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A B S T R A C T

The universal relation model allows us to find the results on a virtual relation that joins all the
relations in a relational database if the user specifies only selection and projection conditions. It
automatically finds actual relations in which the selection and projection conditions are
performed and possible join paths among the relations using the database schema. When there
are cycles in the database schema graph, however, the universal relation model may lose some
results since it adds an unintentional condition to the interpretation of a query. Here, the
unintentional condition is an equality condition that intersects multiple query interpretations by
different join paths, and thus, it returns only part of the results that the user intends. This paper
proposes a new semantic structure, maximal object+, that completely removes cycles in a
universal relation. A maximal object+ is a largest acyclic connected component in the database
schema graph where the entire set of relations in the component has the lossless join property.
Here, the important point is that a maximal object+ allows only the lossless join property
indicated by functional dependencies excluding the lossless join property indicated by only
multivalued dependencies. To show the advantage of a maximal object+, we compare the
effectiveness of the query processing method based on maximal object+ with that of the existing
query processing method based on the maximal object by performing experiments on the
synthetic and real datasets. As a result, we show that our method significantly outperforms the
one based on the maximal object in terms of mean recall when a cycle exists in a maximal object
while maintaining comparable efficiency. Specifically, our method improves the mean recall by
up to 8.15 times for the dataset whose schema involves cycles.

1. Introduction

The user of a relational database normally writes a query in Structured Query Language (SQL) to extract information from the
database. Here, the user should specify the relations to access and the relationships among those relations (i.e., join paths). For this,
the user must know the database schema. This constraint degrades the usability of a database when the schema of the database is
complex [12]. To improve the usability of relational databases, the universal relation model [6] has been proposed. The universal
relation model finds the results on a virtual relation that joins all the relations in a relational database if the user specifies only
selection and projection conditions [6]. Fig. 1(a) shows the schema of the BANK database. The schema graph has a cycle if we ignore
the directions of the edges. From now on, we use the term “cycle” for a cycle obtained by ignoring the directions of the edges of a
graph. Here, the attributes underlined by a straight line represent primary keys; the attributes underlined by a dotted line foreign
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keys. Fig. 1(b) shows the schema graph of the BANK database. Fig. 1(c) shows the schema of the universal relation for the BANK
database. Fig. 2 shows the query format of the Universal SQL (simply, USQL) [21] on the universal relation. Here, the user specifies
selection conditions in the where clause and projection conditions in the retrieve clause. attribute list consists of (a1, a2, ⋯, am)
where ai is an attribute. condition is a boolean expression that connects arithmetic expressions over attributes. Fig. 3 shows a query
example, Query1. The meaning of Query1 is that “Find the names of the banks where a customer whose name is ‘Smith’ is related”.

When using the universal relation model, the system should determine the join paths which are used together with the selection
and projection conditions in the query to interpret the user's intention correctly. Fagin et al. [6] have proposed a method, which we
call UR method, that finds all the possible join paths among the relations containing all the attributes used in the query (i.e.,
selection and projection conditions). When there are no cycles in the database schema graph, we have only one join path [6]; hence,
the UR method can interpret the user's intention correctly. For example, if we remove the Loan relation from the BANK database, the
UR method interprets Query1 as follows. The Customer relation contains Cname and the Bank relation contains Bname. Then, a join
path that connects the two relations isCustomer Account Bank− − . The UR method adds the join condition representing the join path
to the where clause of Query1, and thus, the where clause becomes “ where Customer Cid Account Cid. = . and
Account Bid Bank Bid. = . and Customer Cname. = ‘Smith’”. The interpreted meaning of Query1 is that “Find the names of the banks
where a customer whose name is ‘Smith’ has an account”.

When there are cycles in the database schema graph, however, the UR method proposed by Fagin et al. [6] cannot correctly
interpret users' intention. In this case, we have two or more join paths that connect the relations containing all the attributes used in
the query. Hence, we can interpret a query in multiple ways where a join path corresponds to an interpretation. For example, we can
interpret Query1 as two different join paths: 1) Customer Account Bank− − or 2) Customer Loan Bank− − . The former means that
“Find the names of the banks where a customer whose name is ‘Smith’ has an account’; the latter ”Find the names of the banks from
which a customer whose name is ‘Smith’ borrows some money”. However, due to the cycle, the UR method adds an equality
condition that intersects the two interpretations of the query. The join path for Query1 on the schema graph has a cycle:
Bank Loan Customer Account Bank− − − − . The where clause of Query1 that contains the join path as a join condition is “where
Customer Cid Account Cid. = . and Account Bid Bank Bid. = . and Customer Cid Loan Cid. = . and Loan Bid Bank Bid. = . and
Customer Cname. = ‘Smith’”. This interpretation of the query means that “Find the names of the banks where a customer whose

Fig. 1. The BANK database.

Fig. 2. The query format for the universal relation.

Fig. 3. Query1: a query on the universal relation for the BANK database.
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name is ‘Smith’ has an account and borrows money from”. The interpreted meaning is equivalent to the intersection of two
interpretations of the query by different join paths. That is, the ‘AND operation’ adds the following meaning to the interpretation of
the query: “the customer who has an account on a bank is the same as the customer who borrows money from the bank”, which is not
intended by the user. What the user would intend is “Find the names of the banks where a customer whose name is ‘Smith’ has an
account or borrows money from”. We call the ‘equality condition’ by the AND operation as the unintentional condition.

Maier et al. [15] have proposed the notion of the maximal object to remove cycles in universal relations. The maximal object is
the maximal set of relations where the set of relations has the lossless join property [15]. Maier et al. [15] have also proposed a new
method to interpret the query using the maximal object. First, it splits the schema graph into a set of maximal objects. Next, it
interprets the query on each maximal object. Finally, it unions the results obtained by evaluating the query on each maximal object.
Fig. 4 shows maximal objects for the BANK database. These maximal objects are obtained as follows.
R Customer Account Bank≔{ , , }set1 has the lossless join property; R Customer Loan Bank≔{ , , }set2 has the lossless join property.
Furthermore, R Loan∪ { }set1 does not have the lossless join property since neither R Loan R∩ { } →set set1 1 nor R Loan Loan∩ { } → { }set1
holds1 [26]. Also, R Account∪ { }set2 does not have the lossless join property since neither R Account R∩ { } →set set2 2 nor
R Account Account∩ { } → { }set2 holds [26]. Hence, since R R( )set set1 2 is a maximal set of relations that has the lossless join property,
R R( )set set1 2 is a maximal object mo1 (mo2). There are no cycles in the two maximal objects.

We show that, despite the intent of the maximal object, the maximal object cannot completely remove cycles in a universal
relation. Our work is the first that makes this observation. Existing works [15,17,21] do not consider this problem despite that it is a
serious problem. Fig. 5(a) shows the schema of the purchase database. Fig. 5(b) shows the schema graph and maximal objects for the
database. The set of all relations in the purchase database {Customer Item Nation Orders, , , } has the lossless join property. Hence, by
the definition of the maximal object, all relations in the set and all primary key-foreign key (simply, PK-FK) relationships connecting
those relations become a maximal object mo1. As the result, the maximal object has a cycle. We elaborate in detail on these cases
where the maximal object cannot remove cycles in Section 2.

We propose the maximal object+ that completely removes cycles in a universal relation. A maximal object+ is a largest acyclic
connected component in the database schema graph where the entire set of relations in the component has the lossless join property.
Here, the important point is that a maximal object+ allows only the lossless join property indicated by functional dependencies
(simply, FDs)2. That is, a maximal object+ does not allow the lossless join property that is not indicated by functional dependencies
but indicated by multivalued dependencies (simply, MVDs). The salient points of the maximal object+ are as follows. 1) It eliminates
the equality condition that the user does not intend. 2) It interprets the query not to generate the meaningless results by a lossy join
since it consists of the set of relations that has the lossless join property. 3) It does not generate Cartesian product results that are
incurred by multivalued dependencies since it allows only the lossless join property indicated by FDs.

To show the advantage of a maximal object+, we compare the effectiveness of the USQL query processing method based on the
maximal object+ with that of the existing USQL query processing method based on the maximal object [15] by performing
experiments on the synthetic and real datasets. As a result, we show that our method significantly outperforms the one based on the
maximal object in terms of mean recall, especially when a cycle exists in a maximal object while maintaining comparable efficiency.
Specifically, our method improves the mean recall by up to 8.15 times for the dataset whose schema involves cycles.

The technical contributions of the paper are as follows:

• We have identified for the first time that the maximal object may include a cycle.

• We have proposed a new semantic structure, called maximal object+, which completely removes cycles from a universal relation.

• We have shown that our method significantly outperforms the one based on the maximal object in terms of mean recall when a
cycle exists in a maximal object while maintaining comparable efficiency.

The rest of this paper is organized as follows. Section 2 presents our research goal and explains that the maximal object does not
satisfy the research goal. Section 3 proposes a maximal object+ that always removes cycles in the universal relation while the set of

Fig. 4. Maximal objects for the BANK database schema.

1 Cid Bid{ , } ( Cid Bid{ , }) is not the key of the Account (Loan) relation.
2 These notations will be further elaborated in Section 2.
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relations in a maximal object+ has the lossless join property indicated by FDs. Section 4 describes related work. Section 5 presents
the experimental results. Section 6 summarizes and concludes the paper.

2. Motivation

In this section, we describe our research goal and explain that the maximal object does not satisfy the research goal. We first
formally define the notation that is used throughout the paper.

Let us assume a universal relation that consists of a set of l attributesU A A A≔{ , , …, }l1 2 and a relational database D that consists
of a set of n relations R R R{ , , …, }n1 2 whereU R≔⋃i

n
i=1
3 holds. We denote a PK-FK relationship where a foreign key of Ri references a

primary key of Rj by R R→i j. Table 1 shows the notations used in the paper.
The goal of the paper is to propose a semantic structure that satisfies the following two conditions in the database schema graph:

1) the semantic structure does not contain (undirected) cycles; 2) the set of the relations in the semantic structure has the lossless
join property indicated by FDs. Condition 1 is required since a semantic structure containing a cycle adds an unintentional condition
to the interpretation of the query as explained in Section 1. Condition 2 is required since the join of relations in a set of relations that
does not have the lossless join property indicated by FDs but has the lossless join property indicated by MVDs generates Cartesian
product results. Here, {Ri, Rj} has the lossless join property indicated by FDs if and only if either R R∩i j

4 R R→( − )i j or
R R R R∩ → ( − )i j j i holds [26]; {Ri, Rj} has the lossless join property indicated by MVDs if and only if either R R R R∩ ↠( − )i j i j or
R R R R∩ ↠( − )i j j i holds [26]. We call Condition 1 the acyclic requirement and Condition 2 the FD-based losslessness requirement.

In Definition 1, we define the MVD connection. In Lemma 1, we prove that the semantic structure that does not have an MVD
connection and is a connected graph always satisfies Condition 2, i.e., the FD-based losslessness requirement.

Definition 1. An MVD connection is defined as a structure of R R R→ ←i j k on a schema graph. □

Lemma 1. If the schema graph for a set of the relations does not contain an MVD connection and is a connected graph, the set of
relations always has the lossless join property indicated by FDs with respect to F.

Proof. We prove the Lemma by mathematical induction.
(Base case) For three relations R1, R2, and R3, we have the following four cases for possible connections among the relations

based on PK-FK relationships: 1) R R R→ →1 2 3, 2) R R R← ←1 2 3, 3) R R R← →1 2 3, and 4) R R R→ ←1 2 3.
We show that cases 1, 2, and 3 represent the set of the relations has the lossless join property indicated by FDs with respect to F.

In contrast, case 4 represents an MVD connection so that the set of the relations has the lossless join property indicated by MVDs but
not by FDs with respect to F. In case 1, there is a PK-FK relationship from R1 to R2. Since R R∩1 2 contains the primary key of
R R R R R, ∩ → ( − )2 1 2 2 1 holds. Hence, {R1, R2} has the lossless join property indicated by FDs with respect to F [26]. In addition,
since there is a PK-FK relationship from R2 to R3, there is a PK-FK relationship from R R∩1 2 to R3. Hence, R R R{ , , }1 2 3 has the
lossless join property indicated by FDs with respect to F [26]. The same holds for case 2 since it is symmetric to case 1. In case 3,
since there is a PK-FK relationship from R2 to R1, {R1, R2} has the lossless join property indicated by FDs with respect to F. In
addition, since there is a PK-FK relationship from R2 to R3, there is a PK-FK relationship from R R∪1 2 to R3. Hence, R R R{ , , }1 2 3 has

Fig. 5. The schema, schema graph, and maximal objects for the purchase database.

3 R⋃i
n

i=1 represents the set of attributes that belong to relations R R R, , …, n1 2 .
4 R R∩i j represents the set of attributes that belong to both relations; R R∪i j the set of attributes that belong to either Ri or Rj.
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the lossless join property indicated by FDs with respect to F. In case 4, since there is a PK-FK relationship from R1 to R2, R R{ , }1 2 has
the lossless join property indicated by FDs with respect to F. However, there is no PK-FK relationship from R R∪1 2 to R3. In addition,
since there is a PK-FK relationship from R3 to R1. R R{ , }2 3 has the lossless join property indicated by FDs with respect to F. However,
there is no PK-FK relationship from R R∪2 3 to R1, either. Hence, R R R{ , , }1 2 3 does not have the lossless join property indicated by
FDs with respect to F. Meanwhile, both R R R↠( − )2 1 2 and R R R↠( − )2 3 2 hold for the following reason: since there is a PK-FK
relationship from R1 to R2 and R3 to R2, there is a one-to-many relationship from R2 to R1 and one from R2 to R3. Hence,
R R R{ , , }1 2 3 has the lossless join property indicated by MVDs [26].

(Hypothesis) For the schema graph of R R R R i= { , , ⋯, }( ≥ 3)set i1 2 where the schema graph is connected and does not have an
MVD connection, Rset has the lossless join property indicated by FDs with respect to F.

(Induction) We add another relation Ri+1 to Rset so as not to have an MVD connection. Then, the following two cases are possible:
a) connecting a relation R k i(1 ≤ ≤ )k in Rset to the relations in Ri+1 based on a PK-FK relationship and b) connecting Ri+1 to a relation
in Rset based on a PK-FK relationship. In the case a, whichever relation R k i(1 ≤ ≤ )k is connected to Ri+1, the relations in R R∪set i+1
does not have an MVD connection. Let us suppose that ∪S R= R R j∈j set . Since there is a PK-FK relationship from Rk to Ri+1, there is a
PK-FK relationship from S to Ri+1. Hence, R R R{ , , ⋯, }i1 2 +1 has the lossless join property indicated by FDs with respect to F. In the
case b, we need to connect Ri+1 to a relation Rd in Rset so as not to have an MVD connection. Then, Rd must be the one having a
directed path to every relation in Rset. Here, there is a PK-FK relationship from Ri+1 to Rd. In addition, for all
R R R R R R∈ { , , ⋯, }, →j i d j1 2 holds since Rd has a directed path to Rj. Therefore, the primary key of S is the same as that of Rd.
Since there is a PK-FK relationship from Ri+1 to Rd, there is a PK-FK relationship from Ri+1 to S. Therefore, R R R{ , , ⋯, }i1 2 +1 has the
lossless join property indicated by FDs with respect to F. □

Maier et al. [15] have proposed the maximal object to remove cycles in a universal relation. In Definition 2, we first present the
definition of the maximal object [15]. Then, we show that the maximal object does not always satisfy the acyclic requirement and FD-
based losslessness requirement.

Definition 2. [15] In a database D, a set of relations and PK-FK relationships among the relations
( R i l PK FK i j l{ , 1 ≤ ≤ }, { − , 1 ≤ , ≤ }i ij ) is defined as a maximal object if it satisfies the following two conditions: (1)
(maximality) R V R V G∄( )(( ( ) ∈ ( ))i i AND R R j l( ∉ { , 1 ≤ ≤ })i j AND ∪S R= k l k{1≤ ≤ } AND LOSSLESS S R( , )i ) (2)
PK FK i j l PK FK e R R R k l{ − , 1 ≤ , ≤ } = { − ( ) | , ∈ { , 1 ≤ ≤ }ij ij i j k AND G has an edge eij between V R( )i and V R( )j .}. For a maximal
object mo, we denote the set of all relations in mo as mo R. set and the set of all the PK-FK relationships as mo PK FK. − set . In addition,
we denote the set of all the maximal objects in D as MOset(D).□

Condition 1 of Definition 2 means that the set of all the relations in a maximal object is the maximal set of relations that has the
lossless join property. Here, if two input relations form a lossless join, the predicate LOSSLESS is true; otherwise, it is false. There are
three versions of LOSSLESS: 1) LOSSLESS R R( , )i j if and only if R R R R( ∩ ) → ( − )i j i j or R R R R( ∩ ) → ( − )i j j i (the “FDs only” rule), 2)
LOSSLESS R R( , )i j if and only if R R R R( ∩ )↠( − )i j i j or R R R R( ∩ )↠( − )i j j i (the “MVD only” rule), and 3) LOSSLESS R R( , )i j if and only if
(a) R R R R( ∩ ) → ( − )i j i j or R R R R( ∩ ) → ( − )i j j i or (b) R R R R R R( ∩ )↠( − )|( − )i j i j j i but NOT [ R R R R( − ) → ( ∩ )i j i j or
R R R R( − ) → ( ∩ )j i i j ]. The first version of LOSSLESS means that the set of two relations Ri and Rj has the lossless join property
indicated by FDs. The second version means that the set of two relations Ri and Rj has the lossless join property indicated by MVDs.
The third version means that the set of two relations Ri and Rj that has the lossless join property indicated by FDs or has the lossless
join property indicated by MVDs except those induced by FDs. Condition (2) of Definition 2 means that a maximal object contains all
the PK-FK relationships among the relations in the maximal object.

We show that the maximal object does not always satisfy the acyclic requirement and FD-based losslessness requirement. If we
use the second or third versions of the LOSSLESS predicate, the maximal object can contain an MVD connection since those
predicates allow a set of relations that has the lossless join property indicated by MVDs. Hence, we use the first version of the
LOSSLESS predicate to avoid a maximal object having an MVD connection.

Table 1
The notations.

Symbols Definitions

G A directed graph that models each relation in the database as a node and each PK-FK relationship as a directed edge
PK FK− ij The PK-FK relationship from Ri to Rj

Vi The node mapped to a relation Ri in G
Eij The edge mapped to PK FK− ij in G

V (G) The set of all Vi's in G
E (G) The set of all Eij's in G
R (Vi) The relation Ri mapped to Vi in G
V (Ri) The node Vi in G mapped to Ri

PK FK− (Eij) The PK-FK relationship PK FK− ij mapped to Eij in G

E (PK FK− ij) The edge Eij in G mapped to PK FK− ij

F The set of functional dependencies on the set of relations in a semantic structure that includes the functional dependencies among the
attributes in each relation and the ones among the relations. The functional dependencies among relations considered are only those
represented (i.e., implied) by the PK-FK relationships [8].
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Table 2 shows the number of an MVD connection and existence of cycles in a maximal object for a database schema graph. In
Case 1, there is no cycle or MVD connection in the database schema graph. In this case, by Lemma 1, the set of relations has the
lossless join property indicated by FDs. In this case, the set of all relations becomes one maximal object, having no cycles or MVD
connections.

In Case 2, there is no cycle and there are one or more MVD connections in the database schema graph. Let us consider n
relations. If there is one MVD connection, the relations are connected as
R R R R R R i n→ → ⋯ → → ← ← ⋯ ← (2 ≤ ≤ − 1)i i i n1 2 −1 +1 . Here, the MVD connection is R R R→ ←i i i−1 +1. Let us create a set
of relations R R: { }set1 1 . From R2 to Ri, we add a relation Rj ( j i2 ≤ ≤ ) to Rset1 one by one as long as R R∪ { }set j1 has the lossless join
property indicated by FDs. Then, Rset1 becomes R R R{ , , ⋯, }i1 2 . Likewise, let us create a set of relations R R: { }set n2 . From Rn−1 to Ri, we
add a relation Rj (n j i− 1 ≥ ≥ ) to Rset2 one by one as long as R R∪ { }set j2 has the lossless join property indicated by FDs. Then, Rset2
becomes R R R{ , , ⋯, }i i n+1 . The relations in Rset1 are connected as R R R→ → ⋯ → i1 2 and those in Rset2 as R R R← ← ⋯ ←i i n+1 . Since
the relations in R R( )set set1 2 do not have an MVD connection, R R( )set set1 2 has the lossless join property indicated by FDs by Lemma 1.
Here, if we add a relation Ri+1(Ri−1) to R R( )set set1 2 , the set does not have the lossless join property indicated by FDs for the following
reason. First, let us consider R R∪ { }set i1 +1 . Let ∪S R= R R k∈k set1 . Since there is no PK-FK relationship from a relation Rj ( j i1 ≤ ≤ ) in
Rset1 to a relation Ri+1, there is no PK-FK relationship from S to Ri+1. There is a PK-FK relationship from Ri+1 to Ri. However, since the
primary key of Ri is not the same as that of S, there is no PK-FK relationship from Ri+1 to S. Hence, neither S R S R∩ → ( − )i i+1 +1 nor
S R R S∩ → ( − )i i+1 +1 holds. Therefore, R R∪ { }set1 1 does not have the lossless join property indicated by FDs [26]. Likewise,
R R∪ { }set i2 −1 does not have the lossless join property indicated by FDs, either. As the result, since we cannot add any relations to Rset1
or Rset2, each one of Rset1 and Rset2 satisfies Condition (1) of Definition 2. Therefore, there are two maximal objects that do not have
MVD connections for the schema graph. One maximal object is Rset1 and the other one is Rset2. When there are n (≥2) MVD
connections, we obtain n + 1 maximal objects. Those maximal objects do not have an MVD connection.

In Case 3, there is a cycle in the database schema graph and there is no MVD connection in the cycle. In this case, the maximal
object for the database schema graph has a cycle. Here, the set of all relations in the cycle has the lossless join property indicated by
FDs. The reason is as follows. Suppose that the number of relations in one cycle is n. If there is no MVD connection in the cycle, the
relations are connected as R R R R→ → ⋯ → →n1 2 1. Since the relations in R R R{ , , ⋯ }n1 2 do not have an MVD connection,
R R R{ , , ⋯ }n1 2 has the lossless join property indicated by FDs by Lemma 1.

In Case 4, there is a cycle in the database schema graph and there is only one MVD connection in the cycle. In Case 2, we have already
shown that an MVD connection that is not in a cycle cannot be made part of a maximal object. Therefore, in Case 4, we deal with anMVD
connection only when it is in a cycle. In this case, the maximal object for the database schema graph has a cycle, and this cycle has an
MVD connection for the following reason. Suppose that the number of relations in the cycle is n. The relations are connected as
R R R R R R R i n→ → ⋯ → → ← ← ⋯ ← → (2 ≤ ≤ − 1)i i i n1 2 −1 +1 1 . The MVD connection is R R R→ ←i i i−1 +1. Here, let us consider
the set of all relations except the relation Ri that is contained in the MVD connection, R R R R R R: { , , ⋯, , , ⋯, }set i i n1 1 2 −1 +1 . Then, the
relations are connected as R R R R R← ⋯ ← → → → ⋯ →i n i+1 1 2 −1. Since the relations in Rset1 do not have an MVD connection, Rset1 has
the lossless join property indicated by FDs by Lemma 1. Let ∪S R= R R k∈k set1 . Since there is a PK-FK relationship from S to Ri, the set of all
relations in the cycle, i.e., R R∪ { }set i1 , has the lossless join property indicated by FDs.

Table 2
Maximal objects as the number of MVD connections and existence of cycles vary in a database schema graph.
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In Case 5, there is a cycle in the database schema graph and there are two or more MVD connections in the cycle. In this case, a
maximal object for the database schema graph has neither a cycle nor an MVD connection for the following reason. Suppose that the
number of relations in the cycle is n. If there are two MVD connections, the relations are connected as
R R R R R R R R i n→ ← ← ⋯ ← → ← ← ⋯ ← → (4 ≤ ≤ − 1)i i i n1 2 3 −1 +1 1 . Here, the MVD connections are R R R→ ←1 2 3 and
R R R→ ←i i i−1 +1. Here, we can find two sets of connected relations where the relations in each set do not have an MVD connection:
(1) R R R R: { , , ⋯, }set i1 2 3 and (2) R R R R R R: { , , ⋯, , , }set i i n2 +1 1 2 . The relations in Rset1 are connected as R R R R← ← ⋯ ← →i i2 3 −1 ;
those in Rset2 as R R R R R← ← ⋯ ← → →i i n+1 1 2. Since neither Rset1 nor Rset2 has an MVD connection, each set has the lossless join
property indicated by FDs by Lemma 1.

If we add R1 or Ri+1 (R3 or Ri−1) to R R( )set set1 2 , each set does not have the lossless join property indicated by FDs. The reason is as
follows. First, consider R R∪ { }set1 1 . Let ∪S R= R R k∈k set1

. S R S R∩ → ( − )1 1 does not hold since there is no PK-FK relationship from S
to R1. In addition, S R R S∩ → ( − )1 1 does not hold either since there is no PK-FK relationship from R1 to S due to the following reason.
There is a PK-FK relationship from R1 to R2. However, since R2 does not have a directed path to Rj, for all R R R∈ ( −{ })j set1 2 , the
primary key of R2 is not the same as that of S. Thus, there is no PK-FK relationship from R1 to S. Therefore, R R∪ { }set1 1 does not have
the lossless join property indicated by FDs [26]. Likewise, R R∪ { }set i1 +1 , R R∪ { }set2 3 , and R R∪ { }set i2 −1 do not have the lossless join
property indicated by FDs, either. Hence, since we cannot add any relations to Rset1 or Rset2, each set satisfies Condition (1) of
Definition 2. Therefore, there are two maximal objects that do not have an MVD connection for the schema graph; Rset1 and Rset2.
When there are n (≥2) MVD connections in the cycle, we obtain n + 1 maximal objects in a similar way. Those maximal objects do
not have a cycle nor MVD connection.

As shown in Table 2, a maximal object has a cycle in Cases 3 and 4. Examples 1 and 2 show an example of each case.

Example 1. Let us consider the geographic database in Fig. 6(a). In the database, the CityId attribute of the Country relation
represents the capital of a country; the ProvinceId attribute of the City relation the province where a city belongs; the CountryId
attribute of the Province relation the country where a province belongs. Fig. 6(b) shows the schema graph of the database. The
schema graph has a cycle, but does not have an MVD connection. Since the set of all relations in the database Country City{ , ,
Province} has the lossless join property indicated by FDs, we obtain a maximal object mo1: ( Country City Province{ , , },
Country City City Province{ → , → , Province Country→ }), which contains the set of all relations and all PK-FK relationships. Here,
mo1 has a cycle.

Consider a query Query2: retrieve CityName where CountryName = ‘USA’. We can interpret Query2 as following either the path
Country City− or the pathCity Province Country− − . The former means that “Find the name of the capital of a country whose name is
‘USA’; the latter ”Find the names of the cities that belong to a country whose name is ‘USA’. Therefore, the meaning of Query2 is that
“Find the name of the capital of a country whose name is ‘USA’ or the names of the cities who belong to a country whose name is
‘USA’. However, if we interpret Query2 using the maximal object, the where clause of the query becomes “where
Country CountryName. = ‘USA’ and Country CityId City CityId. = . and City ProvinceId Province ProvinceId. = . and
Province CountryId Country. = . CountryId”, which means that “Find the name of the city that belongs to a country whose name is
‘USA’ and is the capital of a country whose name is ‘USA” This way, the equality condition, i.e., “the name of the city which belongs to
a country is the same as that of the capital”, which is an unintentional condition, is added to the interpretation of the query because
of the cycle. This is contrary to the user's intention. □

Example 2. Consider the purchase database in Fig. 5(a). As shown in Fig. 5(b), the schema graph of the database has a (undirected)

Fig. 6. The schema, schema graph, and maximal object for the geographic database.

I.-J. Kim et al. Data & Knowledge Engineering 111 (2017) 39–57

45



cycle and one MVD connection. Since the set of all relations in the database has the lossless join property indicated by FDs, we obtain
a maximal object mo1: ( Customer{ , Nation Item Orders, , }, Customer Nation{ → , Item Nation Orders Item→ , → , Orders Customer→ }),
which contains the set of all relations and all PK-FK relationships. Here, mo1 has a cycle.

Consider a query Query3: retrieve Nname where Cname = ‘Smith’. We can interpret Query3 as following either the join path
Customer Nation− or the join path Customer Orders Item Nation− − − . The former means that “Find the name of the country that a
customer whose name is ‘Smith’ belongs to”; the latter “Find the name of countries that items that a customer whose name is ‘Smith’
orders belong to”. However, if we interpret Query3 using the maximal object, the where clause of the query becomes “where
Customer Cname. = ‘Smith’ and Customer Nid Nation Nid. = . and Customer CountryId Orders. = . CountryId and Orders Iid Item Iid. = .
and Item Nid Nation Nid. = . ”, which means that “Find the name of a country that a customer whose name is ‘Smith’ belongs to and
that the items ordered by a customer whose name is ‘Smith’ belongs to”. This way, the equality condition, i.e., “The country that an
item belongs to is the same as the country that a customer belongs to”, which is an unintentional condition, is added to the
interpretation of the query because of the cycle. This is contrary to the user's intention.□

3. An acyclic semantic structure on the universal relation model

In Section 3.1, we define a new semantic structure, maximal object+, that completely removes cycles in a universal relation. We
also propose an algorithm to find the maximal objects+. In Section 3.2, we describe an algorithm that interprets the queries using a
maximal object+.

Fig. 7. Algorithm FindMaximalObjectPlusSet.
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3.1. Maximal object+

Definition 3. In a database D, we define a set of relations and PK-FK relationships ({Ri, i l1 ≤ ≤ }, PK FK i j l{ − , 1 ≤ , ≤ }ij ) as a
maximal object+ and denote it as MOP(D) if it satisfies the following four conditions: (1) mo MOset∈ (D) AND {Ri,

i l mo1 ≤ ≤ } = .Rset AND PK FK i j l mo{ − , 1 ≤ , ≤ } ⊆ij . PK FK− set . (2) G G V R R R j l E PK FK PK FK′ = ({ ( )| ∈ { , 1 ≤ ≤ }}, { ( − )| −i i i ij ij
PK FK i j l∈{ − , 1 ≤ , ≤ }})ij does not have an MVD connection. (3) G′ is acyclic. (4) G′ is connected. □
In Definition 3, to guarantee that the maximal object+ satisfies the FD-based losslessness requirement, we add Conditions 1, 2,

and 4. To guarantee that the maximal object+ satisfies the acyclic requirement, we add Condition 3. Condition 3 lets a maximal
object+ does not contain directed cycles in the schema graph such as the one in the schema graph of geographic database in Fig. 6(b).

Fig. 7 shows the FindMaximalObjectPlusSet algorithm that finds a set of maximal objects+ for the schema graph of a relational
database. The algorithm finds maximal objects+ by removing the cycles and MVD connection in maximal objects. The algorithm
takes the set of maximal objects, MOset, as the input. It returns the set of maximal objects+, MOPset , as the output. In Step 1, we
initialize the set of maximal objects+, MOPset . In Step 2, we remove a cycle in each maximal object. 1) If the maximal object has a
cycle that does not contain an MVD connection, we generate maximal objects+ by removing each PK-FK relationship in the cycle in
the maximal object. 2) If the maximal object has a cycle that contains an MVD connection, we generate maximal objects+ by
removing each PK-FK relationship participating in the MVD connection of the maximal object. In the other cases, each maximal
object itself becomes a maximal object+. We store the generated maximal objects+ in MOPset . In Step 3, if an element in MOPset has
a cycle (that is, if the maximal object has two or more cycles), we call the algorithm recursively. In Step 4, we return MOPset .

Lemma 2 proves that a maximal object+ defined in Definition 3 satisfies the acyclic requirement and the FD-based losslessness
requirement in Section 2.

Lemma 2. A maximal object+ is acyclic, and the set of relations in a maximal object+ has the lossless join property indicated by
FDs with respect to F.

Proof. We examine all the cases in Table 2. In Cases 1, 2, and 5, the maximal object satisfies all the conditions for a maximal object
+. In Case 3, we obtain maximal objects+ by removing each PK-FK relationship in the cycle in the maximal object. Hence, each
maximal object+ does not a cycle. As the result, we obtain n maximal objects+ when there are n PK-FK relationships in the cycle. In
addition, since the maximal object in Case 3 does not have an MVD connection, a maximal object+ does not have an MVD
connection, either. In Case 4, we obtain two maximal objects+ by removing each of the two PK-FK relationships participating in an
MVD connection in the cycle of the maximal object. Hence, a maximal object+ has neither a cycle nor an MVD connection. Thus, the
set of the relations in a maximal object+ has the lossless join property indicated by FDs with respect to F by Lemma 1. □

Example 3. Let us consider the geographic database in Fig. 6(a) once again. The set of relations that satisfies Condition (1) of
Definition 3 is Country City{ , , Province}; the set of PK-FK relationships that satisfies Condition (1) of Definition 3 is a subset of
Country City City Province Province Country{ → , → , → }. By removing each PK-FK relationship in this set, we obtain the following
sets of PK-FK relationships that satisfy Conditions 2, 3, and 4: Country City{ → , City Province→ },
City Province Province Country{ → , → }, Province Country Country City{ → , → }. Hence, maximal objects+ for the geographic
database are mo1+, mo2+, and mo3+ as shown in Figs. 8(a)–(c), respectively. While the maximal object mo1 in Fig. 6 has a cycle,
maximal objects+ mo1+, mo2+, and mo3+ in Fig. 8 do not have a cycle. In addition, the set of relations in each maximal object+ has
the lossless join property indicated by FDs with respect to F by Lemma 2. □

Example 4. Let us consider the purchase database in Fig. 5(a) once again. The set of relations that satisfies Condition (1) of

Fig. 8. Maximal objects+ for the geographic database.
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Definition 3 is Nation{ , Item Customer Orders, , }; the set of PK-FK relationships that satisfies Condition (1) of Definition 3 is a subset
of Customer Nation Item Nation{ → , → , Orders Item Orders Customer→ , → }. By removing each PK-FK relationship in the MVD
connection Customer Nation Item→ ← from this set, we obtain the following sets of PK-FK relationships that satisfy Conditions 2, 3,
and 4: Customer Nation Orders Customer Orders Item{ → , → , → }, Item Nation Orders Item Orders Customer{ → , → , → }. Hence,
maximal objects+ for the geographic database are mo1+, mo2+ as shown in Figs. 9(a) and (b). While the maximal object mo1 in
Fig. 5 has a cycle, maximal objects+ mo1+ and mo2+ in Fig. 9 do not have a cycle. In addition, the set of relations in each maximal
object+ has the lossless join property indicated by FDs with respect to F by Lemma 2. □

3.2. Query interpretation using the maximal object+

In this section, we describe a method that interprets USQL queries using a maximal object+. For this, we use the algorithm
“Algorithm 2” that has been proposed by Maier et al. [15] by substituting the maximal object in Algorithm 2 with a maximal object+.
First, we explain Algorithm 2 [15]. Then, we show two examples that interpret the queries using a maximal object+.

Maier et al. [15] have used the USQL as the query for universal relations. The USQL specifies only the selection, projection, and
join conditions on semantic structures of the relational database [15]. We can join semantic structures to figure out the relationship
among the semantic structures. The tuple variable is used in USQL queries to specify join conditions between semantic structures. A
tuple variable is mapped to one semantic structure. Tuple variables can be used to express the join of two distinct semantic
structures or the self-join of the same semantic structure. We call a USQL query that has only one tuple variable, which does not
require a join of semantic structures, USQL selection query; a USQL query that has two or more tuple variables, which requires a join
of semantic structures, USQL join query.

An example of a USQL selection query is shown in Fig. 3 in Section 1; an example of a USQL join query is shown in Fig. 10.
Fig. 10 shows a USQL join query, Query4, on the BANK database whose schema is shown in Fig. 1(a). Query4 means that “Find the
names of the banks where both a customer whose name is ‘Smith’ and a customer whose name is ‘Miller’ are related”. Here, a tuple
variable t1 (t2) in Query4 can be mapped to a maximal object mo1 or mo2 for the BANK database schema of Fig. 4. Using the
combinations that t1 and t2 are mapped to the maximal objects, we obtain the following four interpretations. 1) When both t1 and t2
are mapped to mo1, Query4 is interpreted as a self-join of mo1, which means that “Find the names of the banks that both a customer
whose name is ‘Smith’ and a customer whose name is ‘Miller’ has an account”. 2) When t1 is mapped to mo1 and t2 to mo2, Query4 is
interpreted as a join of mo1 and mo2, which means that “Find the names of the banks where a customer whose name is ‘Smith’ has
accounts and a customer whose name is ‘Miller’ borrows money from”. 3) When t1 is mapped to mo2 and t2 to mo1, Query4 is
interpreted by a join of mo1 and mo2, which means that “Find the names of the banks where a customer whose name is ‘Smith’
borrows money from and a customer whose name is ‘Miller’ has accounts”. 4) When both t1 and t2 are mapped to mo2, Query4 is
interpreted by a self-join of mo2, which means that “Find the names of the banks from which both a customer whose name is ‘Smith’

Fig. 9. Maximal objects+ for the purchase database.

Fig. 10. Query4: a USQL join query on the BANK database.
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and a customer whose name is ‘Miller’ borrow money”. The meaning of Query4 is the union of the four interpretations. The USQL
selection query cannot represent this meaning since it uses only one semantic structure.

Fig. 11 shows the algorithm “Algorithm 2” proposed by Maier et al. [15] that interprets the USQL query using the maximal
objects. The algorithm gets a USQL query, Q, that has k tuple variables, and a set of qmaximal objects, MOset , as the input. It returns
an algebraic expression E5, which interprets Q using the maximal objects. In Step 1, for each tuple variable ti in Q, we find the set of
maximal objects containing all the attributes in {B t| i.B appears in Q}. In Step 2, for each maximal object mi, we create an algebraic
expression Ji by connecting all the relations in mi using natural join operations. In Step 3, for each tuple variable ti, we construct an
algebraic expression Ki by unioning the algebraic expression Jj that is mapped to a maximal object mj in the set of maximal objects
Mi for ti. In Step 4, we construct an algebraic expression E5 that interprets Q using the maximal objects. First, we create the Cartesian
product of all Ki for Q. Next, we apply the selection, projection, and join conditions of Q to the Cartesian product. Finally, we
construct a minimal equivalent expression [2] E5 for Q. In Step 5, we return the minimal expression E5.

Example 5. Let us interpret a USQL selection query Query1 as shown in Fig. 3 in Section 1 on the BANK database using Algorithm
2. We assume that there is only one implicit tuple variable t1 in Query1. In Step 1, X1 becomes Bname Cname{ , }. Since both mo1 and
mo2 in Fig. 4 contain Bname Cname{ , }, M1 becomes mo mo{ , }1 2 . In Step 2, J1 becomes Customer Account Bank⋈ ⋈ ; J2
Customer Loan Bank⋈ ⋈ . In Step 3, K1 becomes J J∪1 2. In Step 4, E2 becomes K1; E3 becomes σ K′ ′( )cname smith= 1 ; E4 becomes
Π σ K( ′ ′( ))Bname cname smith= 1 ; E5 becomes Π σ Customer Account Bank Π σ Customer Loan Bank( ′ ( ⋈ ⋈ )) ∪ ( ′ ( ⋈ ⋈ ))Bname cname smith Bname cname smith= ′ = ′ . In
Step 5, E5 is returned. □

Fig. 11. The Algorithm 2 of Maier et al. [15].
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Example 6. Let us interpret a query on the geographic database in Fig. 6(a) in Section 2 using a maximal object+. Fig. 8 shows three
maximal objects+ for the geographic database: mo1+, mo2+, and mo3+. Let us consider a query Query5: retrieve t CityName. where
t CountryName. =‘USA’ in Example 1 once again. Using a maximal object+, we can interpret Query5 as “Find the name of the capital of
a country whose name is ‘USA’ or the names of the cities that belong to the country whose name is ‘USA’”, which is the union of the
interpretation using mo1+ or mo3+ and the one using mo2+. The where clause of the interpreted query becomes “where
(Country Ciid City Ciid. = . and Country CountryName. = ‘USA’) or (City Pid Province Pid. = . and Province Cid Country Cid. = . and
Country CountryName. = ‘USA’)”. The meaning of the interpreted query is the same as the original meaning that is intended by the
user while it is not when maximal objects are used instead (as explained in Section 2). The reason is that the maximal object+ does
not have a cycle, while it exists in the maximal object. □

Example 7. Let us interpret a query on the purchase database in Fig. 5(a) in Section 2 using a maximal object+. Fig. 9 shows two
maximal objects+ for the purchase database: mo1+ and mo2+. Let us consider a query Query6: retrieve t Nname. where t Cname. =
‘Smith’ in Example 2 once again. Using a maximal object+, we interpret the query as “Find the name of a country that a customer
whose name is ‘Smith’ belongs to or that items that a customer whose name is ‘Smith’ orders belong to’”, which is the union of the
interpretation using mo1+ and the one using mo2+. The where clause of the interpreted query becomes ‘where
(Customer Nid Nation Nid. = . and Customer Cname. = ‘Smith’) or (Customer Cid Orders Cid. = . and Orders Iid Item Iid. = . and
Item Nid Nation Nid. = . and Customer Cname. = ‘Smith’)”. The meaning of the interpreted query is the same as the original
meaning that is intended by the user while it is not when maximal objects are used instead (as explained in Section 2). The reason is
that the maximal object+ does not have a cycle, while it exists in the maximal object. □

4. Related work

Fagin et al. [6] have defined the universal relation under the assumption that there is no cycle in the database schema graph. For
the cases where there are cycles in the database schema graph, existing methods to remove the cycle are classified into the following
two categories: 1) the relation renaming method [6] and 2) the semantic structure method [15,17,21]. The former renames a relation
in a cycle; the latter proposes new semantic structures to divide the schema graph in the unit of the semantic structure.

Fagin et al. [6] have proposed a relation renaming method. It removes a cycle according to the following steps. 1) The method
selects a relation in the cycle and renames it as two independent relations with different names. It also renames the attributes in the
renamed relation. 2) The method identifies two relations connected to a relation on a cycle to be renamed and connects each of them
to each different renamed relation after renaming it. This method has the following drawbacks. 1) The database schema obtained by
renaming relations may not be unique [16]. 2) Users must remember the names of the attributes in the renamed relation. Hence, the
more complex the database schema is, the lower the usability of the database is.

There are three semantic structure methods: 1) the maximal object [15], 2) Context [21], and 3) the maximal join tree [17]. Although
the maximal object has been proposed to remove the cycles in universal relations, it fails to remove cycles completely as explained in
Section 2. Context is a maximal structure of relations that has the lossless join property indicated by FDs or MVDs and the structure does
not have cycles. Although Context does not have cycles, it allows a set of relations that has the lossless join property indicated by MVDs.
Hence, it has a drawback of providing meaningless results such as the Cartesian product results when it interprets USQL queries. The
maximal join tree [17] is a maximal tree of relations that has the lossless join property. Although Mason et al. [17] remove cycles by
defining the maximal join tree as a tree, the maximal join tree has the following drawbacks compared to a maximal object+: 1) they do not
provide the theoretical foundation on the definition and usability of the maximal join tree. 2) They do not distinguish the difference
between the meaning of the lossless join property indicated by FDs and that indicated by MVDs.

In the big data era, the keyword query is becoming a useful tool to search data since most of the data contains text data nowadays.
Webpage big data contain lots of text data with or without a schema. Using a keyword query on webpage data has been actively
studied for decades [4,5,9]. Graph big data such as the RDF data contain lots of (short) text data. Keyword queries on graph data can
be used to find graph substructures that have specified keywords [11,25]. Meanwhile, relational big data have more and more text
data than they had before since the applications for storing text data in relational database have become prevalent [13]. Keyword
queries on graph data can be used to find trees of tuples that collectively contains specified keywords [1,14].

Techniques for processing keyword queries naturally employ USQL techniques. Semantic units can be used to process keyword
queries, which consists of a set of keywords, on the relational databases. Like a USQL query, a user can create a keyword query even
though the user does not know the details of the database schema. However, unlike a USQL query, a user does not need to specify
target attributes for the selection or projection conditions. Since a keyword can match values of multiple attributes, a keyword query
corresponds to a set of USQL queries. DBXplorer [1] models a keyword query on a relational database as a set of USQL selection
queries on the universal relation and uses the universal relation as a semantic unit for interpreting a keyword query. For a keyword
query, DBXplorer finds a set of USQL selection queries matching the keyword query, converts the USQL selection queries into SQL
queries, and then, obtains the keyword query results by evaluating the SQL queries. However, since it uses the universal relation as a
semantic unit, it cannot properly interpret the user intention when there are cycles in the database schema. Mason et. al. [17] models
a keyword query on a relational database as a set of USQL selection or join queries on the universal relation and uses the maximal
join tree as a semantic unit for efficiently interpreting a keyword query. SRT-Rank [8] uses the Strongly Related Tree (SRT) as a
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Table 3
The statistics of the experimental datasets.

Dataset Size # relations # tuples

TPC-H 100 MB 8 866,602
Mondial 9 MB 28 17,115
IMDB 516 MB 6 1,673,074

Fig. 12. The mean recall and mean precision as the query processing methods and the datasets are varied.

Fig. 13. The actual query time as the query processing methods and the datasets are varied.

I.-J. Kim et al. Data & Knowledge Engineering 111 (2017) 39–57

51



semantic unit for effectively ranking the keyword query results. SRT is different from a maximal object+ (maximal join tree) since
SRT is a semantic structure defined on the query graph while the maximal object+ is one defined on the schema graph.

Ramon Lawrence and Ken Barker proposed a semantic query language with which users can compose queries by using the
semantics of a database instead of the structure of a database [10]. Their proposed method represents the semantics for the given
database as a context view, and then, lets a user to specify queries on the context view. Their proposed method determines the join
path for the given query using a join graph and a depth-first search based algorithm.

Semantic units can be used to process queries on a semantic web [23]. In semantic web, the resource definition framework (RDF)
data model is used to represent data. RDF data model describes data as a form of a triple (subject, predicate, object). The triple
denotes that the subject has the predicate relationship with the object. If we map the RDF data to relational data, we can find
semantic units in the relational schema of mapped data. By utilizing the semantic units identified, we can process queries on the
semantic web. Mapping the RDF data to relational data has been actively studied in the literature [3,19,20,22].

5. Performance evaluation

5.1. Experimental data and environment

In this section, we compare the effectiveness and efficiency of the USQL query processing method based on a maximal object+ (in
short, the MO+ method) with that of the existing USQL query processing method based on the maximal object (in short, the MO
method). We do not compare Context [21] and maximal join tree [17] with the MO+ method since it may contain meaningless
results such as the Cartesian product results as indicated in Section 4. The MO+ (MO) method translates a USQL query using the
maximal objects+ (maximal objects) into SQL queries, and then, obtains query results by evaluating those SQL queries.

We perform experiments on the synthetic and real datasets. We use TPC-H [24] as a synthetic dataset and use Mondial [18] and
IMDB [7] as real datasets. We generate the dataset for TPC-H by using the TPC-H DBGen tool [24]. Table 3 shows the statistics for
the datasets. The TPC-H dataset represents retail information such as customers, suppliers, and parts and consists of eight relations.
The Mondial dataset represents geographical information and consists of 28 relations. The IMDB dataset represents information on
movies and consists of six relations. The database schema for the TPC-H dataset has one undirected cycle and that for Mondial
dataset has more than ten undirected and directed cycles while that for the IMDB dataset has none.

We use the following queries for the experiments. For each dataset, we use 50 queries generated by eight graduate students of
Computer Science Department of the authors’ institution. To minimize bias with queries, we choose the students who do not
participate in this project. They write down search intentions, which specify the information they want to retrieve, and USQL queries
to represent the search intentions. An example of the search intentions is “Find the name of a country that a customer whose name is
‘Smith’ belongs to”. The USQL query to represent the search intention is “retrieve t1.n_name where t1.c_name = ‘Smith’”. In
Appendix A, we show five representative USQL queries generated for each dataset.

We measure both effectiveness and efficiency with an emphasis on the former. We use the actual query time to measure the efficiency.
To measure the effectiveness of each method, we define the correct answers for a USQL query as the results obtained by evaluating the
SQL queries corresponding to the users’ search intention for the USQL query. We use mean precision and mean recall to calculate the
effectiveness. The mean precision (recall) for a set of queries is the average of precisions (recalls) for all the queries in the set.

We have performed all experiments on a machine with Intel Core i5 760 2.80 GHz CPU and 4GB RAM running Linux Fedora
Core 14. We use MySQL 5.5.19.

5.2. Experimental results

Fig. 12 shows the mean recall and mean precision of the MO and the MO+ methods. The mean recall of the MO+ method is 8.15,
1.79, and 1.005 times that of the MO method for the TPC-H, Mondial, and IMDB datasets, respectively. The mean precision of the MO+
method is similar to that of the MOmethod for the TPC-H, Mondial, and IMDB datasets. That is, the mean precision of the MO+method
is 0.97, 0.89, and 1.00, and that of the MO method is 0.92, 0.96, and 1.00 for the TPC-H, Mondial, and IMDB datasets, respectively.6

The MO+ method produces more correct answers for the TPC-H and Mondial datasets than the MO+ method does due to the
following reason. The MO+ method gives near perfect recall since it interprets a USQL query on each possible semantically
meaningful alternative path that connects the relations containing attributes used in the query.7 In contrast, the maximal objects for

5 The mean recall of the MO+ method is the same as that of the MO method for IMDB dataset.
6 If the method generates no result for a given query whose correct answer exists, we can either set the precision of the method for the query to 1.0 or ignore the

query when calculating the mean precision. Here, we use the latter approach, which is advantageous to the MO method. If we used the former, the mean precision of
the MO+ method would be 2.35, 1.33, and 1.00 times that of the MO method for the TPC-H, Mondial, and IMDB datasets, respectively. (The mean precision of the
MO+ method is 0.95, 0.89, and 1.00; that of the MO method is 0.40, 0.67, and 1.00 for the TPC-H, Mondial, and IMDB datasets, respectively.)
7 The MO+ method finds semantically meaningful alternative paths that do not contain an MVD connection. If the intention of the user for the given USQL query is

to find a path that contains an MVD connection, the MO+ method fails to generate correct answers. However, as we observe that the search intention of only one
query out of 50 queries for TPC-H dataset is to find a path that contains an MVD connection, queries with such search intention occur very rarely in practice. The only
one query for the TPC-H dataset is the USQL query “retrieve t1.nation.n_name where t1.customer.c_name = ‘A’ and t2.supplier.s_name = ‘B’ and
t1.customer.c_nationkey = t2.supplier.s_nationkey” with a search intention “Find the name of nation where both customers whose name is ‘A’ and suppliers
whose name is ‘B’ belong”. The search intention finds a path Customer Nation Supplier→ ← , which has an MVD connection defined in Definition 1. This MVD
connection is excluded in the maximal objects+ for TPC-H.
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the TPC-H and Mondial datasets have a cycle while the maximal objects+ do not. Consequently, as explained in Sections 2 and 3.2,
the MO method adds an unintentional condition to the interpretation of a USQL query on the TPC-H or Mondial datasets because of
the cycle, excluding a large portion of correct answers to be produced. Both the MO and the MO+ methods generate the same correct
answers for the IMDB dataset. Since there is no cycle in the schema graph, the maximal objects+ are the same as the maximal
objects.

Fig. 13 shows the actual query time of the MO and the MO+ methods. The results of the experiments show that the relative
efficiency depends on the characteristics of the cycles in the database schema graph. Specifically, the MO+ method is 3.45, 0.06, and
1.00 times faster than the MO method for the TPC-H, Mondial, and IMDB datasets, respectively. In general, the MO+ method
generates more SQL queries than the MO method does because it generates a query for each possible semantically meaningful
alternative path while the MO method generates queries that require satisfying all the paths in the cycle at the same time due to the
unintentional equality condition. For the TPC-H dataset, the MO+ method is still faster than the MO method since the overhead of
processing the unintentional condition is significant joining all the relations in the cycle. On the other hand, for the Mondial dataset,
the MO+ method is slower than the MO method since it generates far more SQL queries than the MO method does due to the
complex schema graph involving many cycles. For the IMDB dataset, the actual query time of the MO+ method is almost the same as
that of the MO method since both the maximal objects and the maximal objects+ for the IMDB dataset are the same. In summary, we
conclude that both methods have comparable efficiency.

6. Conclusions

The universal relation model has been proposed to improve the usability of relational databases [6]. The maximal object has been
proposed to implement the universal relation in a semantically correct way [15]. The maximal object is not supposed to include a
cycle since it can make query interpretation ambiguous [15]. In this paper we have identified for the first time that the maximal
object may include a cycle, and have proposed a new semantic structure, called maximal object+, which completely removes cycles in
a universal relation. A maximal object+ is a largest connected acyclic component in the database schema graph where the entire set
of relations in the component has the lossless join property indicated by FDs. A maximal object+ only allows the set of relations that
has the lossless join property indicated by FDs. It does not allow the set of relations that has the lossless join property not indicated
by FDs but indicated by MVDs. The salient points of a maximal object+ are as follows. 1) It eliminates the equality condition that the
user does not intend. 2) It interprets the query so as not to generate meaningless results by a lossy join since it consists of the set of
relations that has the lossless join property. 3) It does not generate Cartesian product results that are incurred by MVDs since it
allows only the lossless join property indicated by FDs. In Lemma 2, we have shown that the maximal object+ is acyclic and that the
set of the relations in a maximal object+ always has the lossless join property indicated by FDs.

We have performed experiments on the synthetic and real datasets. As a result, we show that our method significantly
outperforms the one based on the maximal object in terms of mean recall when a cycle exists in a maximal object while maintaining
comparable efficiency. Specifically, our method improves the mean recall of the query processing method by up to 8.15 times for the
dataset whose schema involves cycles.

A maximal object+ can be utilized to improve the effectiveness of query interpretation by using it as a structure to represent a
semantically close relationship among relations. We have theoretically shown that a maximal object+ interprets a query for each
possible semantically meaningful alternative path by completely removing cycles from the universal relation.

In the further study, we are going to take the following two points into account: 1) types of cycles in the database schema graph
and 2) other measures to complement a maximal object+ to fit a user intent. There are different types of cycles in the database
schema graph: self-cycle, directed cycle, and undirected cycle. Taking types of cycles into account will help interpret an USQL query
to fit user intent. In addition, other measures related to query workloads or semantic information can be utilized to complement a
maximal object+.
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Appendix A. USQL queries and search intensions used in the experiments

Figs. 14–16 show five representative USQL queries and their search intentions for each dataset used in the experiments.
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Fig. 14. Five USQL queries and their search intentions for the TPC-H dataset.
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Fig. 15. Five USQL queries and their search intentions for the Mondial dataset.
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