems include Pig [26], Hive [30],
SCOPE [5], Tenzing [7], and SQL/MapReduce [14]. (2) There have been efforts for support-
ing indexes in the DFS. Hadoop++ [12] and HAIL [13] are the representative systems. (3)
There have been efforts for supporting transactions in distributed environments for MapRe-
duce. PNUTS by Yahoo! [8] provides a relaxed consistency, called eventual consistency, to
reduce the overhead of maintaining strong consistency in distributed environments. Brant-
ner et al. [3] have proposed a storage system that supports transactions on top of Amazon S3
system.2 (4) There have been other related work. Blanas et al. [2] have proposed a method
for supporting join operations in MapReduce. Herdotou et al. [21] have proposed a method
for tuning job parameters of MapReduce by applying cost-based query optimization tech-
niques commonly used in the DBMS. Jahani et al. [22] have proposed a method for finding
the optimal query plan by applying query plan optimization techniques used in the DBMS.

Most research efforts to support the DBMS functionality have been focused on support-
ing partial functionality as explained above. However, Pavlo et al. [27] have shown that
parallel DBMSs are more efficient than MapReduce for analytical tasks and have clarified
that their performance improvement is due to ‘full’ functionality of the DBMS.

HadoopDB [1] is the only effort to date for supporting full functionality of the DBMS in
MapReduce. Like MapReduce, HadoopDB uses the DFS to store data and uses the MapRe-
duce framework to parallelize operations. At the same time, HadoopDB also uses DBMSs
to store data and process queries. Specifically, HadoopDB partitions the data stored in the
DFS and loads them into the local DBMS of each slave node in a shared-nothing manner.
Then, it performs parallel processing in local DBMS units using the MapReduce framework.
Since HadoopDB uses the DFS and MapReduce framework, it is scalable and fault-tolerant.
It also inherits high-level functionality of the DBMS such as the schema, indexes, SQL, and
query optimization that help program MapReduce operations. Thus, HadoopDB is more
efficient than MapReduce. Abouzeid et al. [1] show by experiments that HadoopDB con-
sistently outperforms MapReduce by up to 1.2 ∼ 10 times. HadoopDB proposes a parallel
query processing method using SQL-to-MapReduce-to-SQL (SMS) planner where local
DBMSs work in parallel by MapReduce. The SMS planner takes a SQL query given by
the user and converts it to a MapReduce job, which consists of Map tasks containing SQL

2a distributed file system for Amazon cloud services
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subqueries against local databases. Thus, each Map task has its own SQL subquery to be
processed.

Odysseus/DFS is the first approach that supports scalability, fault-tolerance, and shara-
bility by using the DFS as the storage of the DBMS [23]. The goal of Odysseus/DFS is
to support NoSQL-scale scalability and fault-tolerance in the DBMS by integrating the
DBMS with the DFS. It supports the data update employing the new notion of the meta DFS
file [23]. A meta DFS file consists of multiple DFS blocks where overwrite and append can
be done in the unit of a DFS block.3 It also supports concurrency control through the dis-
tributed lock manager and recovery based on the log. In this paper, we use Odysseus/DFS
as the DFS-integrated DBMS.

The F1 DBMS [28] by Google has tried to support DBMS functionality such as SQL and
transactions on top of the key-value store. However, we cannot use F1 as the DFS-integrated
DBMS due to the following two reasons. (1) F1 does not support sharability of the entire
data when we use the system for analytics (i.e., processing a query in a ‘distributed query’
mode). That is, it partitions the entire data to multiple slaves in the shared-nothing manner,
and each slave process manages only its own partitioned data. (2) How much DBMS func-
tionality is provided by the F1 DBMS is not clear. It may very well inherit the drawbacks of
the key-value store such as lack of flexible indexes and difficulty in modeling many-to-many
relationships due to its hierarchical nature, and redundancy in data representation.

2.3 Parallel DBMSs for big data analytics

Major commercial DBMS vendors such as Oracle, IBM, and Microsoft and major open-
source software DBMS developer groups such as MySQL and PostgreSQL expanded their
own database engines to the shared-nothing massively-parallel processing (MPP) architec-
ture by developing specialized engines or by composing a specialized configuration for big
data analytics. The parallel DBMSs such as Aster Teradata, GreenPlum, Sybase, and Vertica
also have the shared-nothing MPP architecture [4]. The shared-nothing architecture mini-
mizes dependency between slave nodes so that each node has a high level of performance
and stability like a single-node DBMS [10]. The architecture is easy to scale up by just
adding new machines. However, using parallel DBMSs for big data analytics has limitation
since parallel DBMSs cannot take advantage of the DFS as an integrated storage providing
scalability, fault-tolerance, and load-balancing.

3 PARADISE: a new approach for big data analytics using an integrated
database in the distributed file system

3.1 Architecture

We propose a new approach for big data analytics using an integrated database in the DFS.
shows the architecture of PARADISE showing our approach.

In Figure 2, we use Hadoop MapReduce [17]. Here, the MapReduce TaskTracker com-
municates with the DBMS through the database connector, which is an interface that passes

3 A detailed description of a meta DFS file can be found in [23].
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Figure 2 The architecture of PARADISE

queries and query results to and from the DBMS. We also use a DFS-integrated DBMS
to store an integrated database in the DFS and to process queries. The SMS Planner con-
verts the SQL query given by the user to multiple SQL subqueries4 that can be processed
by the DBMSs in the slave nodes using logical splitting, which we present in detail in Sec-
tion 3.2. To operate a DFS-integrated DBMS, we should deploy DFS NameNode and DFS
DataNodes in the architecture. Here, we deploy DFS DataNode at the slave nodes and DFS
NameNode at the master node.

3.2 Logical splitting

3.2.1 The concept

In HadoopDB, when we convert the user query into multiple subqueries, we take advantage
of the physical partition of data. That is, each subquery is processed against the fragment
database stored in each local machine. However, in PARADISE, we cannot take advantage
of physical partition since we have an integrated database. Thus, we use logical splitting to
split the user query into multiple subqueries. The basic idea of logical splitting is to split
the query based on a particular attribute of a table involved in the query. We call the table to
split the target table and the attribute the split attribute. We use the clustering attribute or an
attribute used in the SQL predicate as the split attribute. The logical splitting first partitions
the range of the values of the split attribute and assigns each range to a different subquery,
and then, for each subquery, augment the WHERE condition of the original SQL query with
each range using the AND operation.

4 Each subquery is processed by a Map task.
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When a query is given, we choose an attribute from the target table as the split attribute
using the following criteria: (1) If the query contains a selection condition and there is an
index for the attribute used in the selection condition (i.e., selection attribute), we choose the
selection attribute as the split attribute. Since we have an index, we can efficiently access
only those selected rows. If there is more than one qualified selection attribute, we choose
the most selective one as the split attribute. (2) Otherwise (i.e., if the query does not contain
the selection condition or there is no index for selection attributes), we choose the clustering
attribute of the target table as the split attribute. In this case, the system must scan the entire
data of the target table, but each slave node can sequentially read a reduced range of the data.

3.2.2 Locality mapping

PARADISE maintains the database as an integrated one. However, since the database is
stored in the DFS, it is actually stored in many DFS DataNodes networked together. Thus,
if we are not careful during logical splitting, a subquery assigned to a specific node is likely
to access data stored in another node through the network—incurring inefficiency. Thus, to
efficiently process logical splitting, it is beneficial to store the data accessed by a subquery
in the very node that processes the subquery. For this purpose, we present the notion of
locality mapping.

Locality mapping allocates the subquery to the DFS DataNode that contains DFS blocks
needed for processing the subquery. We can use locality mapping only when the second
criteria of logical splitting is met, i.e., when the clustering attribute is chosen as the split
attribute. In this case, we guarantee that each slave node processing a subquery reads all
the DFS blocks from the local storage without incurring the network overhead of accessing
data in another node. Specifically, (1) we uniformly split the value range of the clustering
attribute of each table and assign them to slaves; (2) we store DFS blocks that are included
in the subrange assigned to each slave in the same slave; (3) we maintain the mapping
information in the master node as metadata; (4) we convert the user query according to
logical splitting using this mapping information so that each slave can process the subquery
by accessing the data stored in its own node. To process the step (2) above, the integrated
database in the DFS should support specific features such as: (1) managing a database as a
set of multiple partitioned DFS blocks and (2) the capability of storing particular DFS block
to the slave node where we desire.

We can guarantee locality of data by locality mapping only when the data is loaded
initially. That is, when the data is updated, we store them at an arbitrary slave node without
regard to its locality. However, data update is not a serious problem when we process queries
with locality mapping since (1) it does not influence correctness of the query processing
and (2) the performance is not significantly affected because of a relatively small fraction
of updated data.

3.2.3 The algorithm

Figure 3 shows the algorithm Logical Splitting. In Step 1, we choose the target table and
the split attribute. A target table is determined as follows. If a query involves only one table,
then it becomes the target table. If a query contains more than one table, we choose the
outermost table in the query plan as the target table. We then choose the split attribute of
the target table according to the criteria explained in Section 3.2.1. If the clustering attribute
has been selected as the split attribute, the flag, clustering flag, is set.
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Algorithm Logical Splitting: 
Input: (1) an SQL query Q

(2) # of Map tasks (subqueries) M 

Output: MapReduce Job J consisting of a set of Map tasks {Ti} (i.e., J = { T1, T2, … , TM }) 

Algorithm: 
Step1. Determine the split attribute SPA from the target table TT

1.1 If Q involves only one table T, TT := T
   Else /* Q involves more than one table */ 

TT := the outermost table of Q
1.2 If a selection condition on TT exists, and the selection attribute has an index, 

SPA := the most selective selection attribute of TT 

clustering_flag := FALSE

       Else 
SPA := the clustered attribute of TT

clustering_flag := TRUE

Step2. Split the values of SPA into ranges 
2.1 SPAmin := the minimum of SPA values;  SPAmax := the maximum of SPA values 
2.2 Uniformly split [SPAmin, SPAmax] to M subranges {S1, S2, …, SM} 

Step3.Generate SQL subqueries 
3.1 For i in [1, …, M] Do 

Qi := AND the condition ‘SPA in range Si’ to the predicate of Q 

Step4.Generate a MapReduce job 
/* A task T is composed of (Q, H), where Q is the subquery and H is the host address. */ 

4.1 If clustered_flag == FALSE, For i in [1, …, M] Do Ti := (Qi, RANDOM) 

/* ‘RANDOM’ means that an arbitrary host can process the task T. */

Else /* If clustered_flag == TRUE */ 

For i in [1, …, M] Do 
Hi := Search_metadata_for_data_location (Si)    

/* Search the metadata to find the host address of a slave node  
in which the data in Si reside */ 

Ti := (Qi, Hi) 
4.2 J := {T1 , T2, …, TM}

Figure 3 The algorithm for the logical splitting

In Step 2, we uniformly partition the value range of the split attribute into the number
of Map tasks.5 Each subrange becomes the predicate that limits the data to be accessed
by the particular subquery. This partitioning method could cause skew in load among the
slaves if the data distribution is not uniform. However, MapReduce performs load balancing
automatically in the unit of tasks when it assigns the tasks to the slaves. Thus, we resolve
the load balancing problem by using a much larger number of Map tasks compared to the
number of slave nodes6 as suggested by Dean et al. [9]. In Step 3, the system creates a

5This number is configurable by the user.
6Here, for efficient load balancing, the number of Map tasks is recommended to be set twice or three times
the number of slave nodes [9].



World Wide Web

SQL subquery for each Map task by ANDing the subrange condition to the predicate of
the original SQL query. In Step 4, we assign a subquery to each slave node, and then,
generate a MapReduce job. If the clustering flag is set, we assign a subquery to the node
that contains the DFS blocks to be accessed achieving locality mapping. Here, we use the
mapping information (metadata) stored in the master node. Example 1 illustrates the logical
splitting when the split attribute is a selection attribute; Example 2 when it is the clustering
attribute.

Example 1 Suppose we have the following database schema7 for Web page visit log,
PageRank of each page, and revenues from advertisement of each IP by date:

Suppose the UserVisits table has an index on visitTime. Consider the query that obtains
the average pageRank for each sourceIP from the UserVisits table from time from to time to.
Then, the SQL query is as follows:

Since this query contains an indexed selection on the visitTime attribute, visitTime is
chosen to be the split attribute. Since this query needs data from time from to time to, we
split only this range. Figure 4 shows the step by step description of the logical splitting in
processing the query. Here, Si represents the ith subrange, and Qi the subquery that reflects
Si . Typically, each slave in the MapReduce framework accesses data from one node since
this is the default option of MapReduce accessing data in the unit of one DFS block, which
resides in only one node. In PARADISE, however, to process a DBMS subquery, each slave
should be able to access data from any other slave node. The MapReduce framework allows
this option. �

Example 2 For the schema used in Example 1, suppose the UserVisits table has a clustering
index on visitDate. Consider a query that obtains the count of web page visits for each
sourceIP from the UserVisits table. Then, the SQL query is as follows:

Since the query does not contain a selection condition, we select visitDate, the clustering
attribute, as the split attribute. Figure 5 shows the step by step description of the logical

7This schema is the same as in Abouzeid et al. [1] except for normalizing the relations in the schema in order
to show a three-way join scenario.
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SQL query

SELECT sourceIP, AVG(pageRank) FROM UserVisits, Rankings WHERE destURL=URL AND 
visitTime BETWEEN time_from AND time_to GROUP BY sourceIP;

Split attribute

Split attribute: visitTime
Range: [time_from, time_to]

Step 1: Determine the split attribute and its range (Here, we choose a selection attribute as the split attribute)

Split range

# of Map tasks = M
S1 = [time_from=s0, s1), S2 = [s1, s2), S3 = [s2, s3), … , SM = [sM-1, sM=time_to]

Step 2: Split the range of values of the split attribute

SQL subqueries

Q1 = SELECT sourceIP, AVG(pageRank) FROM UserVisits, Rankings WHERE 
destURL=URL AND visitTime >= s0 AND visitTime < s1 GROUP BY sourceIP;

Q2 = SELECT sourceIP, AVG(pageRank) FROM UserVisits, Rankings WHERE
destURL=URL AND visitTime >= s1 AND visitTime < s2 GROUP BY sourceIP;

...
QM = SELECT sourceIP, AVG(pageRank) FROM UserVisits, Rankings WHERE

destURL=URL AND visitTime >= sM-1 AND visitTime < sM GROUP BY sourceIP;

Step 3: Generate SQL subqueries by ANDing Si to the predicate of the query

Step 4: Run Map tasks by the MapReduce framework

Map Task 1
(processing Q1)

Map Task 2
(processing Q2)

Map Task 3
(processing Q3)

Map Task M
(processing QM)

Records of the UserVisits table

Node 1 Node 2 … Node M

...

Page accesses through the network

Figure 4 A step-by-step description of Example 1

splitting processing the query. Thanks to locality mapping, each slave accesses DBMS pages
only locally during processing the subquery assigned to itself. �

3.3 Strengths of PARADISE compared to HadoopDB

In this section, we explain how PARADISE effectively overcomes the drawbacks of
HadoopDB.

First, PARADISE does not require re-loading since it provides sharability for the entire
database. In contrast, HadoopDB requires re-loading of the entire database when it cannot
use the current snapshot stored in local databases since HadoopDB partitions data based on a
specific attribute to process a join so as to prevent internode communication. Thus, in order
to process a two-way join, the entire data should be partitioned by the join attribute before
it is processed. Hence, in order to process a two-way join on a non-partitioned attribute, the
entire database must be re-partitioned and re-loaded (simply, re-loaded) from the DFS to
local databases. The experiments performed by Abouzeid et al. [1] show that it takes a few
hundred seconds in processing a specific query, but it takes tens of thousands of seconds
in partitioning and re-loading the database. This means re-loading could cause significant
performance degradation. Example 3 shows this situation.
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SQL query

SELECT sourceIP, COUNT(*) FROM UserVisits GROUP BY sourceIP;

Split attribute

Split attribute: visitDate (the clustering attribute of UserVisits table)
Range: [min, max]    (the minimum and the maximum of the clustering attribute)

Step 1: Determine the split attribute and its range (Here, we choose the clustering attribute as the split attribute)

Split range

# of Map tasks = M
S1 = [min=s0, s1), S2 = [s1, s2), S3 = [s2, s3), … , SM = [sM-1, sM=max]

Step 2: Split the range of values of the split attribute

SQL subqueries

Q1 = SELECT sourceIP, COUNT(*) FROM UserVisits 
WHERE visitDate >= s0 AND visitDate < s1 GROUP BY sourceIP;

Q2 = SELECT sourceIP, COUNT(*) FROM UserVisits 
WHERE visitDate >= s1 AND visitDate < s2 GROUP BY sourceIP;

...
QM = SELECT sourceIP, COUNT(*) FROM UserVisits 

WHERE visitDate >= sM-1 AND visitDate <= sM GROUP BY sourceIP;

Step 3: Generate SQL subqueries by ANDing Si to the predicate of the query

Step 4: Run Map tasks by the MapReduce framework

Map Task 1
(processing Q1)

Map Task 2
(processing Q2)

Map Task 3
(processing Q3)

Map Task M
(processing QM)

...

Records of the UserVisits table
s1 s2 s3 … sM-1 sM=maxmin=s0

Node 1 Node 2 Node 3 Node M
visitDate
attribute

Page accesses done locally

…

Figure 5 A step-by-step description of Example 2

Example 3 For the schema used in Example 1, consider Query 1 that obtains the average
pageRank of the Web pages visited by each sourceIP on a certain date and Query 2 that
obtains the sum of adRevenue for each sourceIP. Both are two-way join queries.

To process Query 1, we need to join the UserVisits table with the Rankings table. To pro-
cess Query 2, we need to join the UserVisits table with the AdRevenues table. HadoopDB
partitions data based on the attribute used in the join predicate. For example, to process
Query 1, UserVisits table should be partitioned based on the destURL attribute; to pro-
cess Query 2, the table should be partitioned based on the sourceIP attribute. Suppose the
UserVisits table has already been partitioned based on destURL to process Query 1. Then,
to process Query 2 we need to re-partition the table based on the sourceIP attribute and
re-load it. �

In contrast, in PARADISE, re-partitioning and re-loading the database is not needed.
Thus, query processing performance is significantly improved. For example, Query 1 and
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Query 2 in Example 3 can be continuously processed using the integrated database stored
in the DFS without re-loading. In Section 4.2.3, the performance results indicate that PAR-
ADISE outperforms HadoopDB by up to 6.41 times (or larger as the database size increases)
due to the re-loading overhead of HadoopDB.

Second, PARADISE can support more complex query types than HadoopDB.
HadoopDB does not support queries that require internode communication. Cartesian prod-
ucts and three-way joins are typical queries that are not supported. In order to support these
queries, some parallel DBMSs employs a broadcasting function for each node to distribute
its data to the other nodes. However, HadoopDB does not support the broadcasting function.
Example 4 shows a situation where internode communication is required together with an
example query that cannot be processed by HadoopDB.

Example 4 Consider Query 3 that obtains the average pageRank and the sum of adRevenue
for each sourceIP from the UserVisits table for the schema in Example 1. Query 3 is a
three-way join.

Since HadoopDB does not allow internode communication, Query 3 can be processed
only by re-partitioning and re-loading the database. To process Query 3, we need to join the
UserVisits table with the Rankings table via destURL attribute and join it with the AdRev-
enues table via sourceIP and visitDate attributes. In HadoopDB, to do the former join, we
must partition the UserVisits table based on the destURL attribute; to do the latter join we
must partition the UserVisits table based on the sourceIP or visitDate attribute. However,
since it is impossible to partition a table based on two different attributes simultaneously,
HadoopDB cannot process the query effectively. �

In contrast, PARADISE can process all the query types including Cartesian product
or three-way joins since the data in the DFS are treated as one integrated database. For
example, Query 3 in Example 4 can be processed in PARADISE.

3.4 Performance overheads of PARADISE compared to HadoopDB

In this section, we discuss the performance overheads of PARADISE compared to
HadoopDB when processing the queries that do not require re-loading of the database.
While HadoopDB can process those queries simply by accessing data locally, PARADISE
does so by accessing the DFS. In the DFS, the DBMS that processes a query is likely to
reside in a slave node different from the slave node that physically contains the data to be
accessed. Overheads are incurred due to this mismatch. We classify them into three types:
(1) disk arm contention overhead, (2) network transfer overhead, and (3) network bottle-
neck overhead. We explain these overheads in detail; we analyze them through extensive
experiments in Section 4.3.

The disk arm contention overhead is caused by disk arm contention when DFS I/O
requests are concentrated on a specific slave node. The DBMS in an arbitrary slave node
can request a DFS I/O to any node. Hence, multiple DBMSs could simultaneously request
an I/O request to a specific slave node, causing disk arm contention and queuing delay. This
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overhead is contrasted with that in HadoopDB where I/O operations for query processing
are confined only to the local database exclusively accessed by the local DBMS.

The network transfer overhead is incurred whenever an I/O request is made to the DFS,
requiring data (including metadata) access through the network. A DFS Client accesses
metadata in the DFS NameNode, requests the corresponding DFS block to a DFS DataN-
ode, and then, the DFS DataNode transmits the DFS block to the DFS Client. These actions
incur network transfer delay. Naturally, the network transfer overhead is proportional to the
number of I/O requests to the DFS since each I/O request incurs a constant delay. For exam-
ple, when we access large data sequentially, this overhead is minimized since sequential
access incurs only a few I/O requests. On the other hand, when we randomly access data,
this overhead is heavily incurred since random access incurs a number of I/O requests.

The network bottleneck overhead is caused by insufficient network speed. In general,
the network speed (typically, about 80MB/s) is not as fast as the average disk transfer rate
(typically, 120MB/s), and thus, the system cannot fully take advantage of the disk transfer
rate, causing performance degradation.8 We note that this overhead is incurred mainly when
we sequentially access data. (i.e., when we are exploiting the maximum transfer rate of the
disk.) In contrast, when we access data randomly, the disk speed slows down by excessive
movement of the disk arm. Therefore, the disk speed does not become faster than the net-
work speed so that this overhead becomes minimal. We also note that this overhead is not
a fundamental one. Just using a network switch faster than the disk transfer rate solves the
problem. Since the network speed evolves at a rate almost the same as or faster than that of
the disk transfer rate9 [25], this overhead would not be a serious factor in the future.

4 Performance evaluation

4.1 Experiment setting

In this section, we present the experiments that compare the query processing performance
of three systems: HadoopDB, PARADISE, and the ‘Hadoop system’ that consists of HDFS,
Hbase, and Hadoop MapReduce for big data analytics. In the experiments, we use the fol-
lowing queries for big data analytics: scan, aggregation, selection, and join. In order to set
up the systems, we use a cluster of nine nodes: one master and eight slaves. Each node
consists of 3.2GHz Intel Quad-Core CPU, 8GB RAM and one 1TB hard disk. Nodes are
connected by 1Gbps network switches. The average transfer rate of hard disk is 120MB/s.
The average network transfer rate is 80MB/s. In the case of HadoopDB, there is one local
database for each slave node; thus, there are eight local databases in the cluster.

We use the same DBMS for both PARADISE and HadoopDB10 for fair compari-
son. We use the Odysseus [31, 32, 34] DBMS for this purpose. For PARADISE, we use
Odysseus/DFS [23], the DFS-integrated version of the Odysseus DBMS. We use Hadoop
version 1.0.3, which consists of two core subsystems: HDFS and Hadoop MapReduce [18].

8The average transfer rate of contemporary local storage reaches more than 120MB/s and is constantly
increasing. Even though the theoretical network speed of 1Gbps switch is 128MB/s, the actual maximum
transfer rate is about 80MB/s due to header(non-payload) transfer [35].
9It is known that disk transfer rate doubles approximately in 24 months; network speed approximately in 18
months [25].
10Since HadoopDB is not released in public, we implemented it according to the architecture described
in [1].
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dfs.datanode.max.xcievers = 4096
mapred.map.tasks.speculative.execution = false
mapred.reduce.tasks.speculative.execution = false
mapred.tasktracker.map.tasks.maximum = 1
mapred.tasktracker.reduce.tasks.maximum = 1

Figure 6 The configuration of HDFS and MapReduce

CREATE TABLE Rankings ( pageURL VARCHAR(100)
PRIMARY KEY, pageRank INT, avgDuration INT );

CREATE TABLE UserVisits ( sourceIP VARCHAR(16),
destURL VARCHAR(100), visitDate DATE,
adRevenue FLOAT, userAgent VARCHAR(64),
countryCode VARCHAR(3), languageCode VARCHAR(6),
searchWord VARCHAR(32), duration INT );

CREATE INDEX rankings pageurl index ON Rankings (pageURL);

CREATE INDEX uservisits visitdate index ON UserVisits (visitDate);

Figure 7 The schema of the database used in the experiments.

The configuration of HDFS and MapReduce is based on the defaults with some varia-
tions described in Figure 6. Specifically, in HDFS, the maximum number of connections
was set to be 4096 (default 256) in order to respond to multiple page accesses requested
from the DBMSs. In MapReduce, the speculative execution flag was set to false in order to
avoid running a task in more than one slave node simultaneously, and the maximum task
parameter was set to 1 in order to avoid running more than one task in a single slave node
simultaneously. We use Hbase version 0.94.7. Hbase is also configured using the defaults.

We implemented the Database Connector, the Data Loader, and the Catalog of
HadoopDB as described in Abouzeid et al. [1]. The Database Connector is common to
both PARADISE and HadoopDB while the Data Loader and the Catalog are used only for
HadoopDB. The SMS planner for HadoopDB was implemented as specified by Abouzeid
et al. [1], and that for PARADISE was implemented as explained in Section 3.2. All the
subsystems listed above was implemented in Java.

In the experiments, we have used the synthetic data generated by Pavlo et al. [27].11 Its
schema is similar to that in Example 3. In Example 3, we have normalized the original
UserVisits table to show a three-way join scenario; here, we use the original table itself
without normalization. There are 37 million tuples for the Rankings tables and 155 million
tuples for the UserVisits table. The schema of the database is described in Figure 7. An index
is created on the pageURL attribute of the Rankings table, and one on the visitDate attribute
of the UserVisits table. For Hbase, we store each value in a tuple by using a combination
of a row key, column key, and value. In other words, to store a value, we assign an integer
tuple identifier to each tuple using it as the row key and use the attribute name of the value
as the column key. Since Hbase does not have DBMS functionality, we cannot use certain
features in Hbase. For example, we cannot create an index in Hbase since it does not support
a secondary index. In addition, the clustering of data in Hbase is fixed on the row key (the
tuple identifier), while we can cluster tuples of a table on an arbitrary attribute in HadoopDB
or PARADISE so that we can observe the effect of clustering.

11This data set was used by Abouzeid et al. [1] to show the performance of HadoopDB.
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Scan (grep): SELECT * FROM UserVisits
WHERE destURL LIKE ‘%foo%’;

Aggregation: SELECT sourceIP, SUM(adRevenue)
FROM UserVisits GROUP BY sourceIP;

Selection: SELECT sourceIP, adRevenue, visitDate
FROM UserVisits WHERE visitDate
BETWEEN ‘20000110’ AND ‘20000125’;

Join: SELECT sourceIP, AVG(pageRank), SUM(adRevenue)
FROM Rankings AS R, UserVisits AS UV
WHERE R.pageURL = UV.destURL AND
UV.visitDate BETWEEN ‘20000115’ AND ‘20000122’
GROUP BY sourceIP;

Figure 8 The SQL queries used in the experiments

To experiment with HadoopDB, we partition and load the data in the DFS to eight local
databases. As was done by Abouzeid et al [1], we partition the UserVisit table based on the
destURL attribute and the Rankings table based on the pageURL attribute.12 Figure 8 shows
the SQL queries13 processed by both PARADISE and HadoopDB for the experiments. We
also hand-wrote the equivalent MapReduce programs for the Hadoop system. Queries used
by Abouzeid et al. [1] have two aggregation queries: large and small, representing the num-
ber of groups in the results of the queries. In the paper, however, we present the results of
only large queries since two results have a similar tendency.

The query processing time is the elapsed time of each MapReduce job, which can be
measured using the MapReduce Administration Tool. We average the elapsed times of five
identical executions of each query. In order to obtain consistent results, we flush the DBMS
buffers, O/S file buffers, and disk buffers before executing each query. In other words,
we conduct all the experiments in cold start. To represent the performance of PARADISE
compared with that of HadoopDB, we define the overhead as shown in Equation (1).

overhead = T (PARADISE)−T (HadoopDB)
T (HadoopDB)

T (X) : elapsed time of the system X.
(1)

4.2 Performance results

4.2.1 Results of scan (grep) and aggregation queries

Figure 9 shows the performance results of scan (grep) and aggregation queries. The queries
are based on the UserVisits table. Scan and aggregation read the entire data. For HadoopDB
and PARADISE, we choose the destURL attribute to cluster the UserVisits table. The results
are shown in Figure 9. ‘PARADISE (w/o locality mapping)’ in the figure indicates the
performance of PARADISE that does not utilize the locality mapping feature described
in Section 3.2.2; ‘PARADISE’ in the figure utilizes locality mapping. We can show the
effectiveness of locality mapping in the experiments. PARADISE(w/o locality mapping)
is 38∼46 % slower than HadoopDB for scan and aggregation queries due to overheads of

12In scan (grep), aggregation, and selection queries, whichever attribute is used for partitioning does not
affect the results. However, in a join query, data should be partitioned based on the join attribute, e.g., the
attributes destURL and pageURL in Figure 9.
13This SQL queries are the same as used by Abouzeid et al. [1].
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Figure 9 Results of scan (grep), aggregation queries

accessing data through the DFS as explained in Section 3.4. We will analyze these overheads
incurred during sequential access in detail in Section 4.3.1. However, in PARADISE, scan
and aggregation queries show almost no degradation compared to HadoopDB since locality
mapping allows reading all the data needed from the local DFS DataNode, obviating all
the overheads of PARADISE over HadoopDB. We also showed that the Hadoop system is
3.1∼14.7 times slower than HadoopDB and 3.0∼14.6 times slower than PARADISE. The
reason for this slowdown is due to the columnar storage of Hbase incurring random disk
access during scan.

4.2.2 Results of the selection query

Figure 10 shows the performance results of selection queries using the UserVisits table.
The experiments consider two cases: the selection attribute (visitDate) is (1) a clustering
attribute, (2) a non-clustering attribute. The results are as follows. (1) In the former, we
do not find any notable performance difference between PARADISE and HadoopDB since
all the access to data is done sequentially. We omitted experiments for the Hadoop system
since it cannot cluster data on the attribute desired. (2) In the latter, PARADISE incurs
123 % overhead compared to HadoopDB since random access to data causes the overheads
discussed in Section 3.4. We will analyze these overheads incurred during random access
in detail in Section 4.3.2. We also showed that the Hadoop system is 13.6 times slower than
HadoopDB due to lack of secondary indexes in the Hadoop system, incurring a full data
scan.

4.2.3 Results of the join query

Figure 11 shows the performance results of the join query. We use the same join algo-
rithm for PARADISE and HadoopDB, i.e., a nested-loop join algorithm that is supported by
Odysseus DBMS. To compose an experiment with a reasonable processing time, we assume
that the outer table of the join query has a selection predicate. Thus, the join query used in
the experiment has a join predicate and a selection predicate for the outer table as shown in
Figure 8. Thus, the query processor first evaluates the selection predicate for the outer table
and, for each qualified tuple in the outer table, traverses the tuples of the inner table that
match the join attribute value. We have performed the following two experiments: (1) the
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clustering case and (2) the non-clustering case. For the former, the outer table is clustered
on the selection attribute, and the inner table is clustered on the join attribute. For example,
for the join query described in Figure 8, the UserVisits table is clustered on the visitDate
attribute, and the Rankings table on the pageURL attribute. We omitted experiments in the
Hadoop system in this case since it cannot cluster data on the attribute desired. For the lat-
ter, each table that participates in the join query is clustered neither on the join attribute nor
on the selection attribute. In the experiments for HadoopDB, which need prior partition-
ing of the entire database into local databases, data are (should be) partitioned on the join
attributes.

We observe the following from the experiments:

– Figure 11 shows that the overhead of PARADISE in the join query is 87 % for the
clustering case and 69 % for the non-clustering case. We observe that the overhead of
PARADISE in the join query for the clustering case (87 %) is much larger than that
of the selection query for the clustering case (close to 0 %) in Figure 10. We have this
phenomenon since we cannot take advantage of sequential access in the inner table
due to the nested-loop join used; i.e., random access occurs in the inner table for both
PARADISE and HadoopDB, and PARADISE suffers more in performance in random
access as shown in Figure 10. In contrast, the overhead of the join query in the non-
clustering case (69 %) is smaller than that of the selection query in the non-clustering
case (123 %) in Figure 10. This overhead reduction is due to the buffering effect. That
is, in processing the join query, if the outer table finds the tuples from the inner table
that have already been retrieved before, the buffering becomes effective.

– Figure 11 also shows that the Hadoop system is 13.5 times slower than HadoopDB.
Since the Hadoop system cannot create a secondary index, a full data scan is needed
when processing join.

4.2.4 Join performance of HadoopDB with re-load

When processing join queries, in cases where HadoopDB cannot use the current snapshot of
the database in the local databases, its performance degrades significantly since re-loading
is required. The elapsed time for re-loading consists of (1) the time for sorting & partitioning
the original data, (2) the time for loading the partitioned data to local databases, and (3) the
time for index creation. In our experiments, it takes 2,760 seconds for step (1), 193 seconds
for step (2), and 127 seconds for step (3). In total, the elapsed time for re-loading is 3,080
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seconds. In addition, the elapsed time for join query processing in the clustering case is 146
seconds as shown in Figure 11. Hence, the total processing time of the join query with re-
loading in HadoopDB is 3,080+146 = 3,226 seconds as shown in Figure 11. As we observe
in this experiment, re-loading in HadoopDB is a very time-consuming operation, taking
95 % of the total processing time. This indicates that the need for re-loading is one of the
most significant drawbacks of HadoopDB.

In contrast, re-loading is not required in PARADISE. Even in the worst case where PAR-
ADISE cannot take advantage of clustering, the join query processing takes 503 seconds as
shown in Figure 11. Therefore, PARADISE outperforms HadoopDB in processing the join
query by up to 6.41 times when re-loading is required for HadoopDB, and this advantage
gets bigger as the size of the database grows.

4.3 Analysis of performance overhead

We analyze the overheads incurred in PARADISE by performing queries in a controlled
workload. Here, we analyze the overheads in the case of pure sequential access14 and in the
case of pure random access. We run a simple counting query using the UserVisits table
(i.e., ‘SELECT COUNT(*) FROM UserVisits;’) for sequential access; we run a
selection query on a non-clustering attribute using the UserVisits table (i.e., ‘SELECT
* FROM UserVisits WHERE visitDate BETWEEN ‘20000110’ AND
‘20000125’;’ for random access.

The usual setting of the experiment would incur all three types of overheads that we
discussed in Section 3.4: disk arm contention overhead (simply, OHdisk−arm), network
transfer overhead (simply, OHnet−transf er ), and network bottleneck overhead (simply,
OHnet−bottleneck). Here, we assume that the effect of the three types of overheads are mutu-
ally independent. In order to delineate the impact of each type of overhead, we control the
setting as follows. First, to remove the disk arm contention overhead, the entire query is
processed in a single slave node (simply, in 1-node). Second, to remove the network bot-
tleneck overhead, we employ O/S level throttling15 of the disk transfer rate. We perform

14Here, to observe the specified overheads, we do not utilize locality mapping features.
15To throttle disk transfer rate at the O/S level, type to shell: echo “253:3 52428800” >

/sys/fs/cgroup/blkio/blkio.throttle.read bps device. Here, 253:3 means the “major:minor” number of the
device in the UNIX system, and 52428800 means the maximum limit of the disk transfer rate in bytes/sec.
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Figure 12 Overhead analysis using controlled workloads

experiments in both throttle and no throttle cases. With the throttle set, we artificially con-
trol the disk transfer rate so that the network speed is sufficiently faster than the disk transfer
rate. Hence, the experiments with the throttle set are to test the query without the network
bottleneck overhead while those without are to test the query with the overhead.

Figure 12 represents the overhead types that actually occur in each controlled workload.
In workload (A), all the three types of overhead occur; thus, the overhead for workload
(A) is obtained as OHnet−transf er × OHnet−bottleneck × OHdisk−arm. For workload (B),
since the query is processed in 1-node, OHdisk−arm does not occur; thus, the overhead for
workload (B) is obtained as OHnet−transf er × OHnet−bottleneck. For workload (C), since
the query is processed in 1-node under the throttle mode, OHnet−bottleneck and OHdisk−arm

do not occur; thus, the overhead for workload (C) is OHnet−transf er . As a result, we obtain
the following equations for computing the overheads.

•OHnet−transf er = (C) (2)

• OHnet−bottleneck

= OHnet−transf er × OHnet−bottleneck / OHnet−transf er

= (B) / OHnet−transf er (3)

• OHdisk−arm

= OHnet−transf er × OHnet−bottleneck × OHdisk−arm

OHnet−transf er × OHnet−bottleneck

= (A) / OHnet−transf er / OHnet−bottleneck (4)

4.3.1 Pure sequential access

In Figure 13a, we show the ‘non-controlled’ performance of the simple counting query,
representing the workload (A) defined in Figure 12; we also show controlled performance
of the same query in the <1-node, no throttle> and <1-node, throttle> cases representing
workloads (B) and (C) defined in Figure 12, respectively. Using (2) ∼ (4), we obtain each
type of overhead from the experimental results shown in Figure 13a.
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Figure 13 Results of controlled workloads for analyzing overheads

– The overhead in the workload (C) is almost 0 %16 from Figure 13(a). Therefore, the
network transfer overhead is 0 % from (2), and we conclude that simple counting (i.e.,
pure sequential access) incurs almost no network transfer overhead. This result is obvi-
ous since sequential access incurs only a few DFS I/O requests constituting network
transfer overhead.

– The overhead in the workload (B) is 26.8 % as in Figure 13a. Thus, the network bot-
tleneck overhead is 26.8 % (i.e., 1.268/1.0 = 1.268) from (3). As we mentioned earlier
in Section 3.4, in sequential access, the network speed is slower than the disk speed,
incurring a certain amount of network bottleneck overhead.

– The overall overhead of the simple counting (i.e., the workload (A)) is 98.2 % as shown
in Figure 13a. Thus, the disk arm contention overhead is 56.3 % (i.e., 1.982/1.0/1.268
= 1.563) from (4). This overhead depends on the number of subqueries that are con-
currently processed in the same slave node and the number of disks (i.e., the number of
disk arms) in the slave node.

4.3.2 Pure random access

In Figure 13b, we show the ‘non-controlled’ performance of the selection query on a non-
clustering attribute, representing the workload (A) defined in Figure 12; we also show
controlled performance of the same query in the <1-node, no throttle> and <1-node,
throttle> cases representing workloads (B) and (C) defined in Figure 12, respectively. Using
(2) ∼ (4), we obtain each type of overhead from the experimental results shown in Figure
13b.

– The overhead in the workload (C) is 50.6 % from Figure 13(b). Therefore, the network
transfer overhead is 50.6 % from (2).

– The overhead in the workload (B) is 50.6 % as in Figure 13b. Thus, the network bottle-
neck overhead is almost 0 % (i.e., 1.506/1.506 = 1.0) from (3), and we conclude that
selection on a non-clustering attribute (i.e., pure random access) incurs almost no net-
work bottleneck overhead. This result is obvious since the data rate retrieved from disk
for random access is far less than the network speed.

16The results are measured in a unit of a second. Therefore, in this case, we cannot find out the network
transfer overhead effectively because the delay incurred by the network transfer is much less than a second.



World Wide Web

– The overall overhead of the selection query on a non-clustering attribute (i.e., the
overhead in the workload (A)) is 123 % as shown in Figure 13b. Thus, the disk arm
contention overhead is 48 % (i.e., 2.23/1.506/1.0 = 1.48) from (4).

4.4 Comparison of performance

According to the experiments, PARADISE is much more efficient than HadoopDB in the
case of join queries with re-load. Specifically, in this case, the performance of PARADISE
outperforms HadoopDB by up to 6.41 times. This performance improvement would be
much larger as the database size grows since the time for data loading linearly increases in
the database size while the time for query processing increases logarithmically thanks to the
use of the DBMS indexes.

When HadoopDB does not need re-loading, the performance of PARADISE is degraded
by 0 % ∼ 123 % compared to HadoopDB due to the three types of overheads described
in Section 3.4. Specifically, for the scan query, aggregation query, or selection query
on the clustering attribute where sequential access is prevalent, PARADISE does not
have any notable overheads compared to HadoopDB. For the selection query on the
non-clustering attribute where random access is prevalent, PARADISE has 123 % of
the overhead compared to HadoopDB; for the join query in the clustering and non-
clustering cases, PARADISE has 87 % and 69 % of the overheads, respectively, compared to
HadoopDB. Nevertheless, we claim that these overheads are modest in the light of excellent
advantages—sharability, no need for re-loading, support of complex query types includ-
ing three-way joins—of PARADISE that stem from the integrated database described in
Section 3.3.

To delineate each type of overhead, we have analyzed the performance of the selec-
tion query on a non-clustering attribute. As a result, we have obtained that the network
transfer overhead is 50.6 %; the network bottleneck overhead 0 %; the disk arm contention
overhead 48 % in the selection query. In contrast, in the case of a selection query on a clus-
tering attribute, we note that there is no overhead. We also note that the disk arm contention
overhead can be reduced by assigning more disks in each slave effectively.

5 Conclusions

In this paper, we have proposed a new parallel processing approach for big data ana-
lytics, PARADISE, that uses an integrated database in the DFS. PARADISE uses the
DFS-integrated DBMS as a base storage to support sharability of the entire data. The con-
tributions of the paper are as follows. First, we have identified drawbacks of HadoopDB,
which to date is the only method that directly uses the DBMS for big data analytics, and
have shown that how PARADISE effectively resolves them. Specifically, (1) PARADISE
outperforms the query performance of HadoopDB by up to 6.41 times when re-loading is
required, and the advantage gets bigger as the database size grows; (2) PARADISE sup-
ports more complex query types, such as 3-way join and Cartesian product queries, than
HadoopDB does. Second, we have proposed logical splitting as the job splitting method
when using the DFS-integrated DBMS. Logical splitting enables efficient parallel query
processing in an integrated database. Furthermore, we have proposed the notion of locality
mapping for further optimization of logical splitting. Third, we have analyzed three types
of performance overheads of PARADISE compared to HadoopDB through extensive exper-
iments: (1) disk arm contention overhead, (2) network transfer overhead, and (3) network
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bottleneck overhead. We note that our method of analyzing the performance can be applied
not only to PARADISE but also to any other applications that concurrently access the DFS
in multiple nodes.
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