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Abstract In this paper, we define a new class of queries, the top-k multiple-type integrated
query (simply, top-k MULTI query). It deals with multiple data types and finds the informa-
tion in the order of relevance between the query and the object. Various data types such as
spatial, textual, and relational data types can be used for the top-k MULTI query. The top-
k MULTI query distinguishes itself from the traditional top-k query in that the component
scores to calculate final scores are determined dependent of the query. Hence, each compo-
nent score is calculated only when the query is given for each data type rather than being
calculated apriori as in the top-k query. As a representative instance, the traditional top-k
spatial keyword query is an instance of the top-k MULTI query. It deals with the spatial
data type and text data type and finds the information based on spatial proximity and textual
relevance between the query and the object, which is determined only when the query is
given. In this paper, we first define the top-k MULTI query formally and define a new spe-
cific instance for the top-k MULTI query, the top-k spatial-keyword-relational(SKR) query,
by integrating the relational data type into the traditional top-k spatial keyword query. Then,
we investigate the processing approaches for the top-k MULTI query. We discuss the scal-
ability of those approaches as new data types are integrated. We also devise the processing
methods for the top-k SKR query. Finally, through extensive experiments on the top-k SKR
query using real and synthetic data sets, we compare efficiency of the methods in terms of
the query performance and storage.
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1 Introduction

1.1 Background

In the era of big data, new data types are frequently generated, and the data integrating
multiple types are commonly encountered. Thus, multiple data types such as locations, texts,
or structured data are frequently involved in queries searching for the information from data.
For example, we search for the information that is close to the user using the location. We
also often search for the information that the user wants using the keywords. We may also
search for the information using a structured type such as the name or phone number. For
convenience, we integrate these queries on different data types in one query form. We define
such queries as the top-k MULtiple-Type Integrated query (simply, top-k MULTI query).
The top-k MULTI query finds the information in the order of relevance between the query
and the object.

A representative instance of the top-k MULTI query is the top-k spatial keyword query [3,
8, 12]. The top-k spatial keyword query searches for the information based on spatial prox-
imity and textual relevance between the query and the object. Figure 1 shows an example
top-k spatial keyword query. The object consists of a spatial attribute and a textual attribute.
The query is “Find the top-1 object that is proximate to the location (3, 7) and that is rele-
vant to the keyword ‘hospital’.” The query finds o5 as the result based on spatial proximity
and textual relevance.

There have been many research efforts on top-k spatial keyword query processing [3,
8–10, 12, 20, 21]. The efforts can be classified into two categories according to the index
structures used: 1) the hybrid index approach [3, 10, 12, 20, 21] and 2) the separate index
approach [8]. The former builds the spatial index and textual index in a combined index. It
maintains both the spatial attribute and textual attribute for each object together; thus, it does
not need to merge the objects retrieved from the individual indexes. The latter maintains the
spatial index and the textual index separately and merges the objects that are retrieved from
each of them. The index structure of the separate index approach is simpler than that of the
hybrid index approach; thus, it is easier to maintain.

1.2 Our contributions

In this paper, we make the following four contributions. First, we define the top-k MULTI
query formally. It deals with multiple data types and finds the information in the order of
relevance between the query and the object. The top-k MULTI query is practically important
since we can find relevant results even if we do not know the exact values to find. We clarify

Object 
ID

Spatial 
Attribute Textual Attribute

o1 (2, 3) … Mexican food…

o2 (3, 1) … movie theater…

o3 (5, 1) … hospital…

o4 (8, 5) … gas station…

o5 (2, 7) … hospital…

o6 (7, 6) … department store…

Object 
ID

Spatial 
Proximity

Textual 
Relevance

o1 0.7 0.5

o2 0.5 0.5

o3 0.6 1.0

o4 0.4 0.5

o5 0.9 1.0

o6 0.7 0.5

Top-1 Query: 
- Query location: (3,7) 
- Query keywords: {hospital}

Figure 1 An example top-k spatial keyword query
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the difference between the top-k MULTI query and the traditional top-k query [7]. The
component scores for the former are determined dependent of the query while those for the
latter are determined independent of the query. That is, the former calculates the component
score from the query and the object when the query is given while the latter uses the attribute
value of the object as the component score itself regardless of the query. Let us consider
two relational attributes as an example. One attribute represents the score for ‘Math’ and
the other one for ‘English’. The top-k MULTI query finds the top-k students whose scores
for ‘Math’ and ‘English’ are the closest to the specific given scores; the top-k query finds
the top-k students whose combined scores obtained by summing up the attribute values for
‘Math’ and ‘English’ are the highest. Thus, query processing for these two classes of queries
is quite different.

Example 1 Figure 2a shows that, in a top-k query, the component scores of the objects are
the attribute values themselves. As the top-1 result, the query returns o3. Figure 2b shows
that, in a top-k MULTI query, the component scores of the objects are derived from the
given query values and the attribute values. As the top-1 result, the query returns o2.

Second, to show the importance of the top-k MULTI query, we define a new specific
instance of the top-k MULTI query, i.e., the top-k spatial-keyword-relational(SKR) query, by
integrating the relational data type to the top-k spatial keyword query. Relational closeness
is a new ranking measure for the relational attribute in the top-k SKR query and represents
relevance between the relational value of the object and the relational value of the query.
This feature distinguishes the top-k SKR query from the top-k query. In the top-k query, the
relational attribute value itself is used for the component score as explained in Example 1.

Objects Attribute1 Attribute2

o1 90 50

o2 80 60

o3 70 80

o4 50 90

o5 30 80

o6 60 20

Objects Attribute1 Attribute2

o1 90 50

o2 80 60

o3 70 80

o4 50 90

o5 30 80

o6 60 20

Query: {80, 70}

Objects Component 
score1

Component 
score2

Combined 
Score

o1 90 80 85

o2 100 90 95

o3 90 90 90

o4 70 80 75

o5 50 90 70

o6 80 50 65

(a) Score calculation in top-k queries.

(b) Score calculation in top-k MULTI queries.

User preference: 
{0.5, 0.5}

Objects Component 
score1

Component 
score2

Combined 
Score

o1 90 50 70

o2 80 60 70

o3 70 80 75

o4 50 90 70

o5 30 80 55

o6 60 20 40

User preference: 
{0.5, 0.5}

Figure 2 The comparison between the top-k MULTI query and the top-k query
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Relational closeness can be useful when finding the objects that have relational values sim-
ilar to the given relational query value. Especially, even if the user does not know the exact
values of objects to find, we can allow finding the most relevant objects to the query value
based on relational closeness. To show the usefulness of the top-k SKR query, we introduce
two real-life applications.

Application 1 Figure 3 shows Google Maps. Let us consider a query “Find a restaurant
that is close to the current location, sells ‘pizza’, and has the number of reviews near to
10.” In the query, there are three measures to find the result relevant to the query: 1) spatial
proximity, 2) textual relevance, and 3) relational closeness. That is, spatial proximity is
calculated by the distance between the location of the restaurant and the location of the
user; textual relevance is calculated by the relevance between the textual description of the
restaurant and a query keyword ‘pizza’; relational closeness is calculated by the difference
between the number of reviews of the restaurant and 10.

Application 2 Figure 4 shows data for patients with infectious diseases. Each record con-
sists of the location of a patient, disease name, and infection year. Let us consider a query

Figure 3 Google Maps
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Patient ID Location Disease Year

A (20,20) Diphtheria 2011

B (30,20) Diphtheria 2005

C (70,50) SARS 2002

D (15,60) Typhoid 2007

E (25,15) SARS 2003

F (10,10) Tuberculosis 2009

A B
C

D

E

F

Beijing

Figure 4 Data for patients with infectious diseases

“Find a patient whose residence is close to ‘Beijing’ (25, 25), disease name is ‘SARS’, and
infection date is around 2002.” Here, the difference between the infection year and 2003 is
used as the relational closeness. In this query, E would be the top-1 result.

Example 2 Consider a top-k SKR query to find the top-1 object that is proximate to the
query location (3, 7), relevant to the query keyword {hospital}, and close to the relational
query value 3. Here, user preference is given as follows: 1/3 for spatial proximity, 1/3 for tex-
tual relevance, and 1/3 for relational closeness. Figure 5 shows an example top-k SKR query.
For the given query, we first calculate spatial proximity, textual relevance, and relational
closeness of each object. Then, we calculate their total scores considering user preference.
As the result, we return o5.

Third, we investigate processing approaches for the top-k MULTI query: the hybrid index
and separate index approaches. We discuss the scalability of those approaches as the new
data types are integrated. Scalability of the approach is the key issue for top-k MULTI query
processing since many data types can be integrated for the top-k MULTI query. The hybrid
index approach builds all the indexes used for the top-k MULTI query in an integrated
form; i.e., it builds them in multi-level indexes. As a result, the indexes built in low-levels
are fragmented into many small indexes. In contrast, the separate index approach integrates
new indexes easily since all the individual indexes are maintained independently. Then,
we propose new query processing methods for the top-k SKR query. First, we propose a
new query processing method based on the separate index approach, namely, SeparateSKR.
Second, we present two methods by extending representative methods for the top-k spatial
keyword query based on the hybrid index approach to the top-k SKR query.

Object 
ID

Spatial 
Attribute Textual Attribute Relational 

Attribute

o1 (2, 3) … Mexican food… 10

o2 (3, 1) … movie theater… 5

o3 (5, 1) … hospital… 6

o4 (8, 5) … gas station…hospital… 1

o5 (2, 7) … hospital…hospital… 2

o6 (7, 6) … department store… 5

Object ID Spatial 
Proximity

Textual 
Relevancy

Relational 
Closeness

Total 
Score

o1 0.7 0.0 0.3 0.333

o2 0.5 0.0 0.8 0.433

o3 0.6 0.5 0.7 0.6

o4 0.4 0.5 0.8 0.567

o5 0.9 1.0 0.9 0.933

o6 0.7 0.0 0.8 0.5

Top-1 Query: 
- Query location: (3,7)
- Query keywords: {hospital}
- Query value: 3
- User preference: (1/3, 1/3, 1/3)

Figure 5 An example top-k SKR query
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Fourth, through extensive experiments on the top-k SKR query using real and synthetic
data sets, we compare efficiency of the methods in terms of the query performance and stor-
age. We show that SeparateSKR is more efficient than the extended hybrid index methods
by up to 13.30 times for the top-k MULTI query and by up to 448.68 times for single-
type queries. We also show that SeparateSKR requires less storage than the extended hybrid
index methods by up to 2.99 times.

The paper is organized as follows. Section 2 explains the top-k spatial keyword query and
the processing methods for the query as a preliminary. Section 3 defines the top-k MULTI
query. Section 4 discusses scalability of processing approaches for the top-k MULTI query.
Section 5 investigates the top-k SKR query as an instance of the top-k MULTI query and
the associated query processing method SeparateSKR based on the separate index approach.
Section 6 presents performance evaluation. Section 7 summarizes and concludes the paper.

2 Preliminaries

2.1 The top-k spatial keyword query

In the top-k spatial keyword query, each object o in the database D consists of 1) the spatial
attribute o.spatial and 2) the textual attribute o.textual. The query q consists of 1) the
query location q.location, 2) the query keywords q.keywords, and 3) the user preference
between the spatial attribute and the textual attribute q.p. The query returns k objects with
the highest scores combining the component scores for the ranking measures. The ranking
measures used are 1) spatial proximity and 2) textual relevance. Given a query q, the scoring
function for an object o is as shown in (1) [8].

S(q, o) = q.p × Sspatial(q.location, o.spatial)

+ (1 − q.p) × Stextual(q.keywords, o.textual) (1)

In (1), Sspatial (q.location, o.spatial) is a function for measuring spatial proximity
between q and o; here, we use the Euclidean distance. Here, SSpatial(q.location, o.spatial)
is normalized by the largest possible SSpatial(q.location, o.spatial) for a given data set.
Stextual(q.keywords, o.textual) is a function for measuring textual relevance between q

and o; here, we use TF-IDF as shown in (2) [1]. T F (o.textual, q.keywordsi) is the term
frequency for q.keywordsi in o.textual; DF (D, q.keywordsi) the document frequency
for q.keywordsi in D. Here, ST extual(q.keywords, o.textual) is normalized by the largest
possible ST extual(q.keywords, o.textual) for a given data set.

Stextual(q.keywords, o.textual) =
n∑

i=1

Stextual(q.keywordsi , o.doc)

=
n∑

i=1

T F(o.textual, q.keywordsi ) log
N

DF(D, q.keywordsi)

(2)

We explain the spatial index and the textual index that can be used for efficient top-k spa-
tial keyword query processing. Those indexes maintain the information that is needed to
calculate the component scores for respective ranking measures (i.e., spatial proximity and
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(a) Representation of objects and MBRs. (b) The structure of the spatial index for (a).

N3N2N1

N4 N5

N6

object
ID

object
pointer

MBR

q.loc

N1

N2

N3

N4

N5

N6

Figure 6 The spatial index

textual relevance). Figure 6 shows the spatial index. It is a hierarchical tree structure con-
sisting of leaf nodes and internal nodes. An entry of the leaf node consists of the object ID,
object pointer, and MBR of the object. The spatial index clusters the objects into leaf nodes
and clusters the leaf nodes into internal nodes by their similarity. The representative spa-
tial indexes are the R-tree family [2, 5, 13] and the MLGF family [14–16]. The difference
between them is that the R-tree clusters the objects in the original space while the MLGF
clusters them in the transform space. Figure 7 shows the inverted index. The inverted index
is a representative textual index. It consists of keywords and their posting lists where each
keyword has a posting list. Each keyword keyword has DF (D, keyword), and each post-
ing for an object o in the posting list has <object ID, T F(o.textual, keyword) >. For
efficient searching for the keywords, a keyword index is used.

The existing methods for the top-k spatial keyword query are classified into two
approaches: 1) the hybrid index approach and 2) the separate index approach. We explain
the former in Section 2.2 and the latter in Section 2.3.

2.2 The hybrid index approach

There are two research directions in the hybrid index approach: 1) spatial-then-textual [3,
10] and 2) textual-then-spatial [12, 20, 21]. The former builds a spatial index on the entire
set of objects based on the spatial attribute, partitioning it into groups (i.e., leaf nodes), and
then, builds a textual index on the set of objects in each group. The latter builds a textual
index on the entire set of objects, partitioning it into groups (i.e., posting lists), and then,
builds a spatial index on the set of objects in each group. The representative method for the
former is IR-tree [3, 10] and that for the latter is S2I [12].

Figure 7 The inverted index the keyword index posting lists of keywords

a posting <object ID, TF>
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o o o o o o

N N

N3N2N1

N4 N5

N6

N N N

Inverted Index

Inverted Index

Inverted Index

Inverted Index Inverted Index

Inverted Index

Figure 8 The index structure of IR-tree

Figure 8 shows the index structure of IR-tree. IR-tree first builds a spatial index, and then,
builds an inverted index on each leaf node and internal node of the spatial index. Hence, each
node of the spatial index maintains not only spatial information but also textual information
for each entry. IR-tree finds the top-k results by extending Incremental NN [6], which is a
representative algorithm for finding k nearest neighbors based on the distance, so as to use
the combined score of spatial proximity and textual relevance instead of the distance.

Figure 9 shows the index structure of S2I. S2I first builds an inverted index, and then,
builds a spatial index on each posting list of the inverted index. Hence, each keyword main-
tains a spatial index that involves only those objects containing the keyword itself. S2I finds
the top-k results by extending the query processing method of IR-tree to multiple indexes
for a given set of query keywords. We note that S2I is desirable when the number of query
keywords is small since we need to consider only those objects that contain the keywords.
However, since each object contains multiple keywords, the same object is stored in mul-
tiple indexes redundantly. Thus, when the number of query keywords is large, S2I is not
desirable.

2.3 The separate index approach

In the separate index approach, we need to support top-k pruning while supporting effi-
cient merging of objects that are retrieved from the spatial and textual indexes. However,
it has been considered difficult to support both top-k pruning and efficient merging since

Figure 9 The index structure of
S2I

The keyword 
index

Spatial index1

Spatial index2

Spatial index3
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either one requires a different criterion for clustering the objects: 1) the score for the for-
mer and 2) the object ID for the latter. The rank-aware separate index method (RASIM) is
the method based on the separate index approach for the top-k spatial keyword query [8].
RASIM supports clustering of the objects by two different criteria by employing the parti-
tioning technique. That is, it partitions the entire set of objects into a set of groups sorted by
the score for top-k pruning and sorts the objects in each group by the object ID for efficient
merging. Here, we use a disk page as a group for controlling physical access.

Figure 10 shows the index structure of RASIM. It consists of a rank-aware spa-
tial index for the spatial index and a rank-aware inverted index for the textual index.
Figure 10a shows a rank-aware spatial index. Each entry of the leaf node consists of
< min(x, y), max(x, y), objectID >. Here, min(x, y) and max(x, y) represent the MBR
of the object. The rank-aware spatial index partitions the entire set of objects into leaf nodes
and sorts the objects in a leaf node in the order of the object ID. Here, a leaf node is mapped
to a disk page. Figure 10b shows a rank-aware inverted index. It partitions the entire set of
objects into posting lists and further partitions the set of objects in each posting list in the
unit of a disk page according to textual relevance (i.e., TF). We sort the objects in a group in
the order of the object ID. When the query is given, RASIM retrieves a ranked list of groups
in the order of the score from the rank-aware spatial index and the rank-aware inverted
index, respectively. It applies the threshold algorithm (TA) [4] to the two ranked lists in the
unit of groups to support top-k pruning while merging objects in the groups based on the
object ID.

N2N1

N4

N3

N5

N6

Object ID Object ID Object ID

Keyword 
‘k1’

Keyword 
‘k2’

<min, max, object ID>

< TF, object ID>

(a) Rank-aware spatial index. 

(b) Rank-aware inverted index.

Object ID

TF

Object ID

Figure 10 The index structure of RASIM
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Zhang et al. [22] have proposed the method that models the top-k SK query as m + 1
sorted lists and that uses the TA algorithm, which is similar to RASIM [8]. The biggest
difference between Zhang et al.’s method and RASIM is the spatial index structure used.
The former uses the space-filling curve (i.e., Z-order) while the latter uses the multidi-
mensional index (i.e., MLGF). In this paper, we only consider the clustering criterion (i.e.,
relational, spatial and textual attributes) without considering the specific index structures
used to implement them. The multidimensional index structure can be used for not only the
separate index approach but also the hybrid index approach, but the space-filling curve can-
not be used for the hybrid index approach. For the sake of fairness, in Section 5, we use the
multidimensional index structure for both the hybrid index approach and the separate index
approach when we devise the methods for the top-k SKR query.

3 The top-k multiple-type integrated (MULTI) query

3.1 Problem definition

In this section, we define the top-k MULTI query formally. The top-k MULTI query is a
generalized form of the top-k spatial keyword query. That is, while the top-k spatial keyword
query deals with only two data types, i.e., the spatial data type and the textual data type, the
top-k MULTI query deals with multiple arbitrary data types including the spatial, textual, or
relational data types. In general, each data type can have multiple attributes. Nevertheless,
without loss of generality, we assume we have only one attribute for each data type to
focus on different data types. We then assign a ranking measure to each attribute. The final
score of an object is calculated by summing up the component scores weighted by the user
preference as shown in (3). Here, Si(q, o) is a function to calculate the component score
for an attribute i, and q.pi is the user preference for i where q.pi(1 ≤ i ≤ d) ≥ 0. We
normalize q.pi’s so that

∑d
i=1 q.pi = 1. Here, Si(q, o) is normalized by the largest possible

Si(q, o) for a given data set.

SMULT I (q, o) =
d∑

i=1

Si(q, o) × q.pi (3)

We define a new specific instance of the top-k MULTI query: the top-k spatial-keyword-
relational query (simply, the top-k SKR query). The top-k SKR query is a query extended
from the top-k spatial keyword query by adding the relational data type. In a top-k SKR
query, the object o consists of 1) a spatial attribute o.spatial, 2) a textual attribute o.textual,
and 3) a relational attribute o.relational. The top-k SKR query consists of 1) a query
location q.location, 2) a query keywords q.keywords, and 3) a relational query value
q.relational. The top-k SKR query uses a ranking measure for each attribute: 1) spatial
proximity, 2) textual relevance, and 3) relational closeness.

We calculate relational closeness between q and o as shown in (4). Here, o.relational

is the relational value of the object, and q.relational is the relational value of the query.
If the relational data type is not numeric (i.e., date, time, char, or varchar), we first convert
the attribute values to the numeric values following a linear order. Here, Srelational(q, o) is
normalized by the large possible Srelational(q, o) for a given data set.

Srelational(q, o) = |q.relational − o.relational| (4)
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In this paper, we focus on the efficiency of query processing instead of the effectiveness
of a ranking function. The query processing method we propose is valid for any ranking
function as long as it is monotone with respect to each component score Si(q, o).

3.2 Comparison with the top-k query

In this section, we clarify the difference between the top-k MULTI query and the top-k
query [7]. The top-k query returns k objects with the highest scores according to the scoring
function as shown in (5) [7].

ST OPK(o) =
d∑

i=1

Si(o) × q.pi (5)

The main difference of the top-k MULTI query and the top-k query relies on the scoring
function Si() for each component score as shown in (3) and (5). The former calculates the
component score from the given query and the attribute value of each object; the latter uses
the attribute value itself as the component score. That is, the top-k MULTI query deals with
the component scores that are determined dependent of the query, i.e., Si(q, o), while the
top-k query deals with the component scores that are determined independent of the query,
i.e., Si(o).

4 Scalability of processing methods for the top-k multiple-type integrated
query

We consider the hybrid index and separate index approaches in the top-k spatial keyword
query as the possible candidate approaches for the top-k MULTI query. In this section, we
discuss the scalability of these approaches as more data types are newly integrated.

4.1 Scalability of the hybrid index approach

In the hybrid index approach, we need to build all the indexes for the data types involved
in the top-k MULTI query in an integrated form. Figure 11 shows a general form of the
hybrid index for processing the top-k MULTI query when N data types are involved. In
the hybrid index approach, we build all the indexes involved in multiple levels. We call
the index for level i the ith-level index. We build the 1st-level index for the entire set of
objects, partitioning the objects into groups. Then, we build the 2nd-level index for the
objects in each group, partitioning the group into sub-groups. We repeat this process until
the N th-level index is built.

We can model the hybrid index as a combination of multiple indexing and partition-
ing. Hence, we partition the objects into groups. We then build an index on the groups
based on one data type and an index on the objects in each group based on the other data
type. When N data types are involved, we formulate a hybrid index as shown in (6). In
indexing(A) → indexing(B), → means partitioning the objects into groups based on A;
indexing(A) building an index on the groups based on A; indexing(B) building an index
on the objects for each group based on B. We can obtain a possible hybrid index method
per each permutation of the attributes as in (6). As a result, we obtain N ! different methods.

indexing(Attribute1) → indexing(Attribute2) → ... → indexing(AttributeN ) (6)
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1st-level  
index

2nd-level 
index

Nth-level 
index

Figure 11 A general form of the hybrid index for processing the top-k MULTI query

Let us consider the top-k spatial keyword query as an instance of the top-k MULTI
query. According to (6), we can generate two methods: 1) indexing (SpatialAttribute)
→ indexing (T extualAttribute) and 2) indexing(T extualAttribute) → indexing

(SpatialAttribute). The former is mapped to IR-tree [3] explained in Section 2; the latter
to S2I [12].

The hybrid index methods have the following two limitations in terms of scalability as
new data types are integrated. 1) The indexes are excessively fragmented; the lower the
index level is, the more severe the fragmentation is. For example, while IR-tree builds one
spatial index on the entire set of objects, it builds multiple fragmented inverted indexes for
the leaf nodes of the spatial index. 2) The hybrid index methods are inefficient for processing
partial-types of the top-k MULTI query, e.g., only spatial queries or only keyword queries
since they inherently require accesses to the part of the index for the other data types despite
that they are not necessary.

4.2 Scalability of the separate index approach

Figure 12 shows a general form of the separate index for processing the top-k MULTI
query when N data types are involved. Unlike in the hybrid index approach, in the separate
index approach, new indexes can be easily added since each individual index is maintained
independently.

Let us extend RASIM [8] to deal with additional data types. For building the index struc-
tures, we only add new indexes while maintaining the existing indexes (i.e., the rank-aware

1st index 2nd index Nth index

Figure 12 A general form of the separate index for processing the top-k MULTI query
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spatial index and the rank-aware spatial index) unchanged. For processing queries, since
RASIM uses the threshold algorithm (TA) [4], which is originally designed to deal with
multiple lists, we can naturally extend it by adding lists retrieved from the indexes for the
new data types. In Section 5, we will propose a specific method based on the separate index
approach for the top-k SKR query, a specific instance of the top-k MULTI query.

5 Top-k spatial-keyword-relational (top-k SKR) query processing

In this section, we discuss top-k SKR query processing. In Section 5.1, we investigate the
hybrid index methods for the top-k SKR query. In Section 5.2, we propose a new separate
index method, SeparateSKR, for the top-k SKR query.

5.1 The hybrid index methods

If we apply the relational, spatial, and textual attributes into (6) in Section 4.1, we obtain
the six methods for the top-k SKR query in Table 1. Every method in Table 1 builds the
relational, spatial, and textual indexes at three levels. For example, in Method (1), we first
build a relational index on the entire set of the objects, partitioning them into groups. Then,
we build a spatial index on the objects in each group, partitioning them into sub-groups.
Finally, we build a textual index on the objects in each sub-group.

We mainly examine the two methods (4) and (6), which are extensions of IR-tree [3]
and S2I [12]. That is, Method (4) integrates the relational index with IR-tree; Method (6)
integrates it with S2I. Methods (4) and (6) build the relational index on each sub-group
partitioned by the 2nd-level index (i.e., the textual index for IR-tree and the spatial index for
S2I). We name the former IRtree-Relational and the latter S2I-Relational. Figure 13 shows
the index structure of IRtree-Relational. For IRtree-Relational, we first build a spatial index
on the entire set of objects. Then, we build an inverted index for each leaf node of the spatial
index. Last, we build a relational index on each posting list of the inverted index. Figure 14
shows the index structure of S2I-Relational. For S2I-Relational, we first build an inverted on
the entire set of objects. Then, we build a spatial index for each posting list of the inverted
index. Last, we build a relational index on each leaf node of the spatial index.

We revisit the two limitations of IRtree-Relational and S2I-Relational. 1) They make
many fragmented relational indexes. This means that they cannot effectively support cluster-
ing for the relational attribute. 2) They are not efficient in processing partial-type integrated
queries. In particular, the single-type query (i.e., the spatial-only query, keyword-only query,
or relational-only query) processing is extremely inefficient.

Table 1 The hybrid index methods

(1) indexing(RelationalAttribute) → indexing(SpatialAttribute) → indexing(T extualAttribute)

(2) indexing(RelationalAttribute) → indexing(T extualAttribute) → indexing(SpatialAttribute)

(3) indexing(SpatialAttribute) → indexing(RelationalAttribute) → indexing(T extualAttribute)

(4) indexing(SpatialAttribute) → indexing(T extualAttribute) → indexing(RelationalAttribute)

(5) indexing(T extualAttribute) → indexing(RelationalAttribute) → indexing(SpatialAttribute)

(6) indexing(T extualAttribute) → indexing(SpatialAttribute) → indexing(RelationalAttribute)
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5.2 SeparateSKR: a separate index method for the top-k SKR query

5.2.1 Index structure

For SeparateSKR, we build the index for each attribute separately. We use the primitive
index structures (e.g., R-tree, inverted index, and B+-tree) themselves but modifying only
their data clustering. Index structures for SeparateSKR consist of 1) the spatial index, 2) the
textual index, and 3) the relational index. We only need to add the relational index while
using the existing separate index method for the top-k spatial keyword query. Thus, for the
spatial index and the textual index, we can use the same indexes as RASIM [8], i.e., the
rank-aware spatial index for the former and the rank-aware inverted index for the latter. For
the relational index, we propose a new index structure, rank-aware B+-tree, based on the
B+-tree. The rank-aware B+-tree partitions the entire set of objects based on the relational
attribute into the leaf nodes and sorts the objects in each leaf node in the order of the object
ID. Figure 15 shows the rank-aware B+-tree. Here, we also map a leaf node to a disk page.
In Section 5.2.2, we will explain how we access the leaf nodes in the order of relational
closeness using the rank-aware B+-tree.

5.2.2 Query processing algorithm

We can easily extend the query processing algorithm of RASIM [8], the separate index
method for the top-k spatial keyword query, to a query processing algorithm for the top-k
SKR query by adding a list retrieved from the relational index.

We first explain the query processing algorithm of RASIM. It extends the threshold algo-
rithm (TA) [4] to deal with the sorted list of groups instead of the sorted list of individual
objects. That is, it retrieves the objects in the unit of group from each attribute and examines
the objects in a group at the same time. It repeats the following three steps until the top-k

N6

N4 N5

Inverted index1
Relational index11

Spatial index

N3N2N1

Relational index12

Inverted index2
Relational index21

Relational index22

Inverted index3
Relational index31

Relational index32

Inverted index4
Relational index41

Relational index42

Inverted index5
Relational index51

Relational index52

Inverted index6
Relational index61

Relational index62

Figure 13 The index structure of IRtree-Relational
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The keyword 
index Spatial index1

Relational index11

Inverted index

Relational index12

Spatial index2

Relational index21 Relational index22

Figure 14 The index structure of S2I-Relational

results are found: 1) the retrieving step, 2) merging step, and 3) scoring step. In the retriev-
ing step, we retrieve the most relevant group from each of the spatial or textual attributes.
The most relevant group is determined as the group containing the object with the highest
component score among the groups that have not yet been retrieved. In the merging step, we
merge the objects in the most relevant groups retrieved from each attribute using the object
ID as the merging attribute. In the scoring step, we calculate the scores of the objects in the
merged results and retrieve the top-k results. Here, if the object is included in the most rele-
vant group only from one attribute, we obtain its component score for the other attribute by
directly accessing the attribute value as in the threshold algorithm. We calculate the thresh-
old, which is the highest possible score of the objects that have not yet been retrieved, by
substituting the highest component score of the objects that have been included in the most

N3N2N1

N4 N5

N6

Object ID Object ID Object ID

Figure 15 The structure of the rank-aware B+-tree
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Figure 16 The Incremental RC algorithm

relevant group for each attribute into the scoring function. Thus, we retrieve k objects whose
scores are higher than the threshold in the order of the score as the results.

The only difference between SeparateSKR and RASIM is that the former requires an
additional index for the relational attribute. Thus, we propose a method, Incremental Rela-
tional Closeness (Incremental RC), to retrieve the most relevant group from the rank-aware
B+-tree. We modify Incremental NN [6], which has been proposed for the R-tree, to adapt
it to the rank-aware B+-tree so as to retrieve the groups in the order of relational closeness.
Figure 16 shows Incremental RC. Here, to calculate relational closeness between the rela-
tional query value and each node, we use the relational value range of the objects stored in
the node. If the query value is included in the value range of the node, relational closeness
between the query and the node is 0, which means the closest. Otherwise, it is the minimum
difference between the relational query value and the value range of the node.

6 Performance evaluation

6.1 Experimental data and environment

We compare the index size and query performance of SeparateSKR with those of the hybrid
index methods extended for the top-k SKR query. For the extended hybrid index methods,
we implement IRtree-Relational and S2I-Relational as presented in Section 5.1. For Sepa-
rateSKR, we implement the index structures and query processing algorithm as presented
in Section 5.2. We use the MBR-MLGF [14], which is one of the MLGF family [15], for
the spatial index, the inverted index for the textual index, and the B+-tree for the relational
index. We implemented all the methods using the MBR-MLGF, inverted index, and B+-
tree index that are part of the Odysseus DBMS1 [17–19]. For the sake of the fairness, we

1Each entry of the index contains an object ID of 16 bytes.
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Table 2 Characteristics of the data sets

Data sets Real data sets Synthetic data sets

DataSet1 DataSet2 DataSet3 DataSet4 DataSet5 DataSet6

Total number of objects 78,260 131,461 100,000 200,000 500,000 1,000,000

Maximum number of 55,949 131,461 88,320 152,260 354,175 794,915

postings per keyword

Average number of 89 168 483 389 538 818

postings per keyword

Total number of unique 206,636 114,831 33,330 94,920 217,231 318,916

words in the data set

Total number of words 18,397,075 19,278,878 16,114,000 36,918,340 116,863,650 261,040,074

in the data set

use the same index for all the methods. To compare the query performance, we measure the
elapsed time and the number of page accesses.

For SeparateSKR, we can adjust the number of groups to access at a time from each
index. We expect that a large accessing unit improves the effect of the sequential access,
but may retrieve lots of unnecessary objects. Thus, when the desired number of results k

is small (large), a small (large) accessing unit is preferred. In the experiment, we show the
performance of SeparateSKR as the size of the accessing unit is varied.

We use six data sets. Table 2 shows the characteristics of the real and synthetic data sets.
DataSet1 consists of 1) the spatial attribute representing the buildings in Seoul, 2) the tex-
tual attribute representingWeb pages crawled, and 3) the relational attribute representing the
areas of the real estates in Seoul.2 DataSet23 consists of 1) the spatial attribute representing
locations in Los Angeles,4 2) the text attribute representing the texts in the 20Newsgroups
dataset,5 and 3) the relational attribute representing the prices of real estates in Los Ange-
les.6 To measure the query performance as the data set size is varied, we generate four
synthetic data sets of varying sizes: 1) DataSet3 (100K), 2) DataSet4 (200K), 3) DataSet5
(500K), and 4)DataSet6 (1M). Each of them consists of 1) the spatial attribute, 2) the textual
attribute, and 3) the relational attribute, where all the attributes are randomly generated.

We generate five query sets for each data set, where the number of query keywords is
1, 2, 3, 4, and 5, respectively. Each query set consists of 100 queries where query locations
and query values are randomly generated. Query keywords are randomly selected from a set
of keywords whose document frequencies are greater than one percent of the total number
of objects—effectively excluding infrequent or unrealistic keywords. We use the average
query performance over 100 queries. Table 3 shows the parameters for the evaluation. The
default parameter values are represented in bold. For the user preference, we focus on its
variation only for the relational attribute. A default query used in the experiments consists

2http://www.molit.go.kr
3For DataSet2, we extend the data set used in the existing methods [3, 8, 10] for the top-k spatial keyword
query by adding the relational attribute.
4http://www.rtreeportal.org
5http://people.csail.mit.edu/jrennie/20Newsgroups
6http://www.laalmanac.com

http://www.molit.go.kr
http://www.rtreeportal.org
http://people.csail.mit.edu/jrennie/20Newsgroups
http://www.laalmanac.com
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Table 3 Query parameters and values

Parameters Description Values

k The number of desired results 1, 5, 10, 20, 50

nKeywords The number of query keywords 1, 2, 3, 4, 5

pi(1 <= i <= 3) User preference vector where p1 is for [0.45, 0.45, 0.1], [0.35, 0.35, 0.3],

the spatial attribute, p2 for the textual [0.33, 0.33, 0.33], [0.25, 0.25, 0.5],

attribute, and p3 for the relational [0.15, 0.15, 0.7], [0.05, 0.05, 0.9]

attribute

nData Dataset size 78K, 100K, 200K, 500K, 1M

of a spatial constant, a relational constant, and three query keywords. This type of query is
fairly complex, but there have been no earlier research results for the query type.

For the sake of evaluating a lower-bound (i.e., the worst-case) performance, we run all
the methods at cold start. Cold start means an environment where the buffering effect of
the LINUX file system is completely removed. To guarantee cold start, we use raw disks
for storing data and indices. We conduct all the experiments on a Pentium4 3.6GHz Linux
machine with 2.5GB of main memory. The page size for data and indexes is set to 4,096
bytes.

6.2 Results of the experiments

6.2.1 Index size

Table 4 shows the index size of each method for each data set. It shows that the index size
of SeparateSKR is reduced by up to 1.79 times compared with IRtree-Relational and by
up to 2.99 times compared with S2I-Relational. In IRtree-Relational, the inverted indexes
and relational indexes reside redundantly in the internal nodes and the leaf nodes. In S2I-
Relational, the spatial indexes and the relational indexes on the posting lists of the inverted
index have redundant entries for the same object since an object is stored in multiple posting
lists.

6.2.2 Query performance of SeparateSKR as the size of the accessing unit is varied

Figure 17 shows the query performance of SeparateSKR as the size of the accessing unit
(i.e., the number of groups to access at a time) is varied from 4 groups to 32 groups. The
result shows that, as k increases, the query performance of SeparateSKRwith a large access-
ing unit becomes more efficient. For the rest of the experiments, we use 16 groups as the

Table 4 Sizes of indexes (MB)

Method DataSet1 DataSet2 DataSet3 DataSet4 DataSet5 DataSet6

SeparateSKR 1,019 913 814 1,833 5,912 13,468

IRtree-Relational 1,223 1,634 1,029 2,840 9,865 22,745

S2I-Relational 3,043 2,323 1,220 3,200 9,070 20,270
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(a) Elapsed Time. (b) Number of Pages Accessed.
k k

4 groups 8 groups 16 groups 32 groups

Figure 17 Query performance for DataSet1 as the size of the accessing unit of SeparateSKR is varied

accessing unit where SeparateSKR shows the best performance for k = 10, which is the
default value of k.

6.2.3 Query performance as k is varied

Figure 18 shows the query performance of SeparateSKR and the extended hybrid index
methods as k is varied. The result shows that SeparateSKR outperforms the extended hybrid
index methods in elapsed time by 4.70 ∼ 10.69 times compared with IRtree-Relational
and by 1.80 ∼ 3.62 times compared with S2I-Relational. The number of pages accessed
shows a similar trend. This efficiency of SeparateSKR is from the fact that the extended
hybrid index methods cannot effectively support clustering for relational closeness while
SeparateSKR supports clustering for each attribute.

(a) Elapsed Time. (b) Number of Pages Accessed.
k k

SeparateRSK Relational-IRTree Relational-S2I

Figure 18 Query performance for DataSet1 as k is varied
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6.2.4 Query performance as nKeywords is varied

Figure 19 shows the query performance of SeparateSKR and the extended hybrid index
methods as nKeywords is varied. The result shows that SeparateSKR outperforms
the extended hybrid index methods in elapsed time by 6.10 ∼ 6.90 times compared
with IRtree-Relational and by 0.84 ∼ 4.75 times compared with S2I-Relational. The
query performance of S2I-Relational is degraded much faster than the other methods as
nKeywords increases. Since S2I-Relational involves only those indexes for given query
keywords, the number of indexes to access increases as the number of query keywords
increases.

6.2.5 Query performance as the user preference for the relational attribute increases

Figure 20 shows the query performance of SeparateSKR and the extended hybrid index
methods as the user preference for the relational attribute increases from 0.1 to 0.9. The
result shows that the query performance of SeparateSKR becomes much more efficient
than those of the extended hybrid index methods as the user preference for the relational
attribute increases. This result stems from the fact that SeparateSKR takes advantage of
clustering for the relational attribute while the extended hybrid index methods do not. It
also indicates that performance degradation of IRtree-Relational is more severe than that
of S2I-Relational since the former involves the entire index while the latter involves only
those indexes for a set of given keywords in the query. As a result, the elapsed time of
SeparateSKR is reduced by 1.87∼9.61 times, compared with that of IRtree-Relational and
by 1.98∼3.26 times compared with that of S2I-Relational.

6.2.6 Query performance of single-type queries

Figure 21 shows the query performance of SeparateSKR and the extended hybrid index
methods for the single-type queries. The result shows that SeparateSKR is much more

(a) Elapsed Time. (b) Number of Pages Accessed.

nKeywords nKeywords

SeparateRSK Relational-IRTree Relational-S2I

Figure 19 Query performance for DataSet1 as nKeywords is varied
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efficient than the hybrid index methods for the single-type queries. Especially, for the rela-
tional queries, the query performance of the extended hybrid index methods is degraded
most since they build excessively many fragmented relational indexes. Specifically, com-
pared with IRtree-Relational, the elapsed time of SeparateSKR is reduced by 2.92 times
for the spatial-only query, 16.41 times for the keyword-only query, and 448.68 times for
the relational-only query; compared with S2I-Relational, it is reduced by 1.50 times for
the spatial-only query, 7.79 times for the keyword-only query, and 48.30 times for the
relational-only query.

6.2.7 Query performance as the dataset size is varied

Figure 22 shows the query performance of SeparateSKR and the extended hybrid index
methods as the dataset size is varied. The result shows that SeparateSKR is more efficient
than the extended hybrid index methods constantly as the dataset size is varied. Specifically,
the elapsed time of SeparateSKR is reduced by 4.34 ∼ 5.56 times compared with that of
IRtree-Relational and by 1.82 ∼ 2.78 times compared with that of S2I-Relational.

6.2.8 Query performance for DataSet2 as k is varied

Figure 23 shows the query performance of SeparateSKR and the extended hybrid index
methods on DataSet2 as k is varied. The result shows that the query performance on
DataSet2 has a similar trend to that on DataSet1. Specifically, the elapsed time of Sepa-
rateSKR is reduced by 5.90 ∼ 13.30 times compared with that of IRtree-Relational and
by 3.48 ∼ 5.73 times compared with that of S2I-Relational. We omit the experimental
results on the other parameters for DataSet2 since they also have trends similar to those for
DataSet1.

6.2.9 Query performance for DataSet1 as the number of data types increases

Figure 24 compares the query performance of the top-k SKR query with that of the top-
k spatial-keyword(SK) query to show the query performance as the number of data types

(a) Elapsed Time. (b) Number of Pages Accessed.
p3  p3

SeparateRSK Relational-IRTree Relational-S2I

Figure 20 Query performance for DataSet1 as the user preference for the relational attribute p3 increases
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(a) Elapsed Time. (b) Number of Pages Accessed.

Figure 21 Query performance of single-type queries for DataSet1

increases. Let us define OPrune as the number of objects to access until the top-k results are
obtained. It is known thatOPrune is proportional to (7) as the number of data types increases
[11]. Here,m is the number of data types;N data set size; k the number of results to retrieve.

m × N
(m−1)

m × k
1
m (7)

Let us obtain OPrune in the top-k SK query for a given data set, which we call
OPrune(SK), and, OPrune in the top-k SKR query for a given data set, which we call
OPrune(SKR). Let us consider a query that obtains top-10 results for DataSet1. For the
top-k SK query, the number of data types is 2 (i.e., spatial and keyword data types). For
the top-k SKR query, the number of data types is 3 (i.e., spatial, keyword, and relational
data types). By substituting them to the equation above, we get the following result. We get
the following result: OPrune(SK) = 1769.29, OPrune(SKR) = 11820.7, OPrune(SKR)

OPrune(SK)
=

(a) Elapsed Time. (b) Number of Pages Accessed.

nData nData

SeparateRSK Relational-IRTree Relational-S2I

Figure 22 Query performance as the dataset size is varied
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(a) Elapsed Time. (b) Number of Pages Accessed.

k k

SeparateRSK Relational-IRTree Relational-S2I

Figure 23 Query performance for DataSet2 as k is varied

6.69. This means that the query performance of the top-k SKR query could be less efficient
than that of the top-k spatial keyword (SK) query about 6.69 times roughly.

To compare the query performance of the methods for the top-k SKR query with that of
the methods for the top-k SK query, we measure the query performance of RASIM, IR-tree,
and S2I for the top-k SK query and SeparateSKR, Relational-IRTree, and Relational-S2I
for the top-k SKR query under the same experimental environment. Figure 24 shows their
results. It indicates that SeparateSKR is less efficient than RASIM by 2.18 times in the
elapsed time and by 2.86 times in the number of pages accessed; Relational-IRTree is less
efficient than IR-tree by 12.16 times in the elapsed time and by 14.68 times in the number
of pages accessed; Relational-S2I is less efficient than S2I by 3.61 times in the elapsed time
and by 6.37 times in the number of pages accessed. Those results of the methods for the
top-k SKR are quite reasonable if we consider that OPrune(SKR)

OPrune(SK)
is 6.69.We also know that

the performance degradation of SeparateSKR compared with that of RASIM is less than the
other methods.

E
la

ps
ed

 T
im

e 
(m

s)

N
um

be
r 

of
 P

ag
es

 A
cc

es
se

d

(a) Elapsed Time. (b) Number of Pages Accessed.

Figure 24 Query performance for DataSet1 as the number of data types increases



1074 World Wide Web (2016) 19:1051–1075

7 Conclusions

We have defined a new class of queries, the Top-k MULTI query. The top-k MULTI query
deals with arbitrary multiple data types and returns the top-k results based on the relevance
between the query and the object. The top-k MULTI query is practically important since we
can find relevant results even if we do not know the exact values to find. The top-k spatial
keyword query is an existing representative instance of the top-k MULTI query. It deals with
the spatial data type and text data type and finds the information based on spatial proximity
and textual relevance between the query and the object.

First, we have defined the top-k MULTI query formally. The top-k MULTI query distin-
guishes itself from the traditional top-k query in that the component scores to calculate final
scores are determined dependent of the query. We have also defined a new specific instance
of the top-k MULTI query, top-k spatial-keyword-relational(SKR) query, by integrating the
relational data type into the top-k spatial keyword query.

Second, we have investigated the processing approaches for the top-k MULTI query
based on hybrid index and separate index approaches. As a result, we have shown that the
separate index approach is more scalable than the hybrid index approach as the new data
types are integrated. We have also devised new processing methods for the top-k SKR query.
First, we have proposed a new separate index method, SeparateSKR, for the top-k SKR
query. Second, we have presented two methods by extending representative methods for the
top-k spatial keyword query based on the hybrid index approach to the top-k SKR query.

Third, through extensive experiments, we have shown that SeparateSKR is more efficient
than the extended hybrid index methods in terms of the query performance and the index
size. Specifically, we have shown that SeparateSKR is more efficient than the extended
hybrid index methods by up to 13.30 times for the top-k MULTI query and by up to 448.68
times for single-type queries. We have also shown that SeparateSKR requires less storage
than the extended hybrid index methods by up to 2.99 times.

The top-k MULTI query are a general class of queries dealing with multiple ranking
measures that are query dependent. As a new practical instance for the top-k MULTI query,
we have dealt with the top-k SKR query. As more new data types are emerging, the other
data types can also be integrated to the top-k MULTI query. Since the separate index method
is scalable, it can be easily extended to accommodate a new data type for the top-k MULTI
query.
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