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Abstract A top-k spatial-keyword query returns the k best spatio-textual objects ranked
based on their proximity to the query location and relevance to the query keywords. Various
index schemes have been proposed for top-k spatial-keyword queries; however, a unified
framework covering all these schemes has not been proposed. In this paper, we present
a generic model of index schemes for top-k spatial-keyword queries, which we call G-
Index Model. First, G-Index Model is a unified framework that exhaustively investigates
all the possible index schemes for top-k spatial-keyword queries. For this, we conjecture
that data clustering is the key element in composing various index schemes and generate
index schemes as combinations of clustering. The result shows that all the existing methods
map to those generated by G-Index Model. Using G-Index Model, we also discover two
new methods that have not been reported before. Second, we show that G-Index Model
is generic, i.e., it can generate index schemes for a class of queries integrating arbitrary
multiple data types. For this, we show that G-Index Model can enumerate index schemes
for two classes of queries: the spatial-keyword query (without the top-k constraint) and
the top-k spatial-keyword-relational query, which adds the relational data type to the top-k
spatial-keyword query. Third, we propose a cost model of the generated methods for the top-
k spatial-keyword query. Consequently, the cost model allows us to do physical database
design so as to find an optimal index scheme for a given usage pattern (i.e., a set of query
loads and frequencies). We validate the cost model through extensive experiments.
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1 Introduction

With the ubiquity of mobile devices, location data is ever abundant. One study found
that about one fifth of Web searches are geographical, that is, the searches have location
intent [18]. More and more people have been using Google Maps, online yellow pages, and
other location-based services. The representative queries in these applications are the top-
k spatial-keyword queries. A top-k spatial-keyword query returns the k best spatio-textual
objects ranked based on their proximity to the query location and relevance to the query
keywords [7]. In Figure 1, we show six objects o1, · · · , o6 in a geographical space, where
each object has a textual label. A top-k spatial-keyword query q is also shown in the figure.
Query q may be interpreted as: Find top-k objects whose locations are the closest to q’s
location and whose textual labels are the most relevant to keywords ‘vegetable’ and ‘food’.
Assuming k = 2, the query retrieves o1 and o5 based on spatial proximity as well as textual
relevancy.

Several index schemes have been proposed for top-k spatial-keyword queries [5, 14,
17, 25, 26]. These are classified into two approaches: 1) spatial-then-text and 2) text-then-
spatial. The former (the latter) first builds the spatial (text) index, and then, builds the text
(spatial) index for the objects in each group partitioned by the spatial (text) index. IR-tree
[5, 14] is the representative for the former and S2I [17] for the latter. Figure 2a shows the
structure of IR-tree. It groups objects by the location and creates an R-tree to manage the
groups. It builds an inverted index on each node of the R-tree. Given a query, it traverses the
R-tree referencing the inverted indices for the desired objects. Figure 2b shows the structure
of S2I. It groups objects by the text and creates a keyword index to manage the groups. It

Figure 1 A sample data set for top-k spatial-keyword queries
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Figure 2 Existing indexing methods

then builds an R-tree to manage objects associated with each keyword. Given a query, it
traverses the inverted index referencing the R-trees for the desired objects.

1.1 Motivation

Existing methods overlooked one important issue: The performance of different index
schemes often vary widely for different query loads. To see this, we characterize top-k
spatial-keyword queries using three parameters: the value k, the value p (0 ≤ p ≤ 1),
which captures users’ preference for spatial proximity over textual relevancy, and the num-
ber of keywords in the query. First, we show that a particular index scheme may fit well
only particular query loads.

QueryLoad 1 For a larger p, IR-tree and S2I are more efficient.
A larger p value indicates that the user has a stronger preference for spatial proximity. In

IR-tree, the entire set of objects are clustered by the location in an R-tree while the inverted
index is partitioned over multiple nodes of the R-tree. Consequently, for a larger p, IR-tree
takes advantage of the clustering effect of the R-tree. In S2I, each keyword has an R-tree on
the set of objects containing the keyword; for query processing, only R-trees for given query
keywords are involved. As a result, as p becomes larger, S2I becomes more efficient due to
the effect of clustering by spatial proximity of the R-trees.

QueryLoad 2 When the number of query keywords is small, S2I is more efficient.
S2I needs to access R-trees only for the given query keywords. Consequently, the number

of indices involved decreases as the number of keywords in a query does.

Second, more importantly, there are query loads that none of the existing methods can
handle efficiently. IR-tree and S2I are sub-optimal when k is very small or very large. We
give two query loads in the following examples and show a simple separate index method
outperforms existing methods.

QueryLoad 3 When k is very small, IR-tree and S2I are sub-optimal.
IR-tree and S2I partition the set of objects into groups by the location or text, i.e., leaf

nodes or posting lists. To find the top-1 object, they process the data group by group.
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Intuitively, however, since we are only interested in a small number of objects with the
highest scores, we should just consider the objects that are ranked the top by both spatial
proximity and textual relevancy. Thus, unlike IR-tree, which indexes location then text, or
S2I, which indexes text then location, we may create indices for location or text separately.
For each index, we obtain a sorted list according to spatial proximity or textual relevancy
incrementally as much as we need for the given query. Then, for two sorted lists, we use
Threshold Algorithm(TA) [6] to find the top-k results. This way, we can stop the execution
as soon as we get the top-k results while processing the data object by object without a need
to process all the objects in a group as in IR-tree or S2I.

QueryLoad 4 When k is very large, IR-tree and S2I are sub-optimal.
Some queries return a large number of objects. For example, an extreme case is retrieving

all the objects in the order of the score. In this case, we need to access all the objects.
However, since IR-tree and S2I access the objects in the order of the score, they require
many random accesses due to index searching. A simple separate index method can achieve
better performance. If we cluster objects according to their object IDs by each index, we
access all the objects for each index in the order of the object ID by one sequential scan,
and then, compute their combined scores by merging two lists.

1.2 Our contributions

We propose a generic model, which we call G-Index Model, for indexing top-k spatial-
keyword queries. Our contributions are as follows: 1) G-Index Model is a unified frame-
work. It exhaustively enumerates all the possible methods for top-k spatial-keyword queries.
We conjecture that data clustering is the key element in composing various index schemes.
Thus, we enumerate index schemes through combinations of different clustering techniques.
We show that all the existing methods for top-k spatial-keyword queries map to those
generated by G-Index Model. Specifically, the generated methods M3, M4, and M5 in
Section 3 are mapped to RASIM [13], IR-tree [5, 14], and S2I [17], respectively. This
shows that G-Index Model sheds new light on understanding the existing methods under a
unified framework. Using G-Index Model, we also discover two new index schemes that
have not been reported before. Those methods (M1 and M2 in Section 3) are the most effi-
cient for extreme query loads such as QueryLoads 3 and 4 presented in Section 1.1. 2) We
show that G-Index Model is generic. That is, G-Index Model can generate index schemes
for a class of queries integrating arbitrary multiple types. For this, we show that G-Index
Model can enumerate index schemes for two classes of queries: the spatial-keyword query
(without the top-k constraint) and the top-k spatial-keyword-relational query, which adds
the relational data type to the top-k spatial-keyword query. 3) We propose a cost model
of the generated methods for the top-k spatial-keyword query and compare their perfor-
mance. The proposed cost model can be used for efficient physical database design for
top-k spatial-keyword queries by figuring out which method is the best for a certain usage
pattern (i.e., a set of query loads and frequencies). We validate the cost model through
extensive experiments by showing that the results are consistent with those from the cost
model.

The rest of this paper is organized as follows. Section 2 explains preliminaries. Section 3
proposes G-Index Model. Section 4 shows the genericness of G-Index Model. Section 5
presents a cost model to estimate the query performance of the generated methods. Section 6
presents the experimental results. Section 7 describes the comparisons with related work.
Section 8 summarizes and concludes the paper.
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2 Preliminaries

2.1 Top-k spatial-keyword queries

Data and query definition Let D be a database. Each object o in D is a triple (o.id , o.loc,
o.doc) where o.id is the identifier of o, o.loc is o’s location in a multidimensional space, and
o.doc is a text description of o. A top-k spatial-keyword query q is defined as a quadruple
(q.loc, q.keywords, q.k, q.p) where q.loc is a location description, q.keywords a set of
keywords {k1, k2, ..., kn}, q.k the desired number of results, and q.p the user preference of
spatial proximity over textual relevancy.

Query semantics Top-k spatial-keyword queries retrieve k objects with the highest (or low-
est) combined scores of spatial proximity and textual relevancy. Without loss of generality,
in the rest of this paper, we assume that we are looking for objects having the highest scores.
We adopt the following scoring function S(q, o) [13].

S(q, o) = q.p ∗ SSP (q.loc, o.loc)/maxSP

+(1 − q.p) ∗ ST R(q.keywords, o.doc)/maxT R (1)

In (1), the spatial component score SSP (q.loc, o.loc) and the textual component score
ST R(q.keywords, o.doc) are normalized by maxSP and maxT R, respectively, where
maxSP (maxT R) is the largest possible spatial (keyword) score for objects in D.

The spatial component score SSP (q.loc, o.loc) computes the spatial proximity between
an object and a query point. In this paper, we set SSP (q.loc, o.loc) = maxSP −ED(q.loc,
o.loc), where ED is the Euclidean distance so that the higher the value of SSP (q.loc, o.loc)

is, the more relevant o is to the query.
The textual component score ST R(q.keywords, o.doc) computes the textual relevancy

between a set of query keywords and an object. In this paper, we adopt the term-weighting
scheme [1], which is the most well known score for measuring textual relevancy:

ST R(q.keywords, o.doc) =
n∑

i=1

ST R(q.ki, o.doc)

=
n∑

i=1

T F(o.doc, ki) log
N

DF(D, ki)
(2)

Here, T F (o.doc, ki) is the term frequency of keyword ki in o.doc; DF (D, ki) is the docu-
ment frequency for keyword ki in D; N is the number of objects in D. The higher the value
of ST R(q.keywords, o.doc), the more relevant o is to the query.

Inthispaper,we focusonthe efficiency of query processinginsteadoftheeffectiveness of a
ranking function. The query processing method we propose is valid for any ranking function
as long as it is monotone with respect to both the spatial and the textual component scores.

2.2 Index structures

Efficient query processing of top-k spatial-keyword queries relies on smart use of the spatial
index and the text index. The spatial index includes those in the R-tree family [2, 10,
19], those in the MBR-MLGF family [20, 21], and the quadtree [8]. They differ in the
way they cluster the objects. Those in the R-tree family and the quadtree cluster objects in
the original space while those in the MBR-MLGF family cluster objects in a transformed
space. We can use any one of those indexes for the spatial index. Figure 3a shows a general
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Figure 3 Index structures

structure of the spatial index, which consists of a multilevel directory and a set of leaf
nodes. Each leaf node contains a set of objects clustered by the location. The spatial index
groups the entire set of objects into the leaf nodes. Here, each leaf node in mapped to a disk
page.

The inverted index is the most widely used index for text data [1]. Figure 3b shows its
structure. It consists of a set of keywords, and each keyword is associated with a posting list.
A posting in a posting list contains information such as the object identifier (ObjectID) and
frequency of the keyword, i.e., term frequency (TF), in the document. In addition, a B+-tree
(simply, the keyword index) can be built to search for the posting list of a specific keyword
efficiently. Here, each posting list consists of one or more disk pages.

3 G-IndexModel: a generic model of index schemes for top-k spatial-keyword queries

3.1 Overall concept

G-Index Model enumerates index schemes for top-k spatial-keyword queries from the view-
point of clustering objects. Clustering is a key technique for efficient processing. Clustering
means maintaining objects in the order of a certain criterion.1 That is, clustering requires
two components: 1) criteria for clustering (e.g., attributes of a relation) and 2) techniques for
clustering (e.g., sorting). We call the former clustering criteria; the latter clustering oper-
ators. For example, if a relation R(a, b) is stored as sorted on attribute a, R is “clustered”
in attribute a [9]. Clustering allows us to scan the objects efficiently when the objects are
accessed in the sequential way according to the order in which the objects are clustered.
Here, we note that, in general, objects can be clustered in only a single criterion.

In top-k spatial-keyword queries, multiple attributes such as location or keyword are
involved. Thus, we need to support clustering in multiple criteria. In G-Index Model, we
support clustering in multiple criteria by employing the technique, partitioning, that groups
objects according to a criterion. Partitioning allows us to cluster objects according to more

1In this paper, clustering is related to physical database design (i.e., allocation of contiguous storage in
databases) not but to a data mining technique.
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than one criterion, i.e., to cluster groups of objects by one criterion and to cluster the objects
in each group by another criterion.

G-Index Model exhaustively enumerates all the possible index schemes by applying
the possible clustering criteria and operators to each instance of clustering induced by
partitioning.

Clustering criteria We define four clustering criteria for top-k spatial-keyword queries: (1)
location, (2) text, (3) object ID, or (4) score. We can cluster objects by any feature/attribute
of the objects, i.e., location, text, or object ID. Thus, objects with close location similarity, or
objects with similar text, or objects with adjacent IDs will be clustered together independent
of the query.2 On the other hand, the scores are determined on the query. Thus, we need
to cluster objects (i.e., results) based on the score dynamically since we can calculate their
scores only after the query is given. In this case, we take advantage of clustering by the
location (or text) since the objects with similar locations (or texts) also have similar scores.
Specifically, since these objects were already clustered in the same group (e.g., a disk page)
before the query is given, we need to cluster only the objects in the groups that are relevant
to the given query based on the location and text by the score.

Clustering operators We define two clustering operators for top-k spatial-keyword queries:
1) sorting (criterion) and 2) indexing (criterion). The former sorts the input data by
criterion; the latter creates an index for the input data on criterion. Both maintain a linear
order of objects according to a criterion. We identify these operators from the observation
of the existing methods. In Example 1, we show that existing methods can be modeled as
combinations of clustering.

Example 1 Let us consider IR-tree and S2I to show how clustering is actually used.
Figure 4a shows clustering used in the IR-tree.3 First, it partitions the entire set of objects
into groups (i.e., G1 andG2) by location, and it indexes the groups by location. Then, it par-
titions each group into sub-groups (i.e., G1,1, G1,2, G2,1, and G2,2) by text, and it indexes
the sub-groups by text. Finally, the objects in each sub-group are sorted by score when the
query is given. Figure 4b shows clustering used in S2I. First, it partitions the entire set of
objects into groups (i.e.,G1 andG2) by text where each group contains objects having a spe-
cific keyword, and it indexes the partitioned groups by text. Then, it partitions each group
into sub-groups (i.e., G1,1, G2,1, G2,2, and G2,3) by location, and it indexes the sub-groups
by location. Finally, the objects in each sub-group are sorted by score when the query is
given.

Exhaustive enumeration of index schemes Table 1 shows the index schemes enumerated by
G-Index Model. Here, objects can be organized in two different ways: 1) separate cluster-
ing and 2) combined clustering. The former clusters the objects by either location or text
separately; the latter clusters the objects by both location and text in a combined form. For
simplicity, we denote the clustering only by the clustering criterion. For example, we denote
clustering(location) simply by location. In A → B, ‘→’ represents partitioning; ‘A’ or ‘B’
represents a clustering criterion, and either indexing() or sorting() can be applied to each

2To distinguish similarity between objects from relevancy between the object and the query, we call the
former location similarity (textual similarity) and the latter spatial proximity (textual relevancy).
3For simplicity, we represent locations and texts of objects as floating numbers from 0 to 1.
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Figure 4 Clustering used in the existing index schemes

clustering criterion. Hence, ‘A → B’ means partitioning the data based on A, clustering
the groups by A, and clustering the objects in each group by B. The salient point of G-
Index Model is encompassing all the existing methods for top-k spatial-keyword queries.
For example, methods (7) and (8) in Table 1 correspond to IR-tree and S2I, respectively. We
describe details of the enumeration in Section 3.2 and show that all the existing methods
map to the enumerated methods in Section 3.3

G-Index Model consists of two step processes: 1) index scheme enumeration and 2)
index scheme refinement. In Section 3.2, we describe index scheme enumeration. In
Section 3.3, we describe index scheme refinement that 1) prunes infeasible or definitely
inefficient index schemes from those enumerated and that 2) sub-divides each of the remain-
ing index schemes depending on whether each clustering instance is feasible in that index
scheme.

3.2 Index scheme enumeration

Table 1 enumerates altogether six different clustering combinations (we call them methods)
for separate clustering, and altogether six for combined clustering. In separate clustering,
we need to merge the objects relevant to the query based on the location with those based
on the text. Here, clustering the objects by object ID can facilitate efficient merging. Thus,
separate clustering involves three clustering criteria: 1) location (or text), 2) object ID, and
3) score. For combined clustering, there is no need to cluster the objects by object ID,

Table 1 Enumerated index schemes by combining clustering

Separate Clustering Combined Clustering

(1) location|text → ID → score (7) location → text → score

(2) location|text → score → ID (8) text → location → score

(3) ID → score → location|text (9) location → score → text

(4) ID → location|text → score (10) text → score → location

(5) score → location|text → ID (11) score → location → text

(6) score → ID → location|text (12) score → text → location
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as merging is not needed. Thus, combined clustering involves three clustering criteria: 1)
location, 2) text, and 3) score.

Separate clustering has two separate lists for the location and text. The method clus-
tering(location|text) → clustering(ID) → clustering(score) first partitions the entire set of
objects into groups and clusters the partitioned groups based on the location (or text). Then,
it partitions each group into sub-groups and clusters sub-groups based on ID for merging
two lists. Finally, it clusters objects in each sub-group based on the score. On the other
hand, combined clustering does not need merging. Thus, the method clustering(location)
→ clustering(text) → clustering(score) first partitions the entire set of objects into groups
and clusters the partitioned groups based on the location. Then, it partitions each group into
sub-groups and clusters the sub-groups based on the text. Finally, it clusters the objects in
each sub-group based on the score.

3.3 Index scheme refinement

3.3.1 Pruning step

The pruning step consists of two sub-steps: 1) pruning the whole methods that are defi-
nitely less efficient than the other methods in Table 1 and 2) pruning inefficient/infeasible
clustering operators within each method.

The first sub-step is as follows. Many methods in Table 1 are inherently inefficient
regardless of the query load. This is not difficult to understand: A query comes with spa-
tial and textual constraints, and clustering based on the location and/or text limits the search
space for the objects relevant to the query. Intuitively, we should cluster objects first by these
criteria, and then, by other criteria. Clearly, (3) and (4) are not very meaningful. Similarly,
(5), (6), and (9)–(12) are not meaningful either.

The second sub-step is as follows. By looking at the characteristics of clustering oper-
ators and criteria, we derive the following relationships for each clustering criterion:
(1)indexing (ID) is less efficient than sorting (ID), (2) sorting (location) is less efficient
than indexing (location), (3) sorting (text) is less efficient than indexing (text), and (4)
indexing (score) is infeasible. Relationship (1) stems from the fact that, since the object ID
is used for merging, we need to access all the objects retrieved from each index in the order
of the object ID. Consequently, a sequential scan over the objects sorted by the object ID
will be more efficient than a scan through an index. Relationships (2) and (3) stem from the
fact that the location and text are used for retrieving selectively only those objects relevant
to the given query; thus, in comparison, sorting the entire set of objects is unnecessary and
inefficient. This is further justification since spatial or textual constraints are usually very
selective. Relationship (4) stems from the fact that we cannot create an index based on the
final score (which is a derived attribute).

By applying the best operator for each criterion to the enumerated methods (1) and (2)
and (7) and (8) in Table 1, we obtain the methods in Table 2.

Table 2 Generated methods

Method1. indexing (location|text) → sorting (ID) → sorting (score)

Method2. indexing (location|text) → sorting (score) → sorting (ID)

Method3. indexing (location) → indexing (text) → sorting (score)

Method4. indexing (text) → indexing (location) → sorting (score)
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3.3.2 Sub-dividing step

We now sub-divide each method in Table 2 to two methods according to whether each clus-
tering in the method is indeed used or not. Specifically, indexing (location) and indexing

(text) always produce the results in the unit of groups since the index is built on the parti-
tioned groups (i.e., leaf nodes in the spatial index and posting lists in the inverted index).
In this case, we can apply subsequent clustering to the set of objects or sub-groups in each
group. In contrast, sorting (ID) and sorting (score) can optionally choose the unit to pro-
duce the results: 1) in the unit of groups (partitioning is done in the unit of groups) or 2) in
the unit of objects (partitioning in done in the unit of objects). For the former, we can apply
subsequent clustering to the set of objects in each sub-group; for the latter, we cannot fur-
ther apply it since the results are already in the unit of objects. Consequently, the subsequent
clustering cannot be actually used.

We sub-divide Method1 in Table 2 into two methods according to the unit
that sorting(ID) produces. Thus, we can generate the following methods: (a)
indexing(location|text) → sorting(ID) and (b) indexing(location|text) → sorting (ID)
→ sorting(score). However, in (b), since the criterion ID does not contribute to limiting the
search space, all the groups partitioned by ID still need to be processed, obviating the need
for subsequent clustering in each sub-group partitioned by ID. Consequently, (b) is reduced
to (a). As a result, Method1 in Table 2 generates a method, called separate clustering with
merging (simply, M1).

M1 indexing(location|text) → sorting (ID)

Figure 5a shows M1. M1 first clusters the objects based on the location or text separately
using indexing(). Then, for each index, it clusters the objects in each group based on the
object ID using sorting().

We sub-divide Method2 in Table 2 into two methods according to the unit that
sorting(score) produces. Thus, we generate the following methods: (a) indexing (loca-
tion|text) → sorting (score) and (b) indexing (location|text) → sorting (score) →
sorting (ID). The former provides top-k pruning in the unit of objects; the latter provides
top-k pruning in the unit of groups. As a result, Method2 in Table 2 generates a method
called separate clustering with object merging and ranking (simply, M2) and another
method, called separate clustering with group merging and ranking (simply, M3), which is
mapped to RASIM [13].

M2 indexing(location|text) → sorting (score)

M3 indexing(location|text) → sorting(score) → sorting(ID)

Figure 5b shows M2; Figure 5c M3. M2 first clusters the objects based on the location or
text separately using indexing(). Then, for each index, it clusters the objects in each group
based on the score using sorting(). M3 first clusters the objects based on the location or text
separately using indexing(). Then, for each index, it clusters the sub-groups in each group
based on the score using sorting(). Last, it clusters the objects in each sub-group based on
the object ID using sorting().

Method 3 in Table 2 directly generates a method, called combined clustering with
space first (simply, M4), which is mapped to IR-tree [5, 14], and Method 4 in Table 2
directly generates a method, called combined clustering with keyword first (simply, M5),



World Wide Web (2015) 18:969–995 979

Figure 5 Separate clustering approach

which is mapped to S2I [17]. For each rule, since indexing(location) and indexing(text)
always produce the results in the unit of groups, we can apply their subsequent clustering
sorting(score) to the results of indexing(location) or indexing(text). Thus, there is no
further sub-division.

M4 indexing(location) → indexing(text) → sorting(score)

M5 indexing(text) → indexing(location) → sorting(score)

Figure 6a shows M4; Figure 6b M5. M4 first clusters the objects based on the location
using indexing(). Then, it clusters the sub-partitioned groups in each group based on the
text using indexing(). Last, it clusters the objects in each sub-group based on the score
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Figure 6 Combined clustering approach

using sorting(). M5 apply the clustering operators similarly where the roles of the location
and text are exchanged.

3.4 Implementation

M1 M1 indexes the entire set of objects according to the location or text separately through
the spatial index and the inverted index. From each index, it retrieves all the objects that can
be the results based on spatial proximity or textual relevancy as sorted by the object ID. We
define those objects as the result candidates (simply, the set ORC). M1 stores the objects
in each leaf node of the spatial index as sorted by the object ID; so are |ORC | top objects
(according to textual relevancy) of the posting list for each keyword. When the queries are
given, we constructORC for the spatial index by accessing the leaf nodes within the relevant
region4 to retrieve top |ORC | objects for the query point and by merging the objects in the
nodes based on the object ID; we construct ORC for the inverted index by merging the
postings for the query keywords based on the object ID.

Query processing steps for M1 are as follows. 1) We retrieve ORC from the spa-
tial index (inverted index) and stores them in RC SPAT IAL (RC INV ). 2) We merge
RC SPAT IAL and RC INV based on the object ID and store them into MERGED. 3)
We calculate the combined scores of the objects in MERGED and insert them into a pri-
ority queue PQ, which maintains the objects in the order of the combined score.5 4) We
retrieve top-k results from PQ in the order of the combined score.

The important part of M1 is how to set |ORC |. We need to preset |ORC | regardless of
queries. However, it is difficult to set |ORC | to guarantee the correctness of the results since
|ORC | will be different depending on the data distribution and query loads. We set |ORC |
under the assumption of uniform distribution of data, allowing possible incorrect results for
other distributions. With the uniform distribution of the sorted lists, Pang et al. [16] have

4We cannot know an exact region that retrieves |ORC | objects for every query point. Thus, as the region,
we use a circle where its area is equal to EntireSpace·|ORC |

N
and enlarge the circle incrementally until |ORC |

objects are retrieved.
5The sorting used in this step needs to be differentiated from sorting() defined as a clustering operator. The
sorting() operator is associated with the previous partitioning. That is, sorting() is applied to each sub-group
resulting by the partitioning. However, this step simply sorts the entire set of objects that are merged from all
the groups.
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claimed that (m × q.k1/m × N(m−1/m)) object accesses from each list, where m is the
number of lists, guarantee finding exact top-k results. We obtain |ORC | by substituting the
parameters for each dataset (i.e., m is 2, q.k is 1000, which is the maximum number of q.k

used in most search engines, and N is the size of the dataset) for this equation.6

M2 M2 indexes the entire set of objects according to the location or text separately through
the spatial index and the inverted index. From each index, it retrieves the list of the objects as
sorted by the score. For the spatial component, M2 retrieves the objects in the sorted order
from the spatial index by applying Incremental NN [12]. For the keyword component, it can
retrieve the objects in the sorted order by a simple scan over the posting list of each keyword
from the inverted index. This is possible since the objects in each posting list have been
stored in the order of the score, which can be determined independent of the query. When the
query keywords are given, M2 obtains the list of the objects sorted by the score by applying
Threshold Algorithm(TA) [6] to the multiple sorted lists for the keywords. Thus, we have
two sorted lists—one for the spatial component and the other for the keyword component.
To process a query in M2, we apply TA to the sorted lists. Whenever we retrieve an object
from each list, we update the threshold value of TA as the score obtained by combining the
upper bound of the component scores of the objects that have not yet been retrieved from
each list.

M3 M3 indexes the objects and processes the query in a way similar to that of M2. The
only difference is that M3 retrieves the objects in the unit of groups as sorted by the (group)
score, and each group contains the objects as sorted (and stored) by the object ID. We use
the group as the unit of physical access mapped to one disk page. Hence, we use the objects
in a leaf node of the spatial index as a group and the objects in a disk page of the posting list
as a group for the sake of fairness with the spatial index. To process a query, M3 retrieves
the sorted list of the groups (i.e., leaf nodes) from the spatial index according to the score by
extending Incremental NN [12] in the unit of the leaf node instead of the individual object.
Here, we use the maximum score of the objects in the node as the score of the node. For the
keyword component, M3 retrieves the groups in the posting list of each keyword as sorted
by the score where the objects have been stored in each group as sorted by the object ID.
When the query keywords are given, it obtains the list of the groups sorted by the score by
extending TA [6] in the unit of the group instead of the individual object.

M4 The index structure for M4 builds the spatial index on the entire set of objects and builds
an inverted index on each leaf node of the spatial index. Each leaf node has an inverted
index for the objects in the leaf node; each internal node has an inverted index on their
child nodes. Query processing in M4 is done by extending Incremental NN [12] to use the
combined score rather than spatial proximity only.

M5 The index structure for M5 builds the inverted index on the entire set of objects and
builds a spatial index on each posting list of the inverted index. Each entry of a leaf node
of the spatial index also includes TF, which represents the text, for the object; that of an
internal node of the spatial index includes the maximum TF of the objects in the child nodes.

6In all our experiments including real data sets, all the results were correct.
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Query processing for M5 is done by extending Incremental NN [12] to the multiple spatial
indexes for the given keywords rather than one spatial index.

4 Genericness of G-Index Model

We show that G-Index Model is generic, i.e., it can be applied to a class of queries inte-
grating arbitrary multiple data types. First, we show that G-Index Model can enumerate
index schemes for spatial-keyword queries (without the top-k constraint) by removing the
‘score’ from the set of the clustering criteria for top-k spatial-keyword queries since the cri-
terion ‘score’ is needed for supporting top-k pruning. As a result, we obtain the following
four methods: (a) location|text → ID (simply, SK-M1), (b) ID → location|text (simply, SK-
M2), (c) location → text (simply, SK-M3), and (d) text → location (simply, SK-M4). We
will show that all the existing methods for spatial-keyword queries map to these methods in
Section 7.

Second, we show that G-Index Model can enumerate index schemes for new classes
of queries involving new data types. Let us consider a new class of queries that adds the
relational data type to the top-k spatial-keyword query. Let us call it the top-k spatial-
keyword-relational query. G-Index Model enumerates index schemes for this query by
adding the relational data type as a new clustering criterion. 1) We enumerate the index
schemes through the combination of clustering according to the index scheme enumeration
in Section 3.2. Here, we consider five clustering criteria: location, text, relational, object ID,
and score. 2) We prune index schemes that are not feasible according to the pruning step
of the index scheme refinement in Section 3.3.1. As a result, we obtain the index schemes
for the top-k spatial-keyword-relational query as in Table 3. For example, in Method (1),
we find the objects based on each clustering criteria separately, i.e., location, text, and rela-
tional. Then, we merge them based on the object ID. Finally, we find the results according
to the score. We leave detailed methods and their analysis as a further study.

5 Cost analysis

We present a cost model with regard to storage overhead in Section 5.2 and query processing
cost in Section 5.3 for the generated index schemes. Since the index is constructed before
the queries are given, we only analyze the query processing cost, but do not consider the
index construction cost. In Section 5.4, using the cost model, we show how to do physical
database design by selecting the best method for a usage pattern. We verify the results
through experiments in Section 6.

Table 3 Generated index schemes for the top-k spatial-keyword-relational query

(1) location|text|relational → ID → score
Separate clustering

(2) location|text|relational → score → ID

(3) location → text → relational → score

Combined clustering

(4) location → relational → text → score

(5) text → location → relational → score

(6) text → relational → location → score

(7) location → text → relational → score

(8) location → relational → text → score
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5.1 Assumptions and notations

We define a query load for top-k spatial-keyword queries by controlling three query param-
eters: 1) q.k, 2) q.p, and 3) |q.keywords|. We devise the cost model for query processing
in Section 5.3 under the assumption that it is proportional to the number of pages accessed
while taking into account the effect of sequential/random accesses to disk pages. In effect,
the cost model represents the equivalent number of random accesses to the disk pages
(i.e., we transform the number of sequential accesses to an equivalent number of random
accesses by considering the ratio7 of the cost of a sequential access to that of a random
access). Thus, we can roughly estimate the query processing time by multiplying the cost
of a random access to the cost obtained in Section 5.3. For simplicity, we assume that
data has a uniform distribution. We summarize the notation used for the cost model in
Table 4.

5.2 Analysis of storage overhead

The separate clustering methods, i.e., M1, M2, M3, have the same storage overhead. Their
storage overhead, SM123, consists of those of 1) the spatial index, SM123,SPAT IAL, and 2)
the inverted index, SM123,INV . The height of the spatial index is �logBF N�, and each level
i of the index has BF i nodes.8 SM123,INV consists of the costs of 1) the posting lists,
SM123,POS, and 2) the keyword index, SM123,KEY . The number of disk pages needed to
store the posting lists is �|WT |/BF �. The height of the keyword index of the inverted index
is �logBF |W |�, and each level i of the index has BF i nodes. Thus, SM123 is estimated as
in (3).

SM123 = SM123,SPAT IAL + SM123,POS + SM123,KEY

=
�logBF N�−1∑

i=0

BF i +
⌈ |W | · PAV G

BF

⌉
+

�logBF |W |�−1∑

i=0

BF i

≈ N

BF
+ |WT |

BF
+ |W |

BF
(3)

The storage overhead for M4, SM4, consists of those of 1) the spatial index, SM4,SPAT IAL,

and 2) the inverted index, SM4,INV . SM4,SPAT IAL is the same as SM123,SPAT IAL. M4 cre-
ates an inverted index for each node of the spatial index, and hence, its number is the same
as that of the nodes in the spatial index. Here, we estimate the size of each inverted index
as that of the original inverted index (i.e., SM123,INV ) divided by the number of leaf nodes
(i.e., �N/BF �) since SM123,INV is partitioned to leaf nodes of the spatial index. We divide
SM4,INV into the inverted indices for leaf nodes and those for internal nodes. The total
space of the former is the same as SM123,INV . We note that the space for the latter (i.e., the

inverted indices for internal nodes =
∑�logBF N�−2

i=0 BF i · SM123,INV

�N/BF � ) must be added to SM4.

7We set the ratio to be CS

CR
where CS(CR) is the cost for a sequential (random) access to a disk page.

8BF will be rather different for each type of the index. However, for simplicity, we assume that BF s for all
indices are the same.
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Table 4 The Notation

Symbols Definitions

N the total number of objects

|W | the number of unique keywords in the collection

|WT | the total number of keywords in the collection

|PWi | the number of postings for keyword Wi

|PAV G| the average number of postings per keyword (i.e., |WT |/|W |)
|ORC | the number of result candidates

|OPrune| the number of the objects to access until top-k pruning

BF blocking factor (i.e., the maximum number of entries stored in a disk page) of the index pages

CS(CR) the cost for a sequential (random) access to a disk page

Thus, we obtain

SM4 = SM4,SPAT IAL + SM4,INV

≈ SM4,SPAT IAL + (SM123,INV +
⎛

⎝
�logBF N�−2∑

i=0

BF i ·
(

SM123,INV

�N/BF �
)⎞

⎠

= SM123 +
�logBF N�−2∑

i=0

BF i · SM123,INV

�N/BF �

≈ SM123 + N

BF 2
· |WT | + |W |

N
(4)

The storage overhead for M5, SM5, consists of those of 1) the spatial index, SM5,SPAT IAL,

and 2) the inverted index, SM5,INV . M5 creates a spatial index for each keyword Wi .
SM5,SPAT IAL is calculated by summing up the space for the spatial indexes for all the key-
words. SM5,INV is equal to SM123,INV . Thus, SM5 is estimated as in (5). We note that
SM5,SPAT IAL depends on |WT |, not on N . This means that the same object is indexed by
multiple spatial indexes for the keywords contained in the object. Thus, SM5 is always much
bigger than SM123 since so is |WT | than N .

SM5 = SM5,SPAT IAL + SM5,INV

=
|W |∑

i=1

�logBF |PWi |�−1∑

j=0

BFj + SM123,INV

≈ |W | ·
�logBF |PAV G|�−1∑

j=0

BFj + |WT | + |W |
BF

≈ |W | · |PAV G|
BF

+ |WT | + |W |
BF

(5)

5.3 Analysis of query processing cost

The query processing cost for M1, ProcM1, consists of 1) the cost for accessing the spatial
index, ProcM1,SPAT IAL, and 2) that for accessing the inverted index, ProcM1,INV . M1
accesses |ORC | objects for each index. Approximately, a fraction |ORC |

N
of SM123,SPAT IAL
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is accessed; a fraction |q.keywords|·|ORC |
WT

of SM123,POS and a fraction |q.keywords|
W

of
SM123,KEY are accessed. Since M1 accesses |ORC | objects for each index at a time, it can
take advantage of the sequential access to the inverted index in contrast to the other methods;
we reflect its effect to ProcM1,INV by multiplying CS

CR
.

ProcM1 is estimated as in (6).

ProcM1 = ProcM1,SPAT IAL + ProcM1,INV

≈ |ORC |
N

· SM123,SPAT IAL + CS

CR

· |q.keywords| · |ORC |
|WT | · SM123,POS

+|q.keywords|
|W | · SM123,KEY

= |ORC |
BF

·
(
1 + CS

CR

· |q.keywords|
)

+ |q.keywords|
BF

(6)

The query processing cost for M2, ProcM2, consists of 1) the cost for accessing the spa-
tial index, ProcM2,SPAT IAL, and 2) that for accessing the inverted index, ProcM2,INV .
M2 accesses |OPrune| objects for each index. Approximately, a fraction |OPrune |

N
of

SM123,SPAT IAL is accessed; a fraction |q.keywords|·|OPrune |
WT

of SM123,POS and a fraction
|q.keywords|

W
of SM123,KEY are accessed. The maximum value for |OPrune| is calculated by

m × N(m−1)/m × q.k1/m where m is the number of sorted lists [16]. Here, m = 2 (one for
spatial proximity and one for textual relevancy). Meanwhile, M2 provides top-k pruning in
the unit of the object while the other methods in the unit of the group; we reflect this by
multiplying fM2 = |OPrune |/BF

�|OPrune |/BF � . ProcM2 is estimated as in (7).

ProcM2 = ProcM2,SPAT IAL + ProcM2,INV

≈ fM2 ·
( |OPrune|

N
· SM123,SPAT IAL + |q.keywords| · |OPrune|

|WT | · SM123,POS

)

+|q.keywords|
|W | · SM123,KEY

= fM2 ·
( |OPrune|

BF
· (1 + |q.keywords|)

)
+ |q.keywords|

BF
(7)

The query processing cost for M3, ProcM3, consists of 1) the cost for accessing the
spatial index, ProcM3,SPAT IAL, and 2) that for accessing the inverted index, ProcM3,INV .
The only difference of M3 from M2 is that M3 processes all the objects in each disk page
at a time, obviating the need for fM2 in ProcM2. ProcM3 is estimated as in (8).

ProcM3 = ProcM3,SPAT IAL + ProcM3,INV

≈ |OPrune|
BF

· (1 + |q.keywords|) + |q.keywords|
BF

(8)

The query processing cost for M4, ProcM4, consists of 1) the cost for accessing the spa-
tial index, ProcM4,SPAT IAL, and 2) that for accessing the inverted index, ProcM4,INV .
Compared with M3, M4 requires additional access overhead for inverted indices on inter-
nal nodes (i.e., |W |+|WT |

BF 2 ). Approximately, a fraction |OPrune |
N

of inverted indices on internal
nodes is accessed. We use the same |OPrune| in M2 and M3 for M4 and M5 as well due to
the following reason. M4 (M5) has a list sorted by spatial proximity (textual relevancy) and
another list partitioned by spatial proximity (textual relevancy) where each group is sorted
by spatial proximity (textual relevancy). Hence, we can conceptually consider M4 and M5
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have two sorted lists. Meanwhile, we note that ProcM4 is affected by q.p. This stems from
the fact that M4 clusters the entire set of objects by a spatial index while clustering the
partitioned groups by multiple text indices. Hence, if a high weight for spatial proximity is
given (i.e., a high value of q.p), ProcM4 decreases due to the clustering effect of the spatial
index. We reflect the effect approximately by multiplying f (q.p). Here, we use (

1−q.p
0.5 ) for

f (q.p) so that ProcM4 decreases for a high value of q.p and increases for a low value of
q.p balancing at q.p = 0.5. ProcM4 is estimated as in (9). We note that the additional over-
head of M4 over M3 is supported by the fact that the performance of M3 is generally better
than that of M4 except for the case of high q.p in Section 6.

ProcM4 = ProcM4,SPAT IAL + ProcM4,INV

= f (q.p) ·
(

ProcM3 + |OPrune|
N

· |W | + |WT |
BF 2

)

= f (q.p) ·
( |OPrune|

BF
·
(
1 + |q.keywords| + |W | + |WT |

N · BF

)

+|q.keywords|
BF

)
(9)

The query processing cost for M5, ProcM5, consists of 1) the cost for accessing the spa-
tial index, ProcM5,SPAT IAL, and 2) that for accessing the inverted index, ProcM5,INV .
Approximately, a fraction |q.keywords|·|OPrune |

WT
of all the indices is accessed. For each key-

word, M5 clusters the entire set of objects containing the keyword by a spatial index. Hence,
for each query keyword, M5 is efficient for a high value of q.p due to the effect of clustering
by the spatial index as M4. ProcM5 is estimated as in (10). We note that the performance
of M5 degrades much as the number of query keywords increases since the steps must be
repeated for each query keyword.

ProcM5 = ProcM5,SPAT IAL + ProcM5,INV

≈ f (q.p) ·
( |q.keywords| · |OPrune|

|WT | · (SM5,SPAT IAL + SM5,POS)

+|q.keywords|
|W | · SM5,KEY

)

= f (q.p) · (2 · |q.keywords| · |OPrune|
BF

+ |q.keywords|
BF

) (10)

5.4 Physical database design

In this section, we show that our cost model allows us to do physical database design, i.e.,
to find the optimal method for a given usage pattern. Figure 7 shows the query processing
time estimated using the cost model presented in Section 5.3. Here, we use DataSet1 (N =
78,260, |W | = 206,636, and |WT | = 18,397,075) as the default data set. The other constants
are as follows: BF = 200 (i.e., page size = 4KB and object size = 20B) and CS

CR
= 1/250

(CR = seek time + 1/2 * rotation time + block transfer time, CS = block transfer time;
specifications of the disk used: seek time = 8.9ms, rotation time = 5.56ms, block trans-
fer time = 0.045ms). Default query parameters are as follows: q.k = 10, q.p = 0.5, and
|q.keywords| = 3. Figure 7a shows the estimated query processing time as q.k is varied.
For a small q.k, M2 shows the best performance due to the processing unit (i.e., an object)
smaller than those of the other methods as indicated by (7); for a large q.k, M1 is the best
due to the effect of sequential access (i.e., CS /CR) as indicated by (6).
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(a) The estimated time 
as q.k is varied (q.p = 0.5 
and |q.keywords| =3).

(b) The estimated time 
as q.p is varied (q.k = 10 
and |q.keywords| = 3).

(c) The estimated time 
as |q.keywords| is varied 
(q.k = 10 and q.p = 0.5).
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Figure 7 The estimated query processing time using the cost model

Figure 7b shows the estimated query processing time as q.p is varied. Since the separate
clustering methods (i.e., M1, M2, and M3) show similar trends for the other parameters
except for q.k, we present only M3 as the representative of the separate clustering methods
in the analysis and experiments. For a small q.p, M3 is the best; for a large q.p, M4 and
M5 are the best. The greater q.p is, the better the performance of M4 and M5 are than those
of the other methods as indicated by (9) and (10).

Figure 7c shows the estimated query processing time as |q.keywords| is varied.
|q.keywords| affects the performance of M5 much more than those of the other methods as
indicated by (10). For a small |q.keywords|, the performance of M5 is the best; for a large
|q.keywords|, M3 is the best.

Example 2 Figure 8 shows two usage patterns consisting of query loads and their frequen-
cies. Here, we use the same data set and constrains as in Figure 7. By substituting query
parameters in the cost formulas obtained in Section 5.3, we obtain the following expected
query processing time for each method for the usage pattern A: M1 = 1007.05ms, M2
= 256.66ms, M3 = 306.14ms, M4 = 502.54ms, and M5 = 606.27ms. Thus, the opti-
mal method for the given usage pattern in Figure 8 is M2. We also obtain the following
expected query processing time for each method for the usage pattern B: M1 = 1009.86ms,
M2 = 699.66ms, M3 = 768.15ms, M4 = 287.41ms, and M5 = 386.22ms. Thus, in this
case, the optimal method is M4.

6 Performance evaluation

6.1 Experimental data and environment

In this section, we have implemented all the methods and indices for an extensive exper-
iment. We compare the index size and query performance of the generated methods. The
index size of the separate clustering methods is the sum of the size of the spatial index and
that of the inverted index while the index size of the combined clustering methods is that of
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Query Loads Frequencies 
(%)q.k q.p |q.keywords|

Query Load1 3 0.3 4 70

Query Load2 10 0.4 2 20

Query Load3 20 0.5 3 10

Query Loads Frequencies 
(%)q.k q.p |q.keywords|

Query Load1 20 0.9 4 80

Query Load2 30 0.7 5 20

(a) Usage pattern A.

(b) Usage pattern B.

Figure 8 The example of usage patterns

the their index structures themselves. For measuring the query performance, we use the wall
clock time and the number of page accesses. We use three data sets: DataSet1, DataSet2,
and DataSet3. In DataSet1, the spatial data contains two-dimensional real spatial objects for
buildings located in Seoul, and the text data is fromWeb pages collected throughWeb crawl-
ing. DataSet2 is created combining texts from the 20Newsgroups dataset9 and locations
from LA streets10. DataSet2 is the same as that used by Cong et al. [5] and Rocha-Junior
et al. [17]. In DataSet3, the spatial data are generated randomly, and the text data are from
Web pages collected through Web crawling. We generated four data sets of varying sizes
for DataSet3: 1K, 10K, 100K, and 1M. The data sets were generated by randomly select-
ing a Web page for each spatial object. We use DataSet3 to measure the performance as the
data size is varied and DataSet1 and DataSet2 for the other experiments. Table 5 shows the
characteristics of these data sets.

We generate five query sets, where |q.keywords| is 1, 2, 3, 4, and 5, respectively.
Each query set consists of 100 queries for each data set. Query locations are randomly
generated in the space of the data set. Query keywords are randomly selected from a
set of keywords each of whose document frequencies is greater than one percent of
total number of objects—excluding infrequent or unrealistic keywords. Table 6 shows the
query parameters and values used in the experiments. The default values are shown in
bold.

We conduct all the experiments on a Pentium4 3.6GHz Linux PC with 2.5GB of main
memory. For the sake of evaluating a lower-bound (i.e., the worst-case) performance, we
run all the methods at cold start. Cold start means an environment where the buffering effect
of the LINUX file system is completely removed. To guarantee cold start, we use raw disks

9http://people.csail.mit.edu/jrennie/20Newsgroups
10http://www.rtreeportal.org

http://people.csail.mit.edu/jrennie/20Newsgroups
http://www.rtreeportal.org


World Wide Web (2015) 18:969–995 989

Table 5 Characteristics of the data sets

Data sets DataSet1 DataSet2 DataSet3

Total number of objects 78,260 131,461 1,000,000

Maximum number of postings per keyword 55,949 131,461 794,915

Average number of postings per keyword 89 168 818

Total number of unique words in the data set 206,636 114,831 318,916

Total number of words in the data set 18,397,075 19,278,878 261,040,074

for storing data and indices. The page size for data and indices is set to 4,096 bytes. For the
sake of fairness, we use the same index structure for each clustering criterion consistently:
MBR-MLGF for the spatial index and the inverted index for the text index. We implemented
all of the methods using the MBR-MLGF [20] and the inverted index that are part of the
Odysseus DBMS [23, 24].

6.2 Results of the experiments

6.2.1 Index size

Table 7 shows the sizes of the indices. SM4 is bigger than SM123 by a factor of 1.83; SM5
is bigger than SM123 by 4.09. SM4 is bigger than SM123 due to the space of the inverted
indices for internal nodes. SM5 is bigger than SM123 since the spatial index of SM123 linearly
depends on N and that of SM5 linearly depends on |WT | where |WT | >> N . This result
supports the analysis of storage overhead in Section 5.2.

6.2.2 Query processing performance

Performance as q.k is varied Figure 9a shows the query processing time and Figure 9b the
number of page accesses as q.k is varied. We find that the overall trends of the estimated
results in Figure 7a are very close to the experimental results, and hence, we verify that the
best methods estimated for the query loads with extreme values are consistent with those
from the experimental results. Specifically, M2 is the best for a small q.k, and M1 is the
best for a large q.k. For a large q.k, even if the number of page accesses of M1 is relatively
larger, the query processing time of M1 is the smallest; this result is due to the effect of
sequential access. For some middle values of q.k, the best methods are rather different
between the estimated and experimental results. However, these differences are minor, and
they are likely to be caused by the discrepancies between the actual data distribution and
the uniform distribution we assumed for the cost model.

Table 6 Query parameters and values

Parameters Values

q.k 1, 10, 100, 1000

q.p 0.1, 0.3, 0.5, 0.7, 0.9

|q.keywords| 1, 2, 3, 4, 5
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Table 7 Sizes of indices (MB)

Method DataSet1 DataSet2 DataSet3

M1/M2/M3 662 871 12,641

M4 979 1,594 22,788

M5 2,709 2,204 23,576

Performance as q.p is varied Figure 10a shows the query processing time and Figure 10b
the number of page accesses as q.p is varied. We find that again the overall trends of the
estimated results in Figure 7b are very close to the experimental results. Specifically, M4
and M5 show a better performance than M3 for a large q.p, and M3 is the best for a small
q.p. Meanwhile, unlike the estimated result, the performance of M3 varies. However, its
variation is relatively less than those of M4 and M5, and it is likely to be caused by the
actual data distribution.

Performance as |q.keywords| is varied Figure 11a shows the query processing time and
Figure 11b the number of page accesses as |q.keywords| is varied. We also find that
the overall trends of the estimated results in Figure 7c are very close to the experimental
results. Specifically, M5 is the best for a small |q.keywords|, and M3 is the best for a large
|q.keywords|.

Performance as data set size is varied Figure 12 shows the performance as the data set size
is varied. All the methods have similar trends as the data set size increases.

Experiments on DataSet2 We have performed the same extensive experiments on DataSet2
as on DataSet1. Figure 13 shows the performance as q.k is varied. The results are con-
sistent with those for DataSet1. The experimental results for the other parameters are also
consistent and so are omitted.
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Figure 9 Performance comparison on DataSet1 as q.k is varied (q.p=0.5 and |q.keywords| = 3)
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Figure 10 Performance comparison on DataSet1 as set as q.p is varied (q.k = 10 and|q.keywords| = 3)

Effect of buffering In the previous experiments, we have measured the performance under
the environment removing the effect of buffering so as to assume the worst case. Now, to
show the buffering effect, we compare the query performance of generated methods accord-
ing to whether the buffer is used or not where the size of the buffer is 32MB. Figure 14
shows the reduction of the query performance due to buffering. The result shows that M3
and M4 take advantage of buffering since the same indices are used for every query; M5
cannot take advantage of buffering much since it maintains an index for each keyword and
accesses different indices for the given query keywords.

7 Comparison with related work

IR-tree [5, 14] and S2I [17] are the representative methods for indexing top-k spatial-
keyword queries. These methods are based on the combined clustering approach. IR-tree
first builds the R-tree, and then, builds the inverted index on the objects in each leaf node
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Figure 11 Performance comparison on DataSet1 as |q.keywords| is varied (q.k = 10 and q.p = 0.5)
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Figure 12 Performance comparison on as data set size is varied (q.k = 10, q.p = 0.5, |q.keywords| = 3)

of the R-tree. S2I first builds the inverted index, and then, builds the R-tree on the objects
in each posting list of the inverted index. IR-tree is mapped to M4, and S2I is mapped to
M5 as shown in Section 3.3. Recently, I 3 [25] and IL-Quadtree [26] have been proposed to
support top-k spatial-keyword queries. In effect, I 3 and IL-Quadtree are equivalent to S2I
except for using the quartree instead of the R-tree. RASIM [13] is the only method based
on the separate clustering approach. It is mapped to M3 as shown in Section 3.3.

Cong et al. [5] have also proposed two variations of the IR-tree: 1) CIR-tree and 2) DIR-
tree. First, CIR-tree improves the pruning power by partitioning the entire set of objects into
a specified number of groups and by making an entry for each group in a child node instead
of for each child node. Since this technique can be applied to any methods, it is orthogonal
to the issues discussed in this paper. Next, DIR-tree partitions the entire set of objects into
leaf nodes by considering not only location similarity but also textual similarity between
objects. Here, the system preference is used for controlling the weight between location

Q
ue

ry
 P

ro
ce

ss
in

g 
T

im
e 

(m
s)

# 
of

 P
ag

e 
A

cc
es

se
s 

(I
/O

)

(b) The number of page accesses.(a) Query processing time.

Figure 13 Performance comparison on DataSet2 as q.k is varied (q.p = 0.5and|q.keywords| = 3)
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Figure 14 Performance comparison as data set size is varied (q.k = 10, q.p =0.5, and |q.keywords| = 3)

similarity and textual similarity. We can map DIR-tree to a variation ofM4 that considers not
only location similarity but also textual similarity between objects when building the spatial
index. However, the performance improvement of the method occurs only when the given
user preference is similar to the system preference. Our experiments for M4 are equivalent
to those for DIR-tree varying only the user preference while fixing the system preference to
be 1.0 (i.e., considering only spatial proximity).

Many methods have been proposed for spatial-keyword queries without the top-k con-
straint. Chen et al. [3] have proposed a separate clustering method that supports efficient
merging of the results retrieved from each index. This method can be mapped to SK-M1
in Section 4. There have been many combined clustering approaches that combine the spa-
tial and text indices. Zhou et al. [27] and Vaid et al. [22] have proposed indices in which
an inverted index is built on each leaf node of the R*-tree, or an R*-tree is built on each
posting list of the inverted index. The former is can be mapped to SK-M3 in Section 4;
the latter to SK-M4. Park et al. [15] have proposed an R-tree-based index combining S-tree,
which is a hierarchical signature file with a structure-symmetric to the R-tree. Hariharan et
al. [11] have proposed another R-tree-based index building an inverted index on each leaf
node and storing a set of distinct keywords on each internal node. Felipe et al. [7] have pro-
posed an other R-tree-based index augmenting each node of an R-tree with a signature file.
These methods can be mapped to SK-M3 even if their text indices are different (i.e., a sig-
nature file or an inverted index). Christofaraki et al.[4] applies the recent text processing
techniques to the combined clustering approach based on the inverted index. This method
can be mapped to SK-M4.

8 Conclusions

We have proposed a generic model of index schemes for top-k spatial-keyword queries,
called G-Index Model. G-Index Model is a unified framework for top-k spatial-keyword
queries by exhaustively enumerating all the possible methods. For this, we have identi-
fied the clustering criteria and operators that can be used in the index schemes and have
generated index schemes by combining them. According to this model, we have generated
five methods: M1, M2, M3, M4, and M5. We have shown that all the existing methods
are mapped to the generated methods, i.e., M3 (RASIM [13]), M4 (IR-tree [5, 14]), and
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M5 (S2I [17]). This shows that our model sheds new light on understanding the existing
methods under a unified framework. Using G-Index Model, we have also discovered new
methods M1 and M2 that have not been reported before.

We have shown that G-Index Model can be applied into a class of queries involving arbi-
trary multiple data types. As concrete examples, we have shown that G-Index Model can
generate index schemes for two classes of queries: the spatial-keyword query without the
top-k constraint and the top-k spatial-keyword-relational query, which adds the relational
type to the top-k spatial-keyword query. We have also constructed a cost model for esti-
mating query processing cost of the generated methods for the top-k spatial-keyword query.
Through an extensive experiment, we verify that the cost model is consistent with the exper-
imental results. We note that the cost model can be used to do physical database design for
supporting top-k spatial-keyword queries.

A very important observation on G-Index Model is that 1) G-Index Model is generic to
deal with arbitrary multiple data types, 2) we provide a set of building blocks (i.e., clustering
criteria and operators) and their combinations for generating index schemes, and 3) we
prove their effectiveness through theoretical and empirical study.
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