
The VLDB Journal (2007) 16:371–387
DOI 10.1007/s00778-006-0037-7

REGULAR PAPER

The dynamic predicate: integrating access control with query
processing in XML databases

Jae-Gil Lee · Kyu-Young Whang · Wook-Shin Han ·
Il-Yeol Song

Received: 30 September 2005 / Revised: 10 March 2006 / Accepted: 13 July 2006 / Published online: 19 December 2006
© Springer-Verlag 2006

Abstract Recently, access control on XML data has
become an important research topic. Previous research
on access control mechanisms for XML data has focused
on increasing the efficiency of access control itself, but
has not addressed the issue of integrating access con-
trol with query processing. In this paper, we propose
an efficient access control mechanism tightly integrated
with query processing for XML databases. We pres-
ent the novel concept of the dynamic predicate (DP),
which represents a dynamically constructed condition
during query execution. A DP is derived from instance-
level authorizations and constrains accessibility of the
elements. The DP allows us to effectively integrate autho-
rization checking into the query plan so that unautho-
rized elements are excluded in the process of query
execution. Experimental results show that the proposed
access control mechanism improves query processing

J.-G. Lee (B) · K.-Y. Whang
Department of Computer Science and Advanced
Information Technology Research Center (AITrc),
Korea Advanced Institute of Science and Technology(KAIST),
373-1 Guseong-dong, Yuseong-gu,
Daejeon 305-701, South Korea
e-mail: jglee@mozart.kaist.ac.kr

K.-Y. Whang
e-mail: kywhang@mozart.kaist.ac.kr

W.-S. Han
Department of Computer Engineering,
Kyungpook National University, 1370 Sankyuk-dong,
Book-gu, Daegu 702-701, South Korea
e-mail: wshan@knu.ac.kr

I.-Y. Song
College of Information Science and Technology,
Drexel University, Philadelphia, PA 19104, USA
e-mail: song@drexel.edu

time significantly over the state-of-the-art access control
mechanisms. We conclude that the DP is highly effec-
tive in efficiently checking instance-level authorizations
in databases with hierarchical structures.

Keywords Access control · Query processing · XML
databases · Privacy/security

1 Introduction

The amount of private data stored in databases is rap-
idly growing [24], and the awareness of privacy protec-
tion on data is rapidly increasing [1,2,25]. Among many
research issues, access control has played a crucial role in
privacy protection [1]. Access control prevents an adver-
sary from illegitimately accessing private data stored in
databases. As XML is emerging as a new standard for
data representation and exchange on the internet, access
control on XML data has become an important research
topic [5,7,8,10,12–14,20,23,26,34].

Several access control models for XML data have
been reported in the literature [5,12,14]. These mod-
els provide ways to grant authorizations and to con-
trol access to XML data through authorizations. That
is, these models allow users to access only authorized
XML data elements. These models have some common
characteristics: an authorization can be specified at the
schema level or at the instance level; an authorization
on an element implies those on its descendant elements
in the XML data hierarchy (called an implicit autho-
rization); and an explicit authorization can override an
implicit authorization. These characteristics make access
control in XML databases complicated. Thus, access
control tends to be time-consuming and degrades query-
processing performance.

372 J.-G. Lee et al.

There have been a number of efforts to develop
efficient access control mechanisms for XML data.
Previous research has mainly dealt with the methods of
efficiently searching for authorizations [5,12,13,26,34]
or those of effectively reducing the number of authoriza-
tion checks that need to be performed at run time [10,20,
23]. These research activities have successfully improved
the performance of access control itself. In general,
access control should be accompanied by query process-
ing to return only authorized query results. Nevertheless,
despite the close relationship between access control
and query processing, there has not been any work
towards integration of these two kinds of operations.

We contend that the tight integration of access control
with query processing can significantly improve query-
processing performance. Let us present a simple exam-
ple. Suppose that a user issues a query that retrieves
all the drug elements in an XML document and that
a very large proportion of drug elements are unautho-
rized. If a query processor is aware of the authorization
information, it can exclude beforehand most of the drug
elements from query processing, thus drastically saving
query processing cost. Hence, the authorization infor-
mation can be exploited to help the query engine better
optimize query evaluation.

In this paper, we develop an efficient access control
mechanism applicable to existing access control mod-
els [5,12,14] for XML data. The novelty of our access
control mechanism is tight integration of access control
with query processing. The key idea is to regard an autho-
rization as a query condition to be satisfied. The develop-
ment consists of two steps: (1) devising a mechanism that
efficiently searches for authorizations and (2) integrating
this access control mechanism with the query plan.

We first propose an access control mechanism that
utilizes an authorization index and nearest neighbor
search technique [18] for efficiently searching for autho-
rizations. We implement an authorization index as a
multi-dimensional index [15]. The proposed mechanism
first maps the elements in XML data with authoriza-
tions to two-dimensional points and store them in the
authorization index. Since accessibility of an element
is determined by the explicit authorization specified on
the nearest ancestor element with an explicit one [5,10,
12,26], we adopt a nearest neighbor search technique to
efficiently find that explicit authorization.

We then propose the notion of the dynamic predi-
cate (DP), which represents a dynamically constructed
condition during query execution. We note that acces-
sibility of an element is dynamically determined during
query execution because authorizations can be specified
at the instance level. The DP is applied for checking the
accessibility of such elements during query execution.

Here, the DP indicates which elements are authorized or
unauthorized. By inserting the DP into the query plan,
we effectively integrate access control with query pro-
cessing. Due to this integration, unauthorized elements
are excluded in an early phase of query processing, thus
significantly improving the performance.

There are two major reasons why we need a mecha-
nism different from those for relational databases:
instance-level authorizations and data hierarchies. Typ-
ically, relational databases support only schema-level
authorizations without supporting instance-level autho-
rizations. Supporting instance-level authorizations is
expensive since we need to access the elements them-
selves to check their accessibility. We reduce the cost
by using the notion of the DP, i.e., by representing the
authorization information of a set of elements having an
identical authorization with that of the element being
currently accessed. The DP is highly effective in check-
ing instance-level authorizations in databases with hier-
archical structures. A large number of data elements can
be filtered out along the data hierarchies, thus making
the DP more effective. We call this feature hierarchi-
cal filtering. In contrast, relational databases have flat
structures and cannot take advantage of this hierarchi-
cal filtering.

Recently, the importance of information inference is
being widely recognized [1]. Information inference is the
ability of inferring the information that a user is not
permitted to know using the information that the user
knows [1]. The extent of information inference is depen-
dent on the strategy for determining authorized query
results. There are two different strategies for determin-
ing authorized query results. The first one is to check
authorizations only for the instances returned as the
query result [5,12,20,23,26]. The second one is to check
authorizations for all the instances of other elements
that qualify result instances as well as for the result
instances themselves [10]. The second strategy signifi-
cantly reduces information inference, and we call it the
inference-blocking strategy. To show progressive devel-
opment, we first develop our access control mechanism
for the first strategy in Sects. 4 and 5, and then, proceed
to the second strategy in Sect. 6.

In summary, the contributions of this paper are as
follows:

• We propose a new notion of the authorization index
combined with the nearest neighbor search tech-
nique that allows effective determination of acces-
sibility.

• We propose a new notion of the DP that allows
effective integration of access control with query
processing.

The dynamic predicate: integrating access control with query processing in XML databases 373

• We propose an efficient access control mechanism
tightly integrated with query processing—using the
notion of the DP.

• We make our access control mechanism minimize
information inference by adopting the inference-
blocking strategy.

• We demonstrate, by extensive experiments, that our
access control mechanism significantly outperforms
existing mechanisms.

The rest of this paper is organized as follows. Sect. 2
describes existing access control models and mecha-
nisms for XML data. Section 3 presents a simple access
control mechanism. Section 4 proposes an integrated
access control mechanism that uses DPs. Section 5 dis-
cusses our approach to reducing information inference.
Section 6 presents the results of performance evaluation.
Finally, Sect. 7 concludes the paper.

2 Related work

We explain existing access control models [5,12,14] for
XML data and access control mechanisms in these mod-
els. These models provide ways to grant/revoke autho-
rizations on XML data stored in the database and to
control access to authorized XML data.

2.1 Access control models

An authorization in existing access control models is
generally defined as a 5-tuple < s, o, a, sign, imply_
option>[5,12,14]. Here, s is a user, a user group, a role, or
a credential [7] to whom an authorization is granted; o an
XML document or an XML element/attribute protected
by the authorization; a an action being allowed or pro-
hibited; sign has one of + or −, which indicates whether
the action is allowed or prohibited; imply_option repre-
sents whether the authorization implies 1 authorizations
on descendant elements. s is called the authorization
subject, o the authorization object, and a with sign the
authorization type.

Authorizations can be specified at the schema level
or at the instance level. Schema-level authorizations are
specified on a DTD, and these are applicable to all XML
documents that are instances of the DTD. Instance-level
authorizations are specified on an XML document, and
these are applicable only to the XML document to which
the authorizations have been granted.

Authorizations are classified into explicit or implicit,
strong or weak, and positive or negative ones [12,27].

1 Most access control models for XML data use the term “prop-
agate,” but we use the term “imply” for consistency.

An explicit authorization is explicitly specified on an
element of a DTD or an element of an XML document;
an implicit authorization is implied by an explicit autho-
rization specified on the nearest ancestor element with
an explicit one. A strong authorization does not allow an
implicit authorization to be overridden; a weak authori-
zation allows an implicit authorization to be overridden
by an explicit authorization. A positive authorization
allows accesses for a specific action; a negative authori-
zation prohibits accesses for a specific action.

Implication of an authorization introduces potential
conflicts among authorizations. That is, an element may
have both implicit and explicit authorizations for differ-
ent authorization types. To resolve these conflicts, many
access control models for XML data use the most spe-
cific overrides policy [5,10,12]. An explicit authorization
granted on a lower-level element always overrides a
weak authorization granted on a higher-level element
according to this policy. On the other hand, any explicit
authorization cannot be granted on a lower-level ele-
ment of an element having a strong authorization by
definition.

2.2 Access control mechanisms

Due to implicit authorizations, authorizations on the
ancestors should be examined to determine accessibility
of an element. Bertino et al. [5] have proposed top-down
and bottom-up strategies that determine the accessibil-
ity by traversing paths between the root and the element
to be examined. Top-down strategies traverse paths
beginning from the root; bottom-up strategies traverse
paths beginning from the element to be examined. Thus,
both strategies access the ancestors of the element to
be examined. If elements to be examined are scattered
in the database, in the worst case, these strategies may
access the whole database to check authorizations [5].

Damiani et al. [12] have proposed a view-based access
control mechanism. This mechanism creates and main-
tains a separate view for each user, which contains
exactly the set of data elements that the user is autho-
rized to access. After views are constructed, users can
simply run their queries against the views. Although
views are prepared off-line, in general, this mechanism
suffers from high maintenance and storage costs espe-
cially for a large number of users [20]. Fan et al. [13]
have proposed another view-based access control mech-
anism. This mechanism generates not only a view (called
a security view), but also a view DTD to which the
security view conforms. The view DTD is used for
improving efficiency of query rewriting and optimiza-
tion. This mechanism also shares the common drawback

374 J.-G. Lee et al.

of view-based access control mechanisms—high main-
tenance cost for a large number of users [8].

Murata et al. [23] have proposed a static analysis
method for reducing the number of authorization checks
during run time. This method classifies an XML query
at compile time into three categories: entirely autho-
rized, entirely prohibited, or partially authorized ones.
Entirely authorized or entirely prohibited queries can
be executed without access control. However, the sta-
tic analysis cannot obtain any benefits when a query
is classified as a partially authorized one. To remedy
this problem, Luo et al. [20] have proposed a query-
rewriting method QFilter that converts a partially autho-
rized query into an entirely authorized one. QFilter uses
the Non-deterministic Finite Automata (NFA) for query
rewriting. However, a query rewritten by QFilter tends
to be complicated (i.e., contain unions of many path
expressions) as the number of authorization increases.
Both methods, however, are able to support only
schema-level authorizations since they do not examine
the actual database.

Recently, some access control mechanisms whose
models are slightly different from traditional ones have
been proposed. Yu et al. [34] use an access control model
where an authorization on an element does not imply
authorizations on its descendant elements. In this type
of model, the number of authorizations tends to pro-
liferate since every authorization has to be explicitly
granted. Thus, Yu et al. have proposed the compressed
accessibility map (CAM), a mechanism of compressing
neighboring authorizations to avoid such proliferation.
Cho et al. [10], using an access control model where
instance-level authorizations are granted only accord-
ing to predetermined patterns (called security annota-
tions), have proposed an optimization method (which
we call SCA for convenience) minimizing the number
of security checks that need to be performed at run
time. Instead of unconditionally performing a recursive
check on the ancestors of an element, the SCA method
optimally determines when a recursive check can be
eliminated or simplified to a local check on the element.

2.3 Comparison with our access control mechanism

Our access control mechanism has desirable properties
compared with earlier access control mechanisms. First,
it can speed up query processing by excluding unau-
thorized elements early on during query processing.
Second, it obviates the need for accessing the whole
database by searching only the authorization index as
opposed to the top-down and bottom-up strategies [5].
Third, it does not suffer from the overhead of maintain-
ing views as opposed to the view-based access control

mechanisms [12,13]. Fourth, it supports instance-level
authorizations as opposed to the static analysis meth-
ods [20,23] which handle only schema-level authoriza-
tions.

3 A simple access control mechanism

In this section, we present a simple access control mecha-
nism. We first present the problem definition in Sect. 3.1.
We discuss the structure of the authorization index that
stores instance-level authorizations in Sect. 3.2 and pro-
pose a simple access control algorithm that utilizes the
authorization index and nearest neighbor search tech-
nique in Sect. 3.3.

3.1 The problem definition

We develop an efficient access control mechanism appli-
cable to existing access control models [5,12,14] for
XML data. That is, given an access control policy (i.e., a
set of authorizations granted), an XML document, and a
query, our access control mechanism retrieves the query
results authorized according to the access control pol-
icy. The XPath [11] language, which is a core component
of the XQuery language, is used for specifying XML
queries.

We first summarize the features of the access con-
trol model adopted in this paper. As stated in Sect. 2,
an authorization is defined as a 5-tuple < s, o, a, sign,
imply_option >. A path expression confirming to the
XPath [11] standard is used for specifying an authori-
zation object. Hence, we are able to support protection
granularity levels ranging from an XML document to an
XML element/attribute. If the path expression points to
the root element, the granularity level is the whole doc-
ument. If a set of elements is generated as the result
of the path expression, we assume that the authoriza-
tion is granted on every element. Besides, we support
the content (i.e., the text node) of an element as the
granularity level. Here, the content of an element is also
protected by the authorization on the element as in most
access control models. Authorizations are classified into
explicit or implicit, strong or weak, and positive or neg-
ative ones. The authorization type of a positive authori-
zation is represented by a or +a, and that of a negative
authorization by ¬a or −a.

The most specific overrides [5,10,12,27] policy is
employed to resolve conflicts among authorizations.
That is, an explicit authorization on an element over-
rides any authorizations specified on the ancestors of
the element. On the other hand, if there exists no autho-
rization—either explicit or implicit—on an element, the
element is considered as inaccessible [12,14,20,23,26].

The dynamic predicate: integrating access control with query processing in XML databases 375

It is possible to specify multiple explicit authoriza-
tions for different authorization types on the same ele-
ment, thus allowing accesses to the element for multiple
actions (e.g., for both read and update). If both a positive
explicit authorization and a negative explicit authoriza-
tion for the same authorization type are specified on
the same element, however, the negative one overrides
the positive one (called the denials take precedence pol-
icy) [5,12,14,20,23,26].

We now explain the ways of performing access con-
trol. Executing a query requires authorizations for a
specific authorization type (e.g., read), and we call it the
authorization type of the query. The elements on which
an authorization has been granted for the authoriza-
tion type of the query are accessible to the user, but
other elements are inaccessible. We elaborate on the
instance-level checking since this checking is very expen-
sive compared with the schema-level checking. Hereaf-
ter, we refer to instance-level authorizations simply as
authorizations.

Example 1 Figure 1 shows an example of an XML
document and authorizations. Let us call this XML doc-
ument hospital.xml. The authorization <userA, docu-
ment(“hospital.xml”)/hospital, read, +, imply 2> allows
userA to read the hospital element and its descendant
elements of hospital.xml. However, the authorization
<userA, document(“hospital.xml”)/hospital/patient[2],
read, −, imply> overrides the authorization above and
prohibits userA from reading the second patient element
and its descendant elements. Suppose userA issues a
query //patient//drug which requires read authorizations.
Here, the only three drug elements under the first patient
element are retrieved as the query result.

3.2 Authorization indexes

We use a two-dimensional index [15] to implement the
authorization index. This is because elements with an
explicit authorization are represented by two-dimen-
sional points (start, end) according to the numbering
scheme [3,6,9,19] used in many XML query-processing
methods. The (start, end) points are stored in the autho-
rization index. In the numbering scheme, (start, end) rep-
resents an ancestor–descendant relationship between
XML elements and satisfies the following two condi-
tions [19]: (1) for any element u and its parent element
v, the interval (startu, endu) is contained in the inter-
val (startv, endv); (2) for two sibling elements u and v,
if u is a predecessor of v in preorder traversal, then

2 For simplicity, we assume that an authorization on an element
always implies authorizations on its descendant elements.

hospital

name illness therapy

patient

drug drug drug

text text text

text text

name illness therapy

patient

drug drug

text text

text text

name illness therapy

patient

drug drug

text text

text text

The query results returned to user A

<userA, document(“hospital.xml”)/hospital/patient[2], read, -, imply>
<userA, document(“hospital.xml”)/hospital, read, +, imply>

Fig. 1 An example of an XML document and authorizations

endu < startv. Therefore, a is an ancestor of d if and only
if starta < startd ∧ enda > endd.

For the authorization index, we can use any kind
of indexes that can handle multi-dimensional points.
The MLGF [32], R-tree [17], buddy tree [31], and quad
tree [29] are examples.

Example 2 Figure 2 illustrates an example of the autho-
rization index implemented using the MLGF. Suppose
that authorizations are granted on the elements whose
(start, end) numbers are (7, 9), (10, 20), (26, 28), (29, 36),
and (37, 44), respectively. These two-dimensional points
are depicted in the two-dimensional space as in Fig. 2a
and are indexed in the MLGF as in Fig. 2b. The MLGF
is a height-balanced index tree that stores multi-dimen-
sional points [32]. A non-leaf page contains entries of
<region, ref>, where ref is the pointer to the child page,
and region contains all the regions represented by the
entries of the child page pointed by ref. A leaf page con-
tains entries of <point, oid>, where point is the coordi-
nate of the point, and oid is the identifier of the object
stored in the database.

3.3 Simple access control algorithm using the
authorization index and nearest neighbor search

Due to the most specific overrides policy, we can deter-
mine accessibility of an element by seeing the autho-
rization granted only on the nearest ancestor element
regardless of its authorization type. That is, an element is
accessible if the authorization type of this authorization
is the same as that of the query; inaccessible otherwise.
We refer to this authorization as the nearest ancestor
authorization. We formally define it in Definition 1 and
find it using Lemma 1.

376 J.-G. Lee et al.

0

10

20

30

40

50

0 10 20 30 40
start

en
d

Authorizations depicted in the two-dimensional space.

auth1: (7,9)

auth2: (10,20)

auth3: (26,28)

auth4: (29,36)

auth5: (37,44)

[7,21]x[9,44], refA

<7,9>, oid1 <10,20>, oid2 <26,28>, oid3 <29,36>, oid4 <37,44>, oid5

[22,37]x[9,44], refB

auth1 auth2 auth3 auth4 auth5

A B

Root node

Node A Node B

The structure of the authorization index.

(a)

(b)

Fig. 2 An example of the authorization index implemented using
the MLGF

Definition 1 An authorization is called the nearest
ancestor authorization authnaa of the element e if it satis-
fies the following two conditions: (1) authnaa is an explicit
authorization granted on the element e or one of its
ancestor elements regardless of its authorization type; (2)

no explicit authorization exists on elements in the path
between the element e and the element on which authnaa

is granted. If a strong authorization satisfies the first con-
dition, it automatically satisfies the second condition by
the definition of the strong authorization.

Lemma 1 The nearest ancestor authorization authnaa of
the element e is the one that minimizes |start(e) −
start(auth)|, where auth is an authorization that satis-
fies start(auth) ≤ start(e) ∧ end(auth) ≥ end(e). That is,
authnaa has the minimum difference between start(e) and
start(auth) where auth is an authorization located in the
upper-left region of the element e in the two-dimensional
space. Here, start(e) and end(e) represent start and end
values of the element e; start(auth) and end(auth) those
of the element on which auth is granted.

Proof See Appendix A. ��

We note that multiple nearest ancestor authorizations
can exist due to multiple authorizations on the same
element. Suppose there exist multiple nearest ances-
tor authorizations auth(1)

naa, . . . , auth(k)
naa whose authori-

zation types are a(1)
naa, . . . , a(k)

naa, respectively. In this case,

Fig. 3 The simple access control algorithm Nearest Ancestor
Filtering

we regard them as one authorization whose authoriza-
tion type is obtained by ORing individual a(i)

naa’s (i.e.,
∨k

i=1 a(i)
naa).

We now propose a simple access control algorithm
that uses the authorization index and nearest neighbor
search technique. We call it Nearest Ancestor Filtering.
The algorithm executes a query and, for each query
result, searches for the nearest ancestor authorization
according to Lemma 1 to check authorizations. Here,
the nearest ancestor authorization can be retrieved by
using a nearest neighbor search technique [18]. Finally,
the algorithm examines whether the authorization type
of the nearest ancestor authorization is the same as
that of the query, thus checking accessibility of the
query result. We note that, to find the nearest ancestor
authorization, Nearest Ancestor Filtering accesses the
authorization index only once, while the top-down and
bottom-up strategies access many ancestors and find the
authorization for each ancestor accessed [5]. Figure 3
shows the algorithm Nearest Ancestor Filtering.

4 An integrated access control mechanism

In this section, we propose an access control mechanism
tightly integrated with query processing, which is the
primary contribution of this paper. We first present an
overview in Sect. 4.1, and then, propose a new notion of
the dynamic predicate and a technique that integrates
authorization checking into the query plan using this
notion in Sect. 4.2.

4.1 Overview

The key operation in the integrated access control mech-
anism is identifying a set of elements that have the same
accessibility. The start values of those elements can be
formed as an interval, and we call it the start interval. A

The dynamic predicate: integrating access control with query processing in XML databases 377

Nearest ancestor authorization
(auth naa).

Nearest overriding authorization
(auth noa).

candidate results

elements with an
explicit authorization

e1 e2 e3 e4 e5 e6 e7 e8 e9

auth naa

auth noa

auth naa
e10 e10

e11

e1 e2 e3 e4 e5 e6 e7 e8 e9

(a) (b)

Fig. 4 Elements with the same nearest ancestor authorization

start interval represents either a set of authorized ele-
ments or a set of unauthorized elements. During query
processing, the start interval can be used to determine
accessibility of an element by examining whether the
start value of the element is contained in this start inter-
val. With this method, we do not have to search the
authorization indexes for each query result as in the
algorithm Nearest Ancestor Filtering.

A start interval of elements with the same accessibil-
ity can be constructed as the interval of elements with
the same nearest ancestor authorization because acces-
sibility of an element e is determined by the nearest
ancestor authorization of e by Definition 1. Figure 4
shows the elements having the same nearest ancestor
authorization. In Fig. 4a, the nearest ancestor autho-
rization of element e1 is authnaa, granted on e10, and
no authorization overrides authnaa. Therefore, elements
e1–e9, which are the descendant elements of e10, have
authnaa as the nearest ancestor authorization. However,
in Fig. 4b, only elements e1–e4 have authnaa as the near-
est ancestor authorization because authnoa, granted on
e11, overrides authnaa. To consider this case, we define
the nearest overriding authorization authnoa of the near-
est ancestor authorization authnaa as the one that first
overrides authnaa, when traversing the XML data tree
from a current element in preorder. We formally define
it in Definition 2 and find it using Lemma 2.

Definition 2 Suppose authnaa is the nearest ancestor
authorization of the element e and is a weak authori-
zation. An authorization is called the nearest overriding
authorization authnoa of authnaa if it satisfies the follow-
ing two conditions: (1) authnoa is an explicit authorization
granted on a descendant element of the element having
authnaa regardless of its authorization type; (2) no other
explicit authorization exists, when traversed in preorder,
between the element e and the element having authnoa. If
authnaa is a strong authorization, however, authnoa does
not exist by the definition of the strong authorization.

Lemma 2 Suppose authnaa is the nearest ancestor autho-
rization of the element e and is a weak authorization.
Then, the nearest overriding authorization authnoa of

authnaa is the one that minimizes |start(e) − start(auth)|,
where auth is an authorization that satisfies start(auth) >

start(e) ≥ start(authnaa) ∧ end(auth) < end(authnaa).

Proof See Appendix B. ��
We now present Lemma 3 for constructing the start

interval having the same nearest ancestor authorization
as that of the element e. All the elements whose start
value is contained in this interval are accessible or inac-
cessible depending on the authorization type of the near-
est ancestor authorization of the element e.

Lemma 3 Suppose that the nearest ancestor authoriza-
tion of the element e is authnaa, and the nearest overrid-
ing authorization of authnaa is authnoa. If authnaa does not
exist, we assume that authnaa is a negative authorization
specified on the root element. This assumption is reason-
able since an element with no authorization is regarded
as inaccessible in our access control policy. Then, any
element whose start value is contained in the following
interval has the same nearest ancestor authorization as
that of the element e.

• if authnoa exists: [start(e), start(authnoa))

• if authnoa does not exist: [start(e), end(authnaa))

Proof See Appendix C. ��

4.2 Dynamic predicates (DPs)

We propose the notion of the dynamic predicate3, which
represents a dynamically constructed condition during
query execution. We note that, due to instance-level
authorizations, the start interval constructed by Lemma 3
is data-dependent and should be evaluated at run time.
The DP inserted in the query plan allows this data-
dependent start interval to be evaluated at run time.
By evaluating the start interval, we can filter out unau-
thorized elements from query processing early on, thus
significantly improving query performance. Therefore,
we apply the notion of the DP for determining accessi-
bility of elements so as to tightly integrate access control

3 Oracle has used the term “dynamic predicate” for a meaning
different from that of our DP. Oracle Enterprise Edition provides
a facility that automatically appends a predicate to a user’s query
at query compilation time. Oracle refers to this predicate as a DP.
It is defined by the database administrator based on his access
control policy. The DP is used for hiding some tuples from a user
just like the way views are used for access control. We note that the
DP in Oracle is static rather than dynamic. It is determined dur-
ing query compilation and is not changed during query execution.
In contrast, the DP in this paper is indeed dynamic because it is
changed continuously due to its property of being data-dependent.

378 J.-G. Lee et al.

with the query plan. Definition 3 formally defines the DP
when it is applied to access control.

Definition 3 A dynamic predicate for the element e is a
condition dynamically constructed during query execu-
tion, representing a start interval of elements with the same
accessibility. A DP is represented as ([startbegin, startend),
sign). Here, [startbegin, startend) represents the start inter-
val, and sign represents accessibility (+) or inaccessibil-
ity (−) of the elements that belong to this start interval. A
DP is constructed as follows:

(1) [startbegin, startend) : the start interval generated
according to Lemma 3;

(2) sign:

⎧
⎪⎨

⎪⎩

+ if the nearest ancestor authorization

allows accesses to the element e;

− otherwise.

Example 3 Suppose userA issues a query //patient //drug,
which requires read authorizations, against the XML
document in Fig. 5. During query processing, a drug ele-
ment (11, 13) is retrieved, and then, the DP for (11, 13)

is constructed according to Definition 3 as follows. (1)
The nearest ancestor authorization of (11, 13) is the one
granted on (2, 46) by Definition 1, and its nearest over-
riding authorization is the one granted on (22, 45) by
Definition 2. This case falls into the first category in
Lemma 3, and thus, [startbegin, startend) becomes [11, 22).
(2) The nearest ancestor authorization, which is granted
on (2, 46), prohibits userA from reading the element
(11, 13) because its authorization type is ¬read. Thus,
sign of the DP becomes −. Therefore, if we insert
([11, 22), −) into the query plan, drug elements (11, 13) ∼
(17, 19) are excluded from the query results, thus improv-
ing the query performance.

Only DPs with the − sign can enhance the perfor-
mance when they are inserted into the query plan,
because these predicates exclude elements. DPs with
the + sign make the elements whose start values are
contained in [startbegin, startend) be included into query
processing. However, DPs with the + sign should also
be inserted into the query plan because a DP with the
+ sign allows us to find the element for constructing the
next DP. This element is the first one whose start value
is not contained in [startbegin, startend).

The earlier the DPs are evaluated in the query plan,
the earlier we can exclude unauthorized elements from
query processing, thus improving query performance.
Thus, we push down DPs in the query plan. It is simi-
lar to query optimization in relational databases, push-
ing down selection predicates to reduce the number of
retrieved tuples as early as possible. While the query

surgery

name illness therapy

patient

drug drug drug drug drug

text text text text

drug drug

text text text

text text

name illness therapy

patient

text text
(11,13)(14,16)(17,19)

(3,21) (22,45)

(30,32) (38,40) (41,43)(33,35)

(29,36) (37,44)

(2,46)

(4,6) (7,9) (10,20) (23,25) (26,28)

Those elements that can be excluded
from the query results by DPs

hospital(1,81)

nearest overriding authorization:
<userA, /hospital/surgery/patient[2], read, +, imply>

nearest ancestor authorization:
<userA, /hospital/surgery, read, -, imply>

therapy

Fig. 5 An example that shows performance improvement when
using DPs

optimization in relational databases pushes down selec-
tion predicates only once during query compilation,
however, the proposed optimization technique dynami-
cally generates the predicates and consecutively pushes
them down during query processing.

To push-down DPs, we first insert selection (σ) oper-
ators into the query plan right above the operators that
scan query elements during query compilation, and then,
assign DPs as the predicates to these selection operators
during query processing.

Figure 6 shows query plans for executing the query
//eA//eB//eC before and after using DPs. The query
plan is constructed using the scheme proposed by Wu
et al. [33] extended with authorization operators. Here,
the query plan is similar to that of relational algebra:
the query plan is a tree where query elements are leaf
nodes, and operators are internal nodes. Figure 6a shows
a basic query plan that does not use DPs. The authoriza-
tion checking operator � executes the algorithm Near-
est Ancestor Filtering presented in Sect.3.3 and returns
authorized results. The operator // returns pairs of
ancestor–descendant elements. A well-known process-
ing method of the operator // is the structural join [3,9,
19]. The scan(eA), scan(eB), and scan(eC) operators scan
each element in the order of start values to execute the
structural join. The basic query plan is constructed in
such a way that it first retrieves each result of the query
//eA//eB//eC, and then, performs authorization check-
ing with the operator �. The output of each operator is
pipelined to the input of the parent operator [16].

Figure 6b shows the query plan augmented with DPs.
This plan is constructed such that the DP push-down
operator � is inserted at top of the query plan, and σDP

The dynamic predicate: integrating access control with query processing in XML databases 379

//

The query plan
augmented with DPs.

σDP

σDP σDP

//

// DP
push-down

//

The basic query plan.

ΨΩΩ: Ψ:

scan

scan
(e)C

(e)B

scan
(e)A

DP
push-down

operator

authorization
checking
operator

scan
(e)A

scan
(e)B

scan
(e)C

(a) (b)

Fig. 6 Query plans before and after using DPs

operators right above scan(eA), scan(eB), and scan(eC)

operators. The role of the � operator is to initialize and
update DPs as query processing proceeds, pushing them
down to σDP operators. Here, the arrow lines indicate
that DPs generated by the � operator are pushed down
to the σDP operators. By using these DPs, only autho-
rized instances of eA, eB, and eC are provided to the
input of // operators.

The DP push-down operator � examines whether
the nearest ancestor authorization of each query result
retrieved is different from that of the previous query
result. Only when it is different, the operator � pushes
down a newly constructed DP into σDP operators. The
algorithm of the operator � is constructed by using the
iterator [16] model commonly used in query processors
of commercial DBMSs. In the iterator model, the opera-
tors composing the query plan receive an input from the
child operators, and then, provide the processed result to
the parent operator. To obtain a result from each oper-
ator, it provides GetNext() function as the interface.

Figure 7 shows the algorithm for GetNext() of the
operator �. We call it Dynamic Predicate Filtering. The
algorithm consists of two steps. In the first step, the algo-
rithm pushes down the constructed DP into the child
operator P and retrieves each authorized query result
by calling P.GetNext() (lines 2–6). At this time, it trans-
mits the DP to the child operator through the argument
of P.GetNext(). This DP is recursively transmitted to
all the σDP operators. When �.GetNext() is first called,
the algorithm retrieves the first candidate query result
ecandidate and constructs an initial DP for ecandidate using
Definition 3 (lines 3–5). In the second step, the algorithm
constructs the DP using Definition 3 only when the DP
for the query result e needs to be reconstructed (lines
7–8). [startbegin, startend) of the DP is the start interval
representing the set of elements with the same near-
est ancestor authorization as that of the previous query
result. Therefore, we can easily determine the element

Fig. 7 The integrated access control algorithm Dynamic
Predicate Filtering (Basic)

that triggers reconstruction of the DP by examining
whether the start value of the element e is contained
in this interval (line 7).

Example 4 Figure 8 shows an example of executing the
algorithm Dynamic Predicate Filtering (Basic), when
issuing a query //patient//drug against the XML docu-
ment in Fig. 5. In line 4 of Fig. 7, the algorithm retrieves
the first candidate query result, drug element (11, 13).
In line 5, DP = ([11, 22), −) is constructed as shown in
Example 3 using Definition 3. In line 6, the algorithm
pushes down DP = ([11, 22), −) all the way to the σDP
operators by calling P.GetNext(). Here, the operator P
is the // operator. Then, drug elements, (11, 13), (14, 16),
and (17, 19), whose start values are contained in [11, 22),
are excluded from query processing. (Filtering patient
elements is discussed in Example 6.) Thus, the algorithm
retrieves drug element (30, 32) which is next to [11, 22).
In line 8, DP = ([30, 45), +) is newly constructed, which
is used when �.GetNext() is called next.

Dynamic Predicate Filtering is optimally applied to
the query plan that satisfies the following condition: ele-
ments are scanned and query results generated in the
order of start values. Most structural join algorithms
satisfy this condition [3,6,9].4 Thus, we fully exploit the
properties of structural join algorithms, which are the
most popular methods for processing XML queries.

4 When this condition is not satisfied, however, we can simply
extend Dynamic Predicate Filtering in such a way that it accumu-
lates DPs instead of replacing the old one with a new one (although
the performance will not be as good).

380 J.-G. Lee et al.

P

σ¬ (11≤start<22) σ¬ (11≤start<22)

DP:
([11,22), -)

DP:
([11,22), -)

σ30≤start<45

DP:
([30,45), +)

DP:
([30,45), +)

σ30≤start<45

ΨΨ constructed by
the element (30,32)

scan
(patient)

Push-down of the DP
constructed by
the query result (30,32).

P

Push-down of the DP
constructed by
the query result (11,13).

scan
(drug)

scan
(patient)

scan
(drug)

(a) (b)

Fig. 8 An example of executing the algorithm Dynamic
Predicate Filtering (Basic)

Dynamic Predicate Filtering can be used also for twig
queries [6]: for example, //eA[.//eB//eC]//eD. Twig
queries are processed in two consecutive phases [6].
In the first phase, individual linear paths are extracted
from the twig query (//eA//eB//eC and //eA//eD in the
example query), and the result for each is retrieved.
In the second phase, results for individual linear paths
are merge-joined. We can use Dynamic Predicate Filter-
ing during the first phase that handles only linear path
queries.

5 Further enhancement of the access control
mechanism to minimize information inference

Information inference is the ability of inferring the infor-
mation that a user is not permitted to know using the
information that the user knows [1]. We discuss a fur-
ther enhancement of our access control mechanism to
minimize information inference. We determine autho-
rized query results using the following strategy: we check
authorizations for all the instances of other elements
that qualify result instances as well as for the result
instance themselves. 5 We call it the inference-blocking
strategy. This strategy can significantly reduce informa-
tion inference compared with that presented in previous
sections.

Example 5 Consider the XML document in Fig. 5. Sup-
pose that a user is allowed to access the drug elements,
but not the patient elements. If only query results are
checked for authorizations, a query //patient[./name
=‘Lee’]//drug could allow the user to infer the exis-
tence of a patient named ‘Lee.’ That is, non-empty query

5 The meaning of the qualifying instances becomes ambiguous
when XPath queries involve negation. Since most of XPath que-
ries do not allow negation [28], we do not consider it here leaving
it as the topic of a future paper.

results indicate the existence of such a patient. This
inference clearly violates the desired intent. In contrast,
the inference-blocking strategy prevents this inference.
Since the user is not allowed to access the patient ele-
ments, the query result is always empty regardless of the
existence of such a patient.

We first define the instances for which we need to
check authorizations. We call the set of these instances
the result tree and define it using the scheme proposed
by Miklau and Suciu [22]. Miklau and Suciu model an
XML document and an XPath query as trees. Here, a
node of an XML document is an element instance, and
that of an XPath query is an element type. A tree rep-
resenting an XML document is called an XML tree, and
that representing an XPath query a tree pattern. The
node representing the query result in a tree pattern is
called the distinguished output node. The set of edges
of a tree pattern is partitioned into the set of the par-
ent–child edges and the set of the ancestor–descendant
edges. Miklau and Suciu define an embedding as a map-
ping between the nodes of an XML document and the
nodes of an XPath query. Given a tree pattern p and an
XML tree t, an embedding e of p into t is a total function
e : {nodes of p} → {nodes of t} which satisfies the fol-
lowing condition: (1) ∀(x, y) ∈ {parent–child edges of p},
e(y) is a child of e(x) in t; (2) ∀(x, y) ∈ {ancestor–descen-
dant edges of p}, e(y) is a descendant of e(x) in t; and (3)
∀x ∈ {nodes of p}, the element name of x is the same as
that of e(x).

We now formally define the result tree in Definition 4.

Definition 4 A result tree rt of a tree pattern p is a tree
constructed by embedding the nodes of p, that is, by
replacing x ∈ {nodes of p} with e(x). NODES(rt) denotes
the set of nodes in a result tree rt, and OUTPUT(rt) the
node in rt that corresponds to the distinguished output
node in p.

We now enhance our access control algorithm so as
to check authorizations for all the nodes in the result
tree of a query. The enhancement of Nearest Ances-
tor Filtering is straightforward: we search for the nearest
ancestor authorization and check the authorization for
each node in the result tree retrieved. Figure 9 shows the
enhanced algorithm Dynamic Predicate Filtering adopt-
ing the inference-blocking strategy. It maintains DPs
dedicated to each element type specified in the query to
check accessibility of the instances of that element type.
The algorithm constructs a DP for each node in the result
tree and pushes down all the DPs constructed (lines 3–6).
The DP is transmitted to the σDP operator checking the
instances of the element type to which this DP is dedi-
cated. Then, the algorithm examines whether the DP for

The dynamic predicate: integrating access control with query processing in XML databases 381

Fig. 9 The Dynamic
Predicate Filtering algorithm
adopting the inference-
blocking strategy

σ

σ

σ

σ σ

σ

σ

each node in the result tree newly retrieved needs to be
reconstructed (lines 7–9). P.GetNext(), which is called
in �.GetNext(), returns a result (i.e., a result tree) of P
transmitting recursively each DP to the corresponding
σDP operator (lines 12–23). In lines 20–21, we find the
elements that satisfy ancestor–descendant relationship
using the scheme proposed by Chien et al. [9]. Chien
et al. construct, for each element type in an XML doc-
ument, two-dimensional indexes storing the (start, end)

points of elements to speed up query processing. These
indexes are also used to find the instance having the
smallest start value for each element type in line 4. We
discuss the effect of the inference-blocking strategy on
performance in Sect. 6.2.

Example 6 Reconsider Example 4 with Dynamic Predi-
cate Filtering in Fig. 9. The result trees retrieved are pairs
of the patient element and the drug element satisfying
ancestor–descendant relationship. For example, the first
result tree is the pair of the patient element (3, 21) and
the drug element (11, 13). Dynamic Predicate Filtering
maintains two separate DPs: one dedicated to the patient

element and one dedicated to the drug element. For
the first result tree, the former becomes DP(patient) =
([3, 22), −), and the latter DP(drug) = ([11, 22), −). Then,
the former is transmitted to the σDP operator above the
scan(patient) operator to filter out unauthorized patient
elements early on. Similarly, the latter is transmitted to
that above the scan(drug) operator.

6 Performance evaluation

In this section, we evaluate the performance of our
access control mechanism compared with existing ones
for XML data. We describe the experimental data and
environment in Sect. 6.1 and present the results of the
experiments in Sect. 6.2.

6.1 Experimental data and environment

We compare the performance of query processing with
six different access control mechanisms: the top-down

382 J.-G. Lee et al.

strategy, the bottom-up strategy, the CAM method [34],
the SCA method [10], Nearest Ancestor Filtering, and
Dynamic Predicate Filtering. The first and second ones
are considered as naive ones; the third and fourth ones
as state-of-the-art ones. We adopt the inference-block-
ing strategy for determining authorized query results. As
the performance measure, we use the wall clock time.

To measure the performance variation depending on
the types of data sets, we use the XMark [30] benchmark
data, which is a synthetic data set, and the TreeBank
[21] data, which is a real data set. The XMark bench-
mark data consists of a large XML document. We use
10 MB, 100 MB, and 1 GB XML documents to measure
the performance variation depending on the database
size. In the XMark benchmark data, subtrees with a
similar structure occur repeatedly at the same level. The
TreeBank data consists of an XML document of 86 MB,
in which elements are recursively nested in many levels.

To measure the performance variation depending on
the number of explicit authorizations, we vary the ratio
of the number of elements on which explicit authoriza-
tions are granted to the total number of elements in a
data set from 0.01 to 100%. To determine an authori-
zation object, we randomly pick 0.01–100% of elements
in a data set. Here, we first pick the root element to
make sure all the elements have an authorization—
either explicit or implicit. Multiple explicit authoriza-
tions can be granted on the same element unless we try to
grant both a positive authorization and a negative autho-
rization for the same authorization type. To determine
an authorization type, we randomly select one from five
authorization types (e.g., read, write, update, create, and
delete). We grant positive authorizations and negative
authorizations with the ratio of 9:1. We also perform
experiments with the ratio of 1:9.

For the CAM method, we treat implicit authoriza-
tions in our access control model as explicit ones that
are identical to their parents’ in CAM because, in CAM,
every authorization has to be explicitly granted. Then,
after compression, only those authorizations corre-
sponding to explicit authorizations in our access control
model remain and are indexed by CAM. Thus, autho-
rizations indexed by CAM become the same as those
indexed by our authorization index. To index authori-
zations, CAM constructs a trie consisting of the path
strings of the elements having authorizations.

To measure the performance variation depending on
the types of queries, we run simple queries of type
//eA//eB and complex queries of type //eA//eB//eC//

eD//eE (a linear path expression) or //eA[.//eB]//eC
(a branch path expression). Since queries of the same
type have similar tendencies, we present the experimen-
tal results for the queries in Fig. 10, which show the

dataset simple queries complex queries

XMark //person//interest
(1) //site//open_auctions//open_auction//

bidder//increase
(2) //open_auctions[.//bidder]//seller

TreeBank //NP//NN //SBAR//S//VP//PP//NP

Fig. 10 XML queries used in the experiments

representative tendency for each data set. Read autho-
rizations are required to execute these queries.

To compare the performance of our access control
method with that of the SCA method, we reproduce the
environmental setting used by Cho et al. [10] because,
in SCA, instance-level authorizations are granted only
according to security annotations. Cho et al. [10] have
used two different settings for security annotations: (1)
the instances of only three element types are permitted
to have authorizations (called a sparse DTD) or (2) the
instances of half of element types are permitted to have
authorizations (called a dense DTD). Using these set-
tings, they have issued the query //site[.//open_auction/
initial]/people//name against the XMark benchmark data.

We conduct all the experiments on a SUN Ultra 60
workstation with 450 MHz CPU and 512 MB of main
memory. We use the MLGF [32] as the multi-dimen-
sional index for storing authorizations, and the page
size for data and indexes is set to be 4,096 bytes. We
use the SP-GiST [4] to implement the trie for the CAM
method. Since this trie is constructed for each user [34],
our authorization index is constructed for each user to
make a fair comparison. For the SCA method, we store
an authorization as an attribute of an element in the
same way as done by Cho et al. [10]. For the top-down
and bottom-up strategies, we store an authorization as a
tuple in an authorization table in the same way as done
by Rabitti et al. [27], and this table is consulted through
the B+-tree index to find the authorization for a given
element.

6.2 Results of the experiments

6.2.1 Effects of the database size and the number of
explicit authorizations

Figure 11 shows the wall clock time for the query //per-
son//interest as the database size and the number of
explicit authorizations are varied. These results indicate
that Dynamic Predicate Filtering outperforms the exist-
ing methods by a large margin. Specifically, compared
with the existing methods, Dynamic Predicate Filtering
improves the performance by 1.8–12.1 times in Fig. 11a;
by 2.0–70.7 times in Fig. 11b; and by 2.1–107.1 times in
Fig. 11c. This margin increases as the database size gets

The dynamic predicate: integrating access control with query processing in XML databases 383

10MB database. 100MB database. 1GB database.

10

0.1

0.01

w
al

l c
lo

ck
 ti

m
e

(s
ec

)

1

10 1000.10.01 1 10 1000.10.01 1 10 1000.10.01 1

100

10010

0.1

w
al

l c
lo

ck
 ti

m
e

(s
ec

)

1

1000

10

w
al

l c
lo

ck
 ti

m
e

(s
ec

)

1

TopDown BottomUp CAM Nearest Ancestor Filtering Dynamic Predicate Filtering

of elements having
explicit authorizations /
total # of elements (%)

of elements having
explicit authorizations /
total # of elements (%)

of elements having
explicit authorizations /
total # of elements (%)

(a) (b) (c)

Fig. 11 The wall clock time for the query //person//interest against the XMark benchmark data

larger. The reason is that the number of elements that
are excluded by a DP increases in a larger database since
the number of elements in a subtree pruned at the same
level increases. This effect is more marked when the
number of explicit authorizations is small. The reason is
that the number of elements that are excluded by a DP
gets larger since the number of implicit authorizations
that are overridden is small.

When explicit authorizations are granted on 100%
of the elements, Dynamic Predicate Filtering shows a
minor degradation (less than 1.6 times) in comparison
with Nearest Ancestor Filtering since constructing DPs
in Dynamic Predicate Filtering incurs overhead of
searching for the nearest overriding authorization with-
out any benefit. In XML databases, a large number
of elements are granted implicit authorizations exploit-
ing the data hierarchy. Granting explicit authorizations
on every element is rare. Typically high compression
ratio of the CAM method shown by Yu et al. [34] sup-
ports this argument. Besides, the experiments show
that Dynamic Predicate Filtering outperforms Nearest
Ancestor Filtering when explicit authorizations are
granted on less than 70% of the elements. Figure 11
shows that the wall clock time of Nearest Ancestor
Filtering slightly increases at 100%. It turns out that
this increase occurred because the depth of the authori-
zation index was increased by one.

Nearest Ancestor Filtering shows a performance sim-
ilar to CAM with a minor improvement. The reason is
that, as discussed in Sect. 6.1, CAM is a trie structure
indexing authorizations after compression and is anal-
ogous to our authorization index. The minor improve-
ment is due to the efficiency of the index structure and
efficiency in finding the nearest ancestor. On the other
hand, Dynamic Predicate Filtering improves the perfor-
mance compared with CAM by 1.2–16.9 times. This is

because Dynamic Predicate Filtering reduces query pro-
cessing time by filtering unauthorized elements early on,
while CAM does not.

6.2.2 Effects of query types

Figure 12 shows the wall clock time for a more com-
plex query //site//open_auctions//open_auction//bidder//
increase, which has a long path expression, as the data-
base size and the number of explicit authorizations are
varied. These results indicate that Dynamic Predicate
Filtering outperforms the existing methods for a com-
plex query with larger margins than for a simple query.
The reason is that, if a subtree is pruned by a DP at a
higher level, the cost for checking query conditions over
that subtree can be much more reduced in a complex
query. Compared with the existing methods, Dynamic
Predicate Filtering improves the performance by 1.8–
25.9 times in Fig. 12a; by 2.0–106.0 times in Fig. 12b; and
by 2.0–165.8 times in Fig. 12c.

The wall clock time for a twig query //open_auctions
[.//bidder]//seller shows a tendency similar to that of
Fig. 11. For a twig query, since Dynamic Predicate
Filtering is applied to each linear path, the overall
improvement of Dynamic Predicate Filtering compared
with other methods is the sum of the improvement
obtained from these linear paths. In the XMark data of
100 MB, Dynamic Predicate Filtering improves the wall
clock time by 1.1–17.4 times over CAM and by 0.9–7.6
times over Nearest Ancestor Filtering.

6.2.3 Effects of the depth of XML data

Figure 13 shows the wall clock times for the queries
//NP//NN and //SBAR//S//VP//PP//NP against the Tree

384 J.-G. Lee et al.

10MB database. 100MB database. 1GB database.

10

10 100

0.1

0.1
0.01

0.01

w
al

l c
lo

ck
 ti

m
e

(s
ec

)
1

1 10 1000.10.01 1 10 1000.10.01 1

100

10010

0.1

w
al

l c
lo

ck
 ti

m
e

(s
ec

)

1

1000

10

w
al

l c
lo

ck
 ti

m
e

(s
ec

)

1

TopDown BottomUp CAM Nearest Ancestor Filtering Dynamic Predicate Filtering

of elements having
explicit authorizations /
total # of elements (%)

of elements having
explicit authorizations /
total # of elements (%)

of elements having
explicit authorizations /
total # of elements (%)

(a) (b) (c)

Fig. 12 The wall clock time for the query //site//open_auctions//open_auction//bidder//increase against the XMark benchmark data

Bank data of 86 MB as the number of explicit autho-
rizations is varied. These results indicate that Dynamic
Predicate Filtering outperforms the existing methods
even more for XML data having many levels of recur-
sively nested elements like the TreeBank data. Specifi-
cally, in Fig. 13b, Dynamic Predicate Filtering improves
the performance by 5.9–216.3 times over the top-down
strategy; by 9.2–492.9 times over the bottom-up strategy;
by 1.1–31.1 times over CAM; and by 0.9–30.3 times over
Nearest Ancestor Filtering. We note that the differences
between Dynamic Predicate Filtering and the existing
methods are much larger in Fig. 13 than in Figs. 11
and 12. The reason is that the number of elements that
are excluded by a DP increases in XML data having
many levels since the number of elements in a subtree
pruned at a higher level increases. This result is natu-
ral since DPs computed in Lemma 3 inherently work
well for hierarchical structures by virtue of hierarchical
filtering.

6.2.4 Effects of the inference-blocking strategy

Figure 14 shows the composition of the results in Fig. 12:
the top portion of the bar represents the wall clock time
overhead caused by the inference-blocking strategy. The
wall clock times of the top-down and bottom-up strate-
gies are shown to be insensitive to the inference-block-
ing strategy since these strategies access the ancestors
including the qualifying instances to find the nearest
ancestor authorization.

The wall clock times of Nearest Ancestor Filtering
and Dynamic Predicate Filtering increase only slightly
(less than 26.5%). It turns out that these increases are
blunted by virtue of the buffering effect since most of
the explicit authorizations on the qualifying instances
are stored in the same page of the authorization index as

 //SBAR//S//VP//PP//NP query. //NP//NN query.

10 1000.10.01 1

100

1000

10

w
al

l c
lo

ck
 ti

m
e

(s
ec

)

1

100

1000

10

w
al

l c
lo

ck
 ti

m
e

(s
ec

)

1

of elements having
explicit authorizations /
total # of elements (%)

10 1000.10.01 1

of elements having
explicit authorizations /
total # of elements (%)

TopDown BottomUP CAM Nearest Ancestor Filtering Dynamic Predicate Filtering

(a) (b)

Fig. 13 The wall clock times for simple and complex queries
against the TreeBank data (86 MB)

the ones on result instances. This is possible because the
start values of the qualifying instances tend to be close
to those of result instances. These results indicate that
adopting the inference-blocking strategy in our method
does not incur much additional overhead.

6.2.5 Comparison between our method and the SCA
method

Figure 15 shows the wall clock times of Dynamic Predi-
cate Filtering and SCA for the experimental setting used
by Cho et al. [10]. Dynamic Predicate Filtering outper-
forms SCA by 1.5–14.4 times in Fig. 15a and by 1.3–2.2
times in Fig. 15b despite that SCA exploits additional
information (security annotations). Furthermore, the
performance improvement increases as the database
size gets larger. The reason for this advantage is that
SCA reduces only the number of authorization checks
performed during query processing, while Dynamic
Predicate Filtering also reduces the number of elements

The dynamic predicate: integrating access control with query processing in XML databases 385

10MB database. 100MB database. 1GB database.

10

10 100

0.1

0.1
0.01

0.01

w
al

l c
lo

ck
 ti

m
e

(s
ec

)
1

1 10 1000.10.01 1 10 1000.10.01 1

100

10010

0.1

w
al

l c
lo

ck
 ti

m
e

(s
ec

)

1

1000

10

w
al

l c
lo

ck
 ti

m
e

(s
ec

)

1

TopDown BottomUp CAM Nearest Ancestor Filtering Dynamic Predicate Filtering

of elements having
explicit authorizations /
total # of elements (%)

of elements having
explicit authorizations /
total # of elements (%)

of elements having
explicit authorizations /
total # of elements (%)

(a) (b) (c)

Fig. 14 The composition of the results in Fig. 12 (the top portion is the wall clock time overhead of the inference-blocking strategy)

accessed during query execution by filtering out unau-
thorized elements early on. This is exactly the advan-
tage of integrating access control with query processing,
which we propose in this paper. The difference between
Dynamic Predicate Filtering and SCA is much larger in
the sparse DTD than in the dense DTD because the
number of elements excluded in Dynamic Predicate Fil-
tering gets larger in the sparse DTD due to a smaller
number of explicit authorizations. (In the sparse DTD,
every people element is granted explicit ones. In the
dense DTD, every people, person, and open_auction ele-
ments are granted explicit ones.)

6.2.6 Effects of the authorization types

In all the experiments stated above, we have repeated
the test for the same queries with the ratio of positive
and negative authorizations changed from 9:1 to 1:9. We
have observed the performance of Dynamic Predicate
Filtering only slightly improves by 10.8% on the aver-
age. The reason for this minor improvement is that a
large proportion of the elements excluded are those on
which an authorization has been granted for other than
the authorization type of the query, and thus, negative
authorizations do not much affect the performance.

7 Conclusions

In this paper, we have proposed an efficient access con-
trol mechanism tightly integrated with query process-
ing for XML databases. To achieve this integration, we
have presented a novel concept of the dynamic predi-
cate, which represents a dynamically constructed con-
dition during query execution. The DP is derived from

the dense DTD.the sparse DTD.

10

10

0.1

1

100

database size (MB) database size (MB)

1000 10 100 1000

w
al

l c
lo

ck
 ti

m
e

(s
ec

)
10

0.1

1

w
al

l c
lo

ck
 ti

m
e

(s
ec

)

SCA Dynamic Predicate Filtering

(a) (b)

Fig. 15 The comparison between our method and SCA using the
experimental setting by Cho et al.

instance-level authorizations and constrains accessibil-
ity of the elements. By inserting the DP into the query
plan, we effectively integrate access control with query
processing. Due to this integration, unauthorized
elements are excluded in an early phase of query pro-
cessing, thus significantly improving the performance of
query processing with access control. We have imple-
mented this access control mechanism as the algorithm
Dynamic Predicate Filtering.

The primary factors that make this integration using
the DP highly effective are instance-level authorizations
and data hierarchies, both inherent in XML databas-
es. First, the cost for checking instance-level authoriza-
tions is reduced significantly by using the DP, i.e., by
representing the authorization information of a set of
elements having an identical authorization with that of
the element being currently accessed. Second, filtering
unauthorized elements by the DP can be propagated

386 J.-G. Lee et al.

downward along the data hierarchies, which we call hier-
archical filtering.

We have also minimized information inference by
applying the inference-blocking strategy to the decision
of the authorized query result. This strategy obviously
reduces information inference compared with the basic
strategy that checks authorizations only for the result
instances. We have verified, through experiments, that
enforcement of this strategy in our access control mech-
anism does not add much overhead by virtue of the
buffering effect.

To show the efficiency of our access control mecha-
nism, we have performed extensive experiments using
synthetic and real data sets. Experimental results show
that Dynamic Predicate Filtering improves the wall clock
time by up to 31 times over CAM and by up to 14 times
over SCA. These improvements indicate that the advan-
tages of excluding beforehand unauthorized elements
(and also authorization checks on them) in Dynamic
Predicate Filtering are superior to those of indexing
authorizations in CAM or those of reducing the num-
ber of authorization checks performed during run time
in SCA. The results also show that the advantage of
Dynamic Predicate Filtering becomes more prominent
as (1) the database size, (2) the length of path expres-
sions for queries, or (3) the depth of XML data increases.
These results demonstrate the effectiveness of access
control integrated with query processing.

Overall, we believe that we have provided an efficient
mechanism for checking instance-level authorizations in
databases with hierarchical structures. As a future work,
we plan to extend our mechanism so as to handle larger
fragments of XPath or more complex query languages
such as XQuery.

Acknowledgements This work was supported by the Ministry of
Science and Technology (MOST)/Korea Science and Engineering
Foundation (KOSEF) through the Advanced Information Tech-
nology Research Center (AITrc).

Appendix A: Proof of Lemma 1

We show that the authorization obtained by Lemma 1
satisfies the two conditions in Definition 1. First, by the
definition of the numbering scheme, authnaa is granted
on the element e or one of its ancestor elements. Let
us call that element enaa. Thus, authnaa satisfies the con-
dition (1). Second, let us assume that the authorization
minimizing |start(e) − start(auth)| is authnaa and that an
explicit authorization authexp exists on an element in the
path between the element e and the element enaa. Then,
by the definition of the numbering scheme, start(enaa) <

start(authexp) < start(e). (We note that start(authnaa) =

start(enaa).) This contradicts the assumption. Therefore,
no authorization exists on elements in the path between
the element e and the element enaa. Thus, authnaa satis-
fies the condition (2).

Appendix B: Proof of Lemma 2

We show that the authorization obtained by Lemma 2
satisfies the two conditions in Definition 2. First, by the
definition of the numbering scheme, authnoa is granted
on a descendant element enoa of the element enaa on
which authnaa is granted. Thus, authnoa satisfies the con-
dition (1). Second, let us assume that the authorization
minimizing |start(e) − start(auth)| is authnoa and that an
explicit authorization authexp exists, when traversed in
preorder, on an element in the path between the ele-
ment e and the element enoa. Then, by the definition
of the numbering scheme, start(e) < start(authexp) <

start(enoa). (We note that start(authnoa) = start(enoa).)
This contradicts the assumption. Therefore, no authori-
zation exists, when traversed in preorder, between the
element e and the element enoa. Thus, authnoa satisfies
the condition (2).

Appendix C: Proof of Lemma 3

We show that any element whose start value belongs to
the start interval defined in Lemma 3 has the same near-
est ancestor authorization as that of the element e. In
this proof, enaa (or enoa) denotes the element on which
authnaa (or authnoa) is granted. Before starting the proof,
we point out that the start value increases in preor-
der [19]. First, we consider the case where authnoa exists.
By Definition 2, no explicit authorization exists, when
traversed in preorder, on elements in the path from the
element e to the element right before enoa. Then, the
start values of those elements having no explicit autho-
rization are formed as the interval [start(e), start(enoa))

by the definition of the numbering scheme. Thus, any
element in this start interval has authnaa as the near-
est ancestor authorization. Second, we consider the case
where authnoa does not exist. By Definition 2, no explicit
authorization exists, when traversed in preorder, on ele-
ments in the path from the element e through the right-
most descendant erd_naa of the element enaa. We note
that start(erd_naa) is immediately smaller than end(enaa).
Then, the start values of those elements having no explicit
authorization are formed as the interval [start(e),
end(enaa)) by the definition of the numbering scheme.
Thus, any element in this start interval has authnaa as the
nearest ancestor authorization.

The dynamic predicate: integrating access control with query processing in XML databases 387

References

1. Aggarwal, G. et al.: Enabling privacy for the paranoids. In:
Proceedings of 30th International Conference on Very Large
Data Bases, Toronto, Canada, pp. 708–719, Aug./Sept. 2004

2. Agrawal, R. et al.: Hippocratic databases. In: Proceedings of
28th International Conference on Very Large Data Bases,
Hong Kong, China, pp. 143–154, Aug. 2002

3. Al-Khalifa, S. et al.: Structural joins: a primitive for effi-
cient XML query pattern matching. In: Proceedings of 18th
International Conference on Data Engineering, San Jose,
California, pp. 141–152, Feb. 2002

4. Aref, W.G., Ilyas, I.F.: SP-GiST: an extensible database index
for supporting space partitioning trees. J. Intell. Inform.
Syst. 17(2–3), 215–240 (2001)

5. Bertino, E. et al.: Specifying and enforcing access con-
trol policies for XML document sources. World Wide Web
J. 3(3), 139–151 (2000)

6. Bruno, N., Koudas, N., Srivastava, D.: Holistic twig joins:
optimal XML pattern matching. In: Proceedings of 2002
ACM SIGMOD International Conference on Management
of Data, Madison, Wisconsin, pp. 310–321, June 2002

7. Carminati, B., Ferrari, E.: Management of access control poli-
cies for XML document sources. Int. J. Inform. Sec. 1(4), 236–
260 (2003)

8. Carminati, B., Ferrari, E.: AC-XML documents: improving
the performance of a web access control module. In: Proceed-
ings of 10th ACM Symposium on Access Control Models and
Technologies, Stockholm, Sweden, pp. 67–76, June 2005

9. Chien, S.-Y. et al.: Efficient structural joins on indexed XML
documents. In: Proceedings of 28th International Conference
on Very Large Data Bases, Hong Kong, China, pp. 263–274,
Aug. 2002

10. Cho, S. et al.: Optimizing the secure evaluation of twig que-
ries. In: Proceedings of 28th International Conference on
Very Large Data Bases, Hong Kong, China, pp. 490–501,
Aug. 2002

11. Clark, J., DeRose, S.: XML path language (XPath) Version
1.0, W3C Recommendation, Nov. 1999

12. Damiani, E. et al.: A fine-grained access control system for
XML documents. ACM Trans. Inform. Syst. Sec. 5(2), 169–
202 (2002)

13. Fan, W., Chan, C.Y., Garofalakis, M.N.: Secure XML query-
ing with security views. In: Proceedings of 2004 ACM SIG-
MOD International Conference on Management of Data,
Paris, France, pp. 587–598, June 2004

14. Fundulaki, I., Marx, M.: Specifying access control policies for
XML documents with XPath. In: Proceedings of 9th ACM
Symposium on Access Control Models and Technologies,
Yorktown Heights, New York, pp. 61–69, June 2004

15. Gaede, V., Gunther, O.: Multidimensional access methods.
ACM Comput. Surveys 30(2), 170–231 (1998)

16. Graefe, G.: Query evaluation techniques for large databas-
es. ACM Comput. Surveys 25(2), 73–170 (1993)

17. Guttman, A.: R-trees: a dynamic index structure for spa-
tial searching. In: Proceedings of 1984 ACM SIGMOD
International Conference on Management of Data, Boston,
Massachusetts, pp. 47–57, June 1984

18. Hjaltason, G.R., Samet, H.: Distance browsing in spatial
databases. ACM Trans. Database Syst. 24(2), 265–318 (1999)

19. Li, Q., Moon, B.: Indexing and querying XML data for reg-
ular path expressions. In: Proceedings of 27th International
Conference on Very Large Data Bases, Rome, Italy, pp. 361–
370, Sept. 2001

20. Luo, B. et al.: QFilter: fine-grained run-time XML access
control via NFA-based query rewriting. In: Proceedings of
2004 ACM CIKM International Conference on Information
and Knowledge Management, Washington, DC, pp. 543–552,
Nov. 2004

21. Marcus, M.P., Marcinkiewicz, M.A., Santorini, B.: Building a
large annotated corpus of English: The Penn Treebank. Com-
put. Linguist. 19(2), 313–330 (1993)

22. Miklau, G., Suciu, D.: Containment and equivalence for a
fragment of XPath. J. ACM 51(1), 2–45 (2004)

23. Murata, M., Tozawa, A., Kudo, M.: XML access control using
static analysis. In: Proceedings of 10th ACM Conference on
Computer and Communications Security, Washingtion, DC,
pp. 73–84, Oct. 2003

24. Information and Privacy Commissioner of Ontario, Intelli-
gent Software Agents: Turning a Privacy Threat into a Pri-
vacy Protector, Apr. 1999

25. Information and Privacy Commissioner of Ontario, An
Internet Privacy Primer: Assume Nothing, Aug. 2001

26. Qi, N., Kudo, M.: Access-condition-table-driven access con-
trol for XML database. In: Proceedings of 9th European
Symposium on Research in Computer Security, French Rivi-
era, France, pp. 17–32, Sept. 2004

27. Rabitti, F. et al.: A model of authorization for next-gener-
ation database systems. ACM Trans. Database Syst. 16(1),
88–131 (1991)

28. Ramanan, P.: Covering indexes for XML queries: bisim-
ulation – Simulation = Negation. In: Proceedings of 29th
International Conference on Very Large Data Bases, Berlin,
Germany, pp. 165–176, Sept. 2003

29. Samet, H.: The quadtree and related hierarchical data struc-
tures. ACM Comput. Surveys 16(2), 187–260 (1984)

30. Schmidt, A.R. et al.: XMark: a benchmark for XML data
management. In: Proceedings of 28th International Confer-
ence on Very Large Data Bases, Hong Kong, China, pp. 974–
985, Aug. 2002

31. Seeger, B., Kriegel,H.-P.: The buddy-tree: an efficient and
robust access method for spatial data base systems. In: Pro-
ceedings of 16th International Conference on Very Large
Data Bases, Queensland, Australia, pp. 590–601, Aug. 1990

32. Whang, K.-Y., Krishnamurthy, R.: The multilevel grid
file—a dynamic hierarchical multidimensional file structure.
In: Proceedings of International Conference on Database
Systems for Advanced Applications, Tokyo, Japan, pp. 449–
459, Apr. 1991

33. Wu,Y., Patel, J.M., Jagadish H.V.: Structural join order selec-
tion for XML query optimization. In: Proceedings of 19th
International Conference on Data Engineering, Bangalore,
India, pp. 443–454, Mar. 2003

34. Yu, T. et al.: A compressed accessibility map for XML. ACM
Trans. Database Syst. 29(2), 363–402 (2004)

	The dynamic predicate: integrating access control with queryprocessing in XML databases
	Abstract
	Introduction
	Related work
	Access control models
	Access control mechanisms
	Comparison with our access control mechanism
	A simple access control mechanism
	The problem definition
	Authorization indexes
	Simple access control algorithm using the authorization index and nearest neighbor search
	An integrated access control mechanism
	Overview
	Dynamic predicates(DPs)
	Further enhancement of the access control mechanism to minimize information inference
	Performance evaluation
	Experimental data and environment
	Results of the experiments
	Effects of the database size and the number of explicit authorizations
	Effects of query types
	Effects of the depth of XML data
	Effects of the inference-blocking strategy
	Comparison between our method and the SCA method
	Effects of the authorization types
	Conclusions
	Acknowledgements

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

