
INFORMATION
SCIENCES

ELSEVIER Information Sciences 114 (1999) 237-253

A recovery method supporting
user-interactive undo in database

management systems

Won-Young Kim a,,, Kyu-Young Whang a,
Young-Koo Lee a, Sang-Wook Kim b

a Department of Computer Science and Center for Artificial Intelligence Research, Korea Advanced
Institute of Science and Technology, Taejon 305-701, South Korea

b Department of Information and Telecommunications Engineering, Kangwon National University,
Chuncheon, Kangwon-Do 200-701, South Korea

Received 1 June 1997; accepted 27 April 1998

Communicated by Ahmed Elmagarmid

Abstract

User-interactive undo is a kind of recovery facility that allows users to correct mis-
takes easily by canceling and reexecuting operations that have already been executed.
Supporting user-interactive undo is essential for authoring processes in new database
applications such as software engineering, hypermedia, and computer-aided design. A
partial rollback using savepoints supported by commercial database management sys-
tems (DBMSs), which allows only cancellation of executed operations, is a restricted
form of user-interactive undo. Although many applications use DBMSs, they have to
provide user-interactive undo by themselves due to lack of support from the DBMSs.
Since implementation of user-interactive undo is quite complex, it poses significant bur-
den to application programmers. This paper proposes a new recovery method facilitat-
ing user-interactive undo in DBMSs. Such a facility relieves the programmers of
implementing user-interactive undo themselves in developing DBMS applications.
The method guarantees fast rollback of transactions that contain user-interactive undos.
It also provides users with the bulk undo operation that restores the database to a pre-
determined point in the past. The bulk undo operation resembles partial rollback, but

* Corresponding author. Fax: 82-42 869 3510; e-mail: wykim@mozart.kaist.ac.kr.

0020-0255/99/$19.00 © 1999 Elsevier Science Inc. All rights reserved.
PII: S 0 0 2 0 - 0 2 5 5 (9 8) 1 00 50-6

238 W.-Y. Kim et al. / Information Sciences 114 (1999) 237-253

differs in that it allows redo that cancels the bulk undo. Moreover, the performance of
the method is comparable to that of the traditional recovery method in spite of added
functionalities. © 1999 Elsevier Science Inc. All rights reserved.

I. Introduction

Software development [1], hypermedia authoring [2,3], and CAD [4] have
recently become new database applications as they need to handle increas-
ingly large volumes of data. Trial-and-errors frequently occur in the authoring
process of these applications due to users' mistakes or unexpected results of
operations. Thus, these applications need a recovery facility for canceling
the operations that have already been executed and even for reexecuting
them.

In this paper we define user-interactive undo as a recovery facility [5-8] that
enables users to cancel or reexecute under users' control the operations that
have already been executed. User-interactive undo consists of two operations:
undo and redo. The undo operation restores user's data to the previous state by
canceling an executed operation. We call the canceled operations undone oper-
ations. While in a broad sense the redo operation is an operation that reexecutes
the previously executed operation, in this paper, we restrict the redo operation
to the one that reexecutes an undone operation.

Although many database management systems (DBMSs) already have re-
covery facilities that can recover databases, they do not support user-interac-
tive undo. A total rollback is inappropriate for handling users' trial-and-
errors since it forces other operations, which bear no relation to the errors
and may have been executed for a long time, to rollback as well. A partial roll-
back [9-1 l] to a savepoint cancels part of the executed operations upon the us-
er's requests without a total rollback. However, this partial rollback facility has
a critical limitation in that it cannot reexecute the undone operations, and thus,
it is not usable in user-interactive undo.

Currently, since DBMSs do not support user-interactive undo, the applica-
tions do it themselves. It is complex and difficult to implement user-interactive
undo since it should handle a variety of operations that may be encountered in
an application. Moreover, if an application uses a DBMS, much more over-
head is incurred for handling the data the DBMS itself updates. Therefore,
providing user-interactive undo in the application that uses a conventional
DBMS imposes severe overhead to the programmer. Since applications requir-
ing user-interactive undo have recently been increasing, a mechanism support-
ing user-interactive undo directly in the DBMS would be essential.

Until now, the research on user-interactive undo has mainly focused on its
models. The models define the order and the execution mechanism of their un-
do and redo. Typical examples of user-interactive undo models are the linear

W..-Y. Kim et al. I Information Sciences 114 (1999) 237-253 239

undo model [5,6], history undo model [5], and script model [7,8]. However,
there has never been an approach supporting user-interactive undo directly
in a transaction processing system such as a DBMS.

In this paper, we propose a new recovery method with which a DBMS can
directly support user-interactive undo. In particular, we provide this additional
facility without seriously altering the existing one such as crash recovery used
in commercial DBMSs. We choose the history undo model [5,6] as our undo
model since it has a nice property that it can rollback to any previous state.

The proposed method has the following characteristics: (1) it provides both
(repeated) undo and redo for executed operations in a DBMS while the partial
rollback facility provides only undo operations; (2) it requires little overhead,
which enables the performance of our method to be comparable to that of the
traditional recovery method that only supports partial rollback; (3) it fully uti-
lizes the base structure for supporting crash recovery, which makes it easy to
implement the user-interactive undo in the DBMS; (4) it can reduce the imple-
mentation overhead of application programmers because user-interactive undo
could be built easily using this facility provided in the DBMS.

The paper is organized as follows. In Section 2 we survey three basic user-
interactive undo models. In Section 3 we discuss issues in supporting user-in-
teractive undo in a DBMS. In Section 4 we present a new recovery method
for supporting user-interactive undo and analyze its performance overhead.
In Section 5 we summarize and conclude the paper.

2. User-interactive undo models

User-interactive undo models define the order and the execution mechanism
of their undo and redo operations, which are tightly related to their data struc-
tures. This section briefly reviews three typical user-interactive undo models:
the linear undo model [5,6], history undo model [5], and script model [7,8].
We present the data structures, mechanisms, benefits, and shortcomings of
each model.

The linear undo model maintains two lists: a history list and a redo list. The
history list keeps a sequence of the executed operations that remain in effect,
i.e., that either have been executed and not yet undone or have been redone.
The redo list keeps a sequence of operations that have been undone. The last
operation in the history list can be undone. When it is undone, it is removed
from the history list and put into the redo list. The last operation put into
the redo list can be redone and again be appended to the history list.

A shortcoming of the linear undo model is that users cannot recover a cer-
tain previous state in some cases. If an operation O is undone and some other
operations are newly executed, it is impossible to recover the previous state in
which O was done. For example, if an operation O1 is undone and a new

240 w.-Y. Kim et al. I Information Sciences 114 (1999) 237-253

operation 02 is executed, it is impossible to redo Oi without executing 02 ef-
fective since undoing 02 makes 02 as the first operation to be redone and O1 as
the next operation to be redone.

The history undo model keeps a time-ordered sequence of all the operations
including undo and redo on its history list. Undoing an operation appends its
inverse operation to the history list. There is an undo pointer that indicates an
operation to be undone. While undo operations are in progress, the undo
pointer indicates the previous operation of the most recently undone one in
the history list; otherwise, it indicates the last operation of the history list. Re-
doing an operation is undoing its inverse operation.

Fig. 1 shows undo steps in the history undo model. In Fig. 1, Ci represents
one of the executed operations. C~ represents the inverse of Ci, and C~' the in-
verse of C;, i.e., the redo operation of Ci. Given the history list in Fig. 1 (a), do-
ing two more undo operations will result in Fig. l(b), where the first one is an
undo operation of C5 and the second one a redo operation of C4. The undo
pointer indicates that C4 is the next operation to be undone.

The history undo model has the nice property of being able to go back to
any previous state. Because its history list keeps all the ever executed opera-
tions, users can recover any previous state by undoing all the operations exe-
cuted since that state. However, the history undo suffers from quite a long
history list resulting from the repetitive undo and redo operations. When an
operation has been undone and then redone, one has to undo the redone op-
eration and redo the undone operation to restore any previous state of these.
This repetition makes users confused and the system spend more time to recov-
er the previous state. We call this problem the repetition problem of the history
undo model.

In the script model, user operations are maintained in a script file. The sys-
tem executes the script file and then shows its result to users. This model sup-
ports the undo operation by allowing users to edit the script file. To undo the
executed operations, one deletes them from the script file and reruns it from the
initial state.

The script model is simple and powerful. However, it is not appropriate for
a user-interactive interface for the following two reasons. First, its usage is in-
convenient and complex because the user has to manage the process of editing
and running the script file. Second, it spends considerable execution time rerun-

(a) ~ ,~ undo pointer

(b)

Fig. l. Undo steps of the history undo model.

W.-Y. Kim et al. I Information Sciences 114 (1999) 237-253 241

ning all the operations in the script file for every interaction without a partial
execution mechanism [7].

3. User-interactive undo in the D B M S

Research on user-interactive undo so far has focused only on the models [5-
7]; there has been no research on integrating the interactive undo with a trans-
action processing system such as a DBMS. In this section, we present issues in
supporting user-interactive undo in a DBMS.

First, we should select the user-interactive undo model for the DBMS oper-
ations. Here, we do not design a new one, since there are many basic studies on
the user-interactive undo models as described in Section 2. Instead, we choose
the history undo model for the following reasons: first, it has an advantage that
a user can go back to any previous state; second, its history list has a structure
very similar to the log used in a recovery method. We can utilize the log as the
history list without creating a new data structure, and this makes it easy to in-
tegrate the user-interactive undo with a DBMS.

Second, we should solve the repetition problem of the history undo model.
As described in Section 2, repetition of undo and redo operations makes the
history list quite long. Whenever a transaction containing the undo and redo
rolls back or a user returns to a desired previous state, the longer history list
makes the execution take much more time. The transaction rollback time af-
fects not only total throughput of the system but also users' waiting time. In
this paper, we present two solutions to the repetition problem in the history un-
do model: the first is an algorithm guaranteeing fast transaction rollback in
spite of repeated undos and redos, and the second a bulk undo operation by
which a user can restore the database to a predetermined state with just one
interaction. We describe these features in detail in Section 4.2.2.

Third, we should consider how to implement the history list. As mentioned
before, we utilize the log used in the traditional database recovery method as a
base structure for the history list. Since the history list keeps user operations
(or user commands) while the log keeps :internal DBMS operations invoked
by each user operation, there is a one-to-many mapping between the two types
of operations. In order to specify the mapping between these two kinds of op-
erations, we employ boundary log records. We can easily identify all the log re-
cords written for one user operation by enclosing them using two boundary log
records. To avoid confusion and for easy presentation, we assume that one user
operation corresponds to one log record.

Fourth, we should consider whether the undo of an operation has to release
the locks acquired during its execution. If an operation O had acquired a lock
L to update an object o and undoing O released this lock, redoing O would
become impossible if another transaction acquired L and updated o.

242 W.-Y. Kim et al. I Information Sciences 114 (1999) 237-253

Therefore, the acquired lock should be kept after the undo operation. Thus,
our undo operation restores only the data values without releasing the ac-
quired locks, and this also concurs with the traditional two-phase locking
(2-PL) protocol [12].

Finally, we should provide user-interactive undo without serious changes to
the traditional recovery methods, the design and implementation of which is
significant undertaking. Since the proposed method utilizes the recovery data
used in the traditional recovery facilities, its implementation does not require
severe changes in the traditional ones. In this paper, we describe the method
as an extension of ARIES [9], a well-known recovery method.

4. A recovery method supporting user-interactive undo in a DBMS

In this section, we present a new recovery method supporting user-interac-
tive undo in a DBMS. The proposed method extends ARIES [9], which is wide-
ly known to be a correct and reliable recovery method. In Section 4.1, we
present an overview of ARIES and describe the partial rollback facility that
supports only undo operations. In Section 4.2, we describe the data structures
and algorithms of our method in detail. In Section 4.3, we analyze the perfor-
mance of the proposed method.

4.1. ARIES recovery method

Overview of ARIES: To achieve consistency of a transaction, ARIES records
the progress of a transaction and its update actions in a log. The log consists of
log records. Each log record is assigned a unique log sequence number (LSN) -
the address of the corresponding log record. To make transaction rollback ef-
ficient, all the log records written by the transaction are linked via the Previous-
LSN field that contains the LSN of the preceding log record written by the
same transaction.

ARIES records not only the updates performed during forward processing
of transactions using normal log records but also the updates performed during
partial or total rollback of transactions using compensation log records
(CLRs) [9]. The normal log records contain both undo and redo data. The un-
do data provide information on how to undo the changes made by the trans-
action, and the redo data on how to redo them. Therefore, the operation
logged using the normal log record can be either undone or redone. The update
written by a CLR is never undone, and hence, a CLR contains only redo data.
When a CLR appears during transaction rollback or restart recovery, its Un-
doNextLSN field is used to determine the next log record to be undone. The
UndoNextLSN field contains the LSN of the next log record to be undone

W..-K Kim et al. / Information Sciences 114 (1999) 237-253 243

during rollback of a transaction; this is the value of the PreviousLSN field of
the log record that has just been undone.

In ARIES, restart recovery consists of the analysis pass, redo pass (or more
specifically, repeating history), and undo pass. The analysis pass determines the
starting point of the redo pass and finds loser transactions by scanning log re-
cords from the last available checkpoint log record [13] up to the end of the log.
The loser transactions are those that were in progress when the crash occurred.
During the redo pass, ARIES repeats the operations in its log whose effects
were not reflected on the database disk before failure of the system. The undo
pass rolls back all the loser transactions.

ARIES supports both page-oriented undo and logical undo for transaction
rollback [9,14]. Page-oriented undo occurs when a page containing data updat-
ed during forward processing still contains the data that is about to be undone.
Logical undo occurs when the page containing the data to be undone is differ-
ent from the one originally modified during forward processing. This situation
can happen because, in a multi-user environment, uncommitted updates of one
transaction can be moved to a different page by another transaction. If the sys-
tem were restricted to do only page-oriented undo, the latter transaction would
have to wait for the former to commit. The waiting of the transactions that up-
date the same page degrades concurrency levels of the system. Therefore,
ARIES supports logical undo for high concurrency, although it incurrs an
overhead of accessing meta data such as indexes or system catalogs to search
the page that contains the moved data.

Unlike undo, ARIES supports only page-oriented redo because it can han-
dle all the cases of the redo pass [9,14]. Page-oriented redo occurs when a page
containing data, updated during forward processing, still contains the data
which is to be redone during the redo pass. In contrast, logical redo occurs
when the page containing the data to be redone is different from the one orig-
inally modified during forward processing. Performing only page-oriented redo
makes the redo pass efficient since it accesses only the pages originally updated
during the forward processing without accessing any meta data.

Partial rollback: The partial rollback [10,9,11] is a facility that can rollback
part of a transaction. Savepoints [11] must be established before a partial roll-
back; these are landmarks indicating the points to which a transaction can roll-
back. When a savepoint is established, the LSN of the latest log record written
by the transaction, called SaveLSN, and the current state of the transaction are
stored in virtual storage; then, the identifier of the savepoint is returned to the
user. The current state of the transaction in progress includes locks, cursors,
and accessing information for volumes and files [9].

During partial rollback to a savepoint, log records are undone in the reverse
chronological order and the state saved for that savepoint is restored. For each
undo action, a CLR is recorded. As described in the previous section, ARIES
never undoes CLRs. When a transaction is partially rolled back to a savepoint,

244 W.-Y. Kim et al. I Information Sciences 114 (1999) 237-253

the locks and other data structures obtained after that savepoint are released.
Thus, the aborted portion of the transaction cannot be redone.

4.2. ,4 new recovery method supporting user-interactive undo

In this section we describe a new recovery method supporting user-interac-
tive undo. In Section 4.2.1, we identify the characteristics of log records for un-
do and redo operations and propose new log record types that satisfy these
characteristics. In Section 4.2.2, we describe recovery algorithms that support
undo and redo operations.

4.2.1. New log record types for undo~redo
To implement the history list we should devise a new type of log record for

logging undo and redo operations in the history undo model. Such log records
must have minimal information to reduce the log space overhead (undo and
redo operations are executed frequently), but have sufficient information to re-
solve the repetition problem of the history undo model. To satisfy these re-
quirements, we define a new type of log record, called the partial log record
(PLR). The PLR does not keep their own undo and redo information, but
keeps a pointer to reference another log record that contains this information.
We call the referenced one an original log record since it is a normal log record
that corresponds to the original update operation. This is possible since the un-
do (or redo) information of undo operations is the same as the redo (or undo)
information of the original and redo operations if only page-oriented undos oc-
cur. In the proposed method, the PLR contains only the minimal information
to undo and redo; when more information is needed it is read from the corre-
sponding original log record. In addition, a new transaction rollback algorithm
using PLRs resolves the repetition problem of the history undo model as will be
explained in Section 4.2.2.

In a multi-user environment, it is essential to support logical undo for
achieving high concurrency as described in Section 4.1. The PLR incurrs two
problems in supporting logical undo. First, undos and redos after a logical un-
do should always perform logical undo in order to find the page that holds the
moved data since the recorded PLR for the first logical undo has no undo and
redo information. This is very inefficient since logical undo requires additional
accesses to the meta data. Second, during the redo pass of crash recovery, log-
ical redo should be performed for the PLR that was recorded for a logical undo
during forward processing since the PLR has no redo information. Supporting
logical redo is undesirable since it requires significant changes to ARIES that
supports only page-oriented redo.

To solve these problems we define another new type of log record, called the
substitute log record (SLR), that contains its own undo and redo information
for a logical undo. When a logical undo occurs, an SLR is logged instead of a

W.-Y. Kim et al. / Information Sciences 114 (1999) 237-253 245

PLR. Once an SLR is recorded, the following PLRs for undos and redos of the
same operation reference this SLR, not the corresponding original log record.
When these following PLRs are to be undone, page-oriented undos are
performed using the undo and redo information of the SLR. Therefore, SLRs
minimize the number of logical undos. Also, it is always possible to perform
page-oriented redo for PLRs using the redo and undo information of the cor-
responding original log record or SLR during the redo pass of crash recovery.
Therefore, SLRs solve both the problems mentioned above.

A PLR consists of the following fields: OriginalLSN, UndoNextLSN, Type,
and PreviousLSN. The OriginalLSN field contains the LSN of the correspond-
ing original log record or SLR. The UndoNextLSN field contains the LSN of
the next log record to be processed during transaction rollback or bulk undo; it
indicates the PreviousLSN of the original log record, not the PreviousLSN of
the PLR that has just been undone. The Type field indicates both its log record
type and whether the recorded operation i,; an undo or a redo operation. The
PreviousLSN field contains the LSN of the previous log record belonging to
the same transaction. An SLR contains the same kind of information as a
PLR does except that it contains an UndoRedoData field instead of an Orig-
inalLSN field. The UndoRedoData field contains the undo and redo informa-
tion for a logical undo.

4.2.2. Recovery algorithms
In this section, we present new recovery algorithms related to the user-inter-

active undo facility. First, we describe user-interactive undo in forward pro-
cessing of a transaction and present an algorithm for rollback of a
transaction containing user-interactive undo. Next, we show that the crash re-
covery algorithm of ARIES can be used in our method without significant
changes. Finally, we describe a bulk undo as a new operation for undoing with
one interaction a sequence of operations performed during forward processing
of a transaction.

User-interactive undo in forward processmg of a transaction: During forward
processing of a transaction, user-interactive undo is applied in the reverse order
starting from the last executed operation. User-interactive undo in forward
processing can be classified into three types of operations: undo of an original
update operation, undo of an undone operation, and undo of a redone opera-
tion. The undo of an original update operation undoes the corresponding orig-
inal log record. This operation uses undo information of the original log record
and logs a PLR with the following values. The Type is undo PLR; the Origi-
nalLSN is the LSN of the original log record that has just been undone; the
PreviousLSN is the LSN of the log record that has most recently been logged
by the same transaction; the UndoNextLSN is the PreviousLSN of the original
log record. When a logical undo occurs, an SLR is recorded instead of a PLR.

246 W.-E Kim et al. / Information Sciences 114 (1999) 237-253

The SLR's Type is undo SLR, and its UndoRedoData is undo and redo infor-
mation for the logical undo. Its PreviousLSN and UndoNextLSN are the same
as those of a PLR.

Fig. 2 shows an example of user-interactive undo logged by PLRs and
SLRs. White circles represent normal log records, dot-filled circles PLRs,
and grid-patterned circles SLRs. Single-lined arrows indicate OriginalLSNs
pointing to the corresponding original log records of the PLRs, and dotted ar-
rows UndoNextLSNs pointing to the previous log records of the original log
records, and double-lined arrows PreviousLSNs. In Fig. 2, there are two con-
tinuous undo operations logged by r4 and rs. The record r4 is an undo PLR
that records a page-oriented undo of r3; its original log record, next log record
to be undone, and previous log record r3, r2, and r3, respectively. The record r5
is an undo SLR that records a logical undo of r2; its next log record to be un-
done and previous log record are rl and r4, respectively.

An undo of an undone operation is the same as a redo of the original oper-
ation. The undo of a PLR logged for an undone operation is performed using
the redo information in the original log record or the undo (or redo) informa-
tion in the undo (or redo) SLR. This action is also logged by a PLR with the
following values. The Type is redo PLR, the OriginalLSN and the UndoNe-
xtLSN are the same LSNs as those in the PLR that has been undone. The undo
of an SLR logged for an undone operation is perfi3rmed using its own undo
information. This action is logged by a PLR with the following values. Its Un-
doNextLSN is the same as that of the SLR, and its OriginalLSN is the LSN of
the SLR. When a logical undo occurs, an SLR is recorded instead of a PLR.
The SLR's Type is redo SLR and its UndoRedoData is undo and redo infor-
mation for the logical undo. Its PreviousLSN and UndoNextLSN are the same
as those of the PLR. In Fig. 2, there are two continuous redo operations logged
by r6 and r7. The record r6 is a redo SLR that records the logical undo of undo
SLR rs. Therefore, r6 points to rj as its next log record to be undone. The re-
cord r7 is a redo PLR that logs undoing the undone operation logged by undo

• OdginalLSN O original log record
• ~=== PreviousLSN

~1.., UndoNextLSN Q PLR (~ SLR

Fig. 2. An example of user-interactive undo logged by PLRs and SLRs.

W.-Y. Kim et al. / Information Sciences 114 (1999) 237-253 247

PLR r4. Therefore, r7 and r4 point to the same original log record, r3, and the
next log record to be undone, r2.

An undo of a redone operation is the same as an undo of the original oper-
ation. Except that the type of operation is undo, this operation is processed in
almost the same way as in the redo operation that has just been described. In
Fig. 2, there are two continuous undo operations logged by r8 and r9. The re-
cord rs is an undo PLR that logs undoing the redone operation logged by redo
PLR rT. Therefore, r8 and r7 point to the same original log record, r3, and the
next log record to be undone, r2. The record r9 is an undo PLR that records
undoing the redone operation logged by redo SLR r6. Therefore, r9 points to
r6 as its original log record, and rl as its next log record to be undone.

A transaction rollback algorithm: To resolve the repetition problem of the
history undo model, we propose a new transaction rollback algorithm that
skips these repetitive undo and redo operations using the Type and UndoNe-
xtLSN fields of PLRs and SLRs. The algorithm is as follows. Let Rcurrent be the
last log record of a transaction to be rolled back.

Algorithm transaction rollback:
I. Read Rc.~rCnt.
2. If Rcurrent is a normal log record, do the corresponding undo action and

write a CLR for this action; set the UndoNextLSN of the CLR to the Pre-
viousLSN of Rcurrent; set/{current, a log re, cord to be accessed next, to the Pre-
viousLSN of Rcurrent.

3. If Rcurren t is a CLR, set /{current to the UndoNextLSN of Rcurrent-
4. If/{current is a PLR or an SLR, do the following actions:

(a) if the Type of Rcurre,t is undo, go to Step 4(c);
(b) if the Type of Rcurrent is redo, do the following actions:

i. if/{current is a PLR, read Roriginal - the log record referenced by the
OriginalLSN of Rcurrent;

ii. do the corresponding undo action and write a CLR for this action;
set the UndoNextLSN of the CLR to the UndoNextLSN of/{current;

(c) set Rcurrent to the UndoNextLSN of Rcurrent.
5. go to Step 1.

This algorithm handles SLRs in the same way as PLRs except that undoing
SLRs skips Step 4(b)i - a step to access the original log records. It is because
SLRs are recorded instead of PLRs when logical undos occur, and SLRs con-
tain the same kind of information as PLRs except that SLRs contain undo in-
formation instead of OriginalLSN. For ease of explanation, we regard SLRs as
PLRs hereafter.

This algorithm has two skipping processes, which skip the log records al-
ready undone in transactions. First, in Step 4(a), when the Type of Rcurrent is

248 144 - K Kim et al. / Information Sciences 114 (1999) 237-253

undo, the algorithm skips undoing it, since the original operation has already
been undone before the rollback. This is similar to the idea used in ARIES that
never undoes CLRs. Second, in Step (4)c, it skips all the log records between
the PLR and the corresponding original log record of the PLR since the next
log record to be undone is the UndoNextLSN instead of the PreviousLSN of
Rcurrent. That is, if there are n undo operations before a transaction rollback re-
quest, the LSN of the next log record to be accessed after undoing the log re-
cord for the nth undo is the PreviousLSN of the corresponding original log
record, not the PreviousLSN of the current log record. This means it skips
at least (n - 1) PLRs between the PLR and the original log record. Though,
unlike in ARIES, this skipping area includes both undo and redo PLRs, we
can still use the UndoNextLSN concept since we follow the history undo mod-
el. In this model, if the nth undo operation is redo, the state reached by this
operation is the same as the one reached by the original operation. Therefore,
undoing the nth operation means undoing the original operation. These skip-
ping processes, which skip the repetitive undo and redo operations, reduce
the number of log records to be processed, and therefore, enable faster rollback
of transactions.

Fig. 3 shows an example of a transaction rolled back by the proposed algo-
rithm. At the requesting point of the transaction rollback, the operation 02
was undone at r5 and redone at r6, and the operation 03 was undone at r4.
The rollback process has undone only two operations instead of six; it has un-
done the operation 02 that was redone at r6 and the operation O1 at rl, but has
skipped the log records rs, r4, r3, and r2. In this way the proposed algorithm
skips undoing repetitive undo and redo operations and undoes only the oper-
ations still reflected in the database.

Crash r e c o v e r y a l g o r i t h m s : We utilize crash recovery algorithms of ARIES,
which consist of the analysis pass, redo pass and undo pass. User-interactive
undo has no effect on the analysis pass of determining the starting point of

. ° °
" - - o . °

o . . . ° ° ° ° . ° , " °]..°" ~°" ° ' . ° . ° . ° ° ° . ° . ° ° ° " ° * ° ' ° ° ° ° ° ° . .

~ 1~ °°" °°°°°.° ~ °

odginal log record
transaction rollback request Q PLR Q CLR

Fig. 3. An example of a transaction rollback.

W.-Y. Kim et al. / Information Science~ 114 (1999) 237-253 249

the redo pass and loser transactions. During the redo pass of repeating history,
we have to perform additional operations that read the redo information from
the original log records when redoing PLRs. During the undo pass, we use the
same transaction rollback algorithm as mentioned above.

Bulk undo: A bulk undo is defined as a new operation that undoes a sequence
of user operations with just one interaction. The bulk-undone operations can
be undone like an undone operation. Before requesting bulk undo operations,
undopoints should be established during forward processing of a transaction to
mark the states to be restored. When a user requests establishing an undopoint
at any state, the LSN of the latest log record written by the transaction, called
UndopointLSN, is stored in virtual storage and the corresponding undopoint
identifier is returned.

A bulk undo to an undopoint undoes all the log records from the last to the
undopoint and writes PLRs for these actions. The PLRs logged by a bulk undo
keep additional information of the undopoint identifier to differentiate them
from other PLRs for ordinary undo operations. Like a transaction rollback al-
gorithm, the bulk undo skips the log records already undone as well as repet-
itive undo and redo operations. After a sequence of operations is bulk-undone,
these operations can be redone by one undo operation. Fig. 4 shows an exam-
ple of a bulk undo operation and its redo. Dark circles represent PLRs written
for the operations that were undone or redone by bulk undo operations. Un-
dopointl was established after executing the operation O1. At tl, a bulk undo
to Undopointl undid two operations, 04 and 03, but skipped r3 and r2 written
for the operation O2 since it had already been undone. At t2, after executing the
operation 05, two undo operations were requested. The first one undid log re-
cord r8 and wrote this action at r9; the second one undid a bulk undone oper-
ation from r7 to r6 and wrote these actions at r~o and rll.

The bulk undo to an undopoint resembles partial rollback to a savepoint,
but differs in that it allows undoing bulk-undone operations. The bulk undo
is useful for both the users and the system. It is convenient for the users since
users can undo a sequence of operations with just one simple interaction. From
the system's viewpoint, the bulk undo is efficient since it reduces interactions

Fig. 4. An example of a bulk undo operation and its redo.

250 V~-E Kim et al. / Information Sciences 114 (1999) 237-253

between the user and the system; it also reduces the number of log records to be
processed during bulk undo by skipping repetitive undo and redo operations.

4.3. Performance analysis

This section analyzes the extension overhead to support user-interactive un-
do by comparing our method with ARIES. This comparison is restricted to un-
do operations since redo operations are not provided by the partial rollback
facility in ARIES. We also restricted this comparison to page-oriented undo
only since the probability that logical undo occurs is relatively low. We treat
a partial rollback as a bulk undo operation in the proposed method.

The most important measures as described by Reuter [15] are as follows: (1)
overhead during normal processing; (2) recovery speed after a failure; (3) space
requirement of the log file. The overhead during normal processing and speed
of crash recovery can be analyzed by counting only log access time since our
method and ARIES would require the same data access time and execution
time, but different log access time since they use different log record types
for undo operations. The log access time is proportional to the number of
log records to be read, the number of log records to be written, and the size
of a log record.

During normal processing, transactions may be in forward or rollback pro-
cessing. In forward processing, although the proposed method writes PLRs for
undo operations while ARIES writes CLRs, the numbers of log records read
and written by the two methods are identical. In rollback processing, the
two methods access the same number of log records since both of them skip
the log records already undone, undo other log records and log these undo ac-
tions. Therefore, during normal processing, the proposed method accesses the
same number of log records as ARIES.

Restart recovery consists of the analysis pass, redo pass, and undo pass.
During the analysis pass, two methods read the same number of log records
since they have recorded the same number of log records during the normal
processing. During the undo pass, the number of log records to be read
and written are identical in the two methods since the undo pass is similar
to transaction rollback. However, during the redo pass, the proposed method
has to read the original log records of PLRs to get: the redo information in
case their updates have not yet been reflected on the database. In the worst
case, the overhead is significant since reading the original log record requires
reading another log page; however, this overhead may be reduced when the
original log record is stored in the same log page containing the PLR and
when the original log records for a sequence of PLRs are stored in the same
log page.

The size of a PLR is quite smaller than that of a CLR. This is because a
CLR keeps the redo information while a PLR only keeps the LSN of the

l E - K Kim et aL / Information Sciences 114 (1999) 237-253 251

corresponding original log record. Redo information in a CLR is quite larger
in size than an LSN and can be very large in some cases depending on the types
of operations that have been logged.

Compared with ARIES, the proposed method performs the normal process-
ing as fast or even slightly faster since it accesses the same number of log re-
cords whose sizes are smaller than CLRs of ARIES. Similarly, our method
performs the analysis pass and undo pass during crash recovery as fast as or
even faster than ARIES. However, during the redo pass, if the database al-
ready reflects the PLRs' updates, our method works faster than ARIES; other-
wise, it has additional overhead of reading the corresponding original log
records. Therefore, the overall performance of crash recovery is comparable
to that of ARIES in spite of the additional overhead in the redo pass since it
is as fast as or even faster in the analysis and undo passes.

The space requirement of the log file carl be expressed by the number of log
records written times the size of a log record. Since both methods have the
same number of log records to be written and the size of a PLR is shorter than
a CLR, the space requirement of the log file in our method is slightly smaller
than in ARIES.

In summary, the proposed method provides performance comparable to
that of ARIES in normal processing, crash recovery, and space requirement.
This result indicates that our method supports the user-interactive undo with-
out performance degradation compared with existing recovery facilities, espe-
cially those in ARIES.

5. Conclusions

In authoring processes, users need user-interactive undo to correct their tri-
als and errors easily by undo and redo operations. Previous research on user-
interactive undo has been restricted on its models and user-interactive undo has
been provided by the application programs themselves. Since the implementa-
tion of user-interactive undo is quite complex, it poses significant burden to ap-
plication programmers. Moreover, if an application employs a DBMS, it has
additional overhead for handling the data the DBMS itself updates.

In this paper, we have proposed a new recovery method with which a DBMS
can support user-interactive undo. The proposed method can be implemented
by extending ARIES, a well-known recovery method. In particular, we support
the user-interactive undo without altering the basic idea of a crash recovery fa-
cility in ARIES. We adopt the history undo model as our undo model because
it has a nice property of being able to roll back to any previous state. We have
proposed the notion of the PLR and SLR that allows redo of undone opera-
tions and resolves the repetition problem of the history undo model. The

252 w . - E Kim et al. /ln[orrnation Sciences 114 (1999) 237-253

primary role o f the SLR is to avoid logical redo and, at the same time, to re-
duce the number o f logical undos.

The proposed method provides both user-controlled undo and redo opera-
tions in a D B M S while the partial rollback facility in A R I E S provides only
undo operations. In addition, its performance is comparable to that o f ARIES .
In this paper, we have presented two solutions to the problem in the history
undo model: the first is an algori thm that guarantees last rollback o f a trans-
action in spite o f repetitive undo and redo operations; the second is a bulk un-
do operat ion by which a user can restore the database to a predetermined state
with one interaction. Providing user-interactive undo in the D B M S is a new
concept, and we expect that our new D B M S facilities relieve application pro-
grammers o f the overhead of implementing user-interactive undo themselves
in D B M S applications.

Acknowledgements

This work was partially supported by the "Deve lopment o f a general pur-
pose multiuser object-storage system with efficient support for variable length
attributes (II)" project sponsored by Korea Telecom.

References

[1] H. Korth, G. Speegle, Long-duration transactions in software design projects, In: Proceedings
of the Sixth International Conference on Data Engineering, 1EEE, 1990, pp. 568-574.

[2] A. Ginige, D.B. Lowe, J. Robertson, Hypermedia authoring, IEEE Multimedia 2 (4) (1995)
24-35.

[3] P. Wright, Designing the Human-Computer Interface to Hypermedia Applications, In: D.H.
Jonassen, H. Mandl (Eds.), Designing Hypermedia for Learning, Springer, Berlin.

[4] H. Korth, W. Kim, F. Bancilhon, On long-duration CAD transactions, Information Sciences
46 (1-2) (1988) 73-108.

[5] A. Prakash, M.J. Knister, A framework for undoing actions in collaborative systems, ACM
Trans. on Computer-Human Interaction 1 (4) (1994) 295-330.

[61 T. Berlage, A selective undo mechanism for graphical user interface based on command
objects, ACM Trans. on Computer-Human Interaction 1 (3) (1994) 269-294.

[7] H. Thimbleby, User Interface Design, Addison-Wesley, Reading, MA, 1990.
[8] J.E. Archer, R. Conway, F.B. Schneider, User recovery and reversal in interactive systems,

ACM Trans. on Program. Lang. Sys. 6 (1) (1984) 1-19.
[9] C. Mohan et al., ARIES: A transaction recovery method supporting fine-granularity locking

and partial rollback using write ahead logging, ACM Trans. on Database Systems 17 (1)
(1992) 94-162.

[10] J. Gray, A. Reuter, Transaction Processing: Concepts and Techniques, Morgan Kaufmann,
Los Altos, CA, 1993.

W.-Y. Kim et al. / Information Sciences 114 (1999) 237-253 253

[11] J. Gray et al., The recovery manager of the system R database manager, ACM Computing
Surveys 13 (2) (1981) 223-242.

[12] P.A. Bernstein, V. Hadzilacos, N. Goodman, Concurrency Control and Recovery in Database
Systems, Addison-Wesley, Reading, MA, 1987.

[13] T. Haerder, A. Reuter, Principles of transaction-.oriented database recovery, ACM Comput-
ing Surveys 15 (4) (1983) 287-317.

[14] C. Mohan, F. Levine, ARIES/IM: An effectiw: and high concurrency index management
method using write-ahead logging, In: Proceedings of the International Conference on
Management of Data, ACM SIGMOD, 1992, pp. 371-380.

[15] A. Reuter, Performance analysis of recovery techniques, ACM Tans. on Database Systems 9
(4) (1984) 526-559.

