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Abstract XML keyword search is a user-friendly way to
query XML data using only keywords. In XML keyword
search, to achieve high precision without sacrificing recall,
it is important to remove spurious results not intended by
the user. Efforts to eliminate spurious results have enjoyed
some success using the concepts of LCA or its variants,
SLCA and MLCA. However, existing methods still could
find many spurious results. The fundamental cause for the
occurrence of spurious results is that the existing methods
try to eliminate spurious results locally without global exam-
ination of all the query results and, accordingly, some spuri-
ous results are not consistently eliminated. In this paper, we
propose a novel keyword search method that removes spu-
rious results consistently by exploiting the new concept of
structural consistency. We define structural consistency as a
property that is preserved if there is no query result having
an ancestor-descendant relationship at the schema level with
any other query results. A naive solution to obtain structural
consistency would be to compute all the LCAs (or variants)
and then to remove spurious results according to struc-
tural consistency. Obviously, this approach would always be
slower than existing LCA-based ones. To speed up structural
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consistency checking, we must be able to examine the query
results at the schema level without generating all the LCAs.
However, this is a challenging problem since the schema-
level query results do not homomorphically map to the
instance-level query results, causing serious false dismissal.
We present a comprehensive and practical solution to this
problem and formally prove that this solution preserves
structural consistency at the schema level without incur-
ring false dismissal. We also propose a relevance-feedback-
based solution for the problem where our method has low
recall, which occurs when it is not the user’s intention to find
more specific results. This solution has been prototyped in a
full-fledged object-relational DBMS Odysseus developed at
KAIST. Experimental results using real and synthetic data
sets show that, compared with the state-of-the-art methods,
our solution significantly (1) improves precision while pro-
viding comparable recall for most queries and (2) enhances
the query performance by removing spurious results early.

Keywords XML · Keyword search · Spurious results ·
Structural consistency · Structural summary ·
Odysseus DBMS

1 Introduction

As XML becomes the standard for data representation and
exchange on the Internet, querying XML data has become
an important issue [27]. Research work in this area can be
classified into two categories: the structured query approach
and the keyword query approach [27]. Both approaches have
tradeoffs. The structured query approach specifies the pre-
cise structure of the desired results using a structured query
language such as XPath and XQuery. However, it is hard to
formulate queries without prior knowledge about structured
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Fig. 1 Querying XML data.
a XML data on conference
publications. b XML data on
conference and journal
publications

(a)

(b)

query languages or without knowing the schema of the XML
data. The keyword query, on the other hand, can overcome
this problem by requiring only keywords rather than spe-
cific structure information. This approach, however, might
not deliver precise results since it does not contain precise
structures.

In the structured query, the user’s query intention can be
expressed as either a single structured query or multiple struc-
tured queries, depending on the heterogeneity of the under-
lying XML data. If there is only one structure matching the
user’s intention at the schema level, that intention can be
expressed in a single structured query. However, if there are
multiple structures matching the user’s intention, multiple
structured queries for those structures must be composed.

Example 1 The XML data in Fig. 1a represent bibliographic
data on conference publications. Suppose that a user intends
to find the publications of “Levy" on “XML". This query can be
stated as a single structured query, Q1; in the keyword query,
it is represented as “XML Levy". The query result is {paper(6)}.
Here, we denote the subtree rooted at node p as p in the same
way as is done by Xu and Papakonstantinou [45].

Q1: /bib/conf/paper[“XML"][“Levy"]1

Example 2 The XML data in Fig. 1b represent bibliographic
data on conference and journal publications. Here, the sub-
tree rooted at conf(1) is the same as in Fig. 1a. Since
there are two structures matching the user’s intention, one
for conference papers and the other for journal articles, a
union of multiple structured queries, Q2, must be used to
find the desired results despite the same query intention
as in Example 1. Note that we still use the same keyword
query as in Example 1. The query results are {paper(6), arti-

cle(101)}.
Q2: /bib/conf/paper[“XML"][“Levy"] union

/bib/journal/article[“XML"][“Levy"]

In the keyword search, a user wants to have high recall
and high precision [5]. A naive way to achieve high recall
(100%) in XML keyword search would be to return the root
of an XML document. However, with this approach, the user

1 For ease of exposition, we denote the predicate that checks whether
a keyword w is contained in an element e as e [“w"] instead of e [con-
tains(., “w")] that uses the contains function in the XPath standard.
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would suffer from very low precision due to a large amount
of spurious results not intended by the user.

Efforts to eliminate spurious results [11,15,27,45] have
enjoyed some success using the concepts of LCA or its vari-
ants, SLCA [45] and MLCA [27]. For a keyword query
Q = {w1,w2, …, wm}, an LCA is the common ancestor node
of nodes n1, n2, …, nm , where ni is a node directly contain-
ing wi (1 ≤ i ≤ m). It is located farthest from the root node.
The SLCA method, a refinement of the LCA method, finds
LCAs that do not contain other LCAs. For example, if we use
the LCA method to find the results in Fig. 1a, {bib(0), conf(1),
paper(6), conf(51)} are retrieved. With the SLCA method,
{paper(6), conf(51)} are retrieved. As shown here, existing
methods for XML keyword search still could find many spu-
rious results (e.g., {bib(0), conf(1), conf(51)}), i.e., those that
are not intended by the user. Here, following the common
practice [11,25,27], we define correct results of a keyword
query as those returned by structured queries (such as Q1)
corresponding to the keyword query, which are formulated
according to the schema of the underlying XML data. In the
real data set (DBLP), spurious results such as conf(51) can
include huge subtrees having thousands of nodes. This seri-
ous problem of low precision in the-state-of-art methods not
only overburdens the user with filtering numerous spurious
results, but also degrades the performance of the system due
to unnecessary computation. For instance, if we issue a key-
word query “XML Levy" over the DBLP data set, we obtain
388,066 nodes using the SLCA method, among which only
69 nodes (precision = 69

388,066 ≈ 0.02%) are correct results.
The fundamental cause for the occurrence of spurious

results is that the existing methods try to eliminate spurious
results locally without global examination of all the query
results. For instance, in Example 1, the LCA method finds
a correct result {paper(6)}, but also finds spurious results
{bib(0), conf(1), conf(51)}. With the SLCA method, we can
eliminate two spurious results {bib(0), conf(1)} since they
contain other LCAs. However, conf(51) still remains since
it is not an ancestor of paper(6). This is inconsistent since
both conf(1) and conf(51) are spurious results having an iden-
tical result structure. Here, we define the result structure2 of
a query result qr as a (schema-level) twig pattern composed
of the label path [14] from the root of the XML data to the
root qrroot of qr (simply, the incoming label path) and the
ancestor-descendant edges from qrroot to query keywords. In
the result structure of a query result qr , denoted by rs(qr),
the node corresponding to qrroot is marked as the query result
node [34] and is distinguished from other nodes by placing
it in a box. Figure 2 shows rs(conf(51)) and rs(paper(6)).

We observe that, if two query results have an ancestor-
descendant relationship at the schema level, the ancestor is

2 Intuitively, the result structure is the schema of a query result (an
instance).

(a) (b)

Fig. 2 The result structures of query results. a rs(conf(51)).
b rs(paper(6))

spurious. We call this phenomenon structural anomaly. Here,
a query result qr1 is an ancestor of a query result qr2 at the
schema level if and only if the incoming label path of rs(qr1)

is a proper prefix of that of rs(qr2). By examining the query
results at the schema level, we can remove spurious results
having the same result structure consistently. For example, in
Fig. 1a, the query results of the SLCA method are {paper(6),
conf(51)}, and the incoming label path of rs(conf(51)) is a
proper prefix of that of rs(paper(6)) as in Fig. 2. Hence,
conf(51), which has the same result structure as conf(1), is
spurious.

We argue that, to improve precision, there should be no
structural anomaly in the query results. We call this prop-
erty structural consistency (to be defined more formally in
Sect. 3.1). Otherwise, we are bound to retrieve inconsistent
spurious results.

In this paper, we resolve structural anomalies by exploiting
the notion of the smallest result structure. The smallest result
structure is defined to be a result structure whose incoming
label path is not a proper prefix of those of any other result
structures. We then remove the query result whose structure
is not the same as a smallest result structure, thereby obtain-
ing structural consistency. For example, the smallest result
structure of {paper(6), conf(51)} is rs(paper(6)) in Fig. 2b
since the incoming label path of rs(paper(6)) is not a prefix
of that of rs(conf(51)). Thus, conf(51) is removed.

A naive instance-level approach to obtain structural con-
sistency would be to compute all the LCAs (or variants) and
then to remove spurious results according to structural con-
sistency. Obviously, this approach would always be slower
than existing LCA-based ones. To speed up structural con-
sistency checking, we must examine the query results at the
schema level without generating all the LCAs.

The challenging issue here is “How do we formally guar-
antee that the schema-level approach produces the same
query results as the instance-level approach does?” That is,
if we blindly find SLCAs at the schema level and compute
answers using the SLCAs, we may encounter a false dis-
missal problem (to be elaborated in more detail in Sect. 3.2.2).
For example, an empty result can be obtained even though
query results corresponding to smallest result structures
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(a) (b)

Fig. 3 An example of false dismissal. a The smallest structure. b The
twig pattern obtained from the schema-level SLCA

exist as in Example 3. We may also encounter phantom
schema-level SLCAs (to be defined in Sect. 3.2.2), which
incurs structural anomaly. These problems occur because
the schema-level SLCAs do not homomorphically map to
the instance-level SLCAs. As a solution to these problems,
we introduce the concept of iterative kth-ancestor general-
ization, which iteratively finds the kth ancestors of SLCAs at
the schema level and removes phantom schema-level SLCAs.
Through iterative kth-ancestor generalization, the schema-
level definition of structural consistency becomes equivalent
to the instance-level one, and we formally prove this equiv-
alence in Theorem 1 of Sect. 3.2.4.

Example 3 Consider a keyword query Q = {“Levy", “Lu"}
issued on the XML data in Fig. 1a. In the XML data in Fig. 1a,
we see that there is a query result, paper(61), corresponding to
the smallest result structure shown in Fig. 3a. However, there
is no query result corresponding to the twig pattern shown
in Fig. 3b that is obtained from the schema-level SLCA (we
will formally define the schema-level SLCA in Sect. 3.2.1).

The contributions of this paper are as follows: (1) we
formally propose new notions of structural consistency and
structural anomaly, (2) we formally analyze the relation-
ship between the set of schema-level SLCAs and the set
of instance-level SLCAs, and then, propose an efficient
algorithm that resolves structural anomaly at the schema
level using the relationship analyzed (we call this algorithm
schema-level structural anomaly resolution), (3) we formally
prove in Theorem 1 that this algorithm preserves structural
consistency as is originally defined at the instance-level with-
out incurring false dismissal, (4) we propose a relevance-
feedback base solution for the problem where our method
has low recall, which occurs when it is not the user’s inten-
tion to find more specific results, (5) we propose an effi-
cient algorithm that simultaneously evaluates the multiple
XPath queries generated by our method, (6) we have proto-
typed this algorithm in a full-fledged object-relational DBMS
Odysseus [43], (7) we perform extensive experiments using
real and synthetic data sets. The results show that we can sig-
nificantly reduce spurious results compared with the existing

methods by exploiting structural consistency. Furthermore,
the experimental results show that our schema-level algo-
rithm significantly improves the query performance over the
existing ones.

The rest of this paper is organized as follows. Section 2
describes the XML data model, schema of XML data,
query models, and quality measure of XML keyword
search. Section 3 proposes the concept of structural con-
sistency and schema-level structural anomaly resolution.
Section 4 presents the implementation of schema-level struc-
tural anomaly resolution. Section 5 reviews existing work,
and Sect. 6 presents the experimental results. Finally, Sect. 7
presents our conclusions.

2 Background

2.1 XML data model

We model XML data as a labeled tree [11,27,30,45] where
a node represents an element, attribute, or value, and an edge
represents the parent–child relationship between two nodes.
Every element or attribute node has a label and a unique id,
and each id is assigned a preorder number. A node that has a
label l and an id i is denoted as l(i). Definition 1 defines the
label path of a node, and Definition 2 the node path.

Definition 1 [14] The label path of a node o is defined as
a sequence of node labels l1, l2, . . . , lm from the root to the
node o, and is denoted as l1, l2, . . . , lm .

Definition 2 [34] The node path of a node o is defined as a
sequence of node identifiers n1, n2, . . . , nm from the root to
the node o, and is denoted as n1, n2, . . . , nm . We denote the
i th id of a node path node_path as node_path[i]. We note
that the ids n1, n2, . . . , nm have an ascending order since
each ni (1 ≤ i ≤ m) is assigned a preorder number.

2.2 Schema of XML data

Although DTD or XML Schema are used as the schema of
XML data, XML data often do not have them [12]. For sche-
maless XML data, we can derive a schema from XML data
using the DataGuide [14].3 The DataGuide is a labeled tree
that has every unique label path of XML data. In a DataGuide,
a node represents the label of an element (or attribute), and
an edge represents the parent–child relationship between two
nodes. A node in a DataGuide is uniquely identified by its

3 Recently, Bex et al. [7] have proposed algorithms for the inference
of XML Schema Definitions, but we use the DataGuide since it takes
linear time to create and has sufficient power for checking structural
consistency. If a DTD or XML Schema are given along with XML data,
we can exploit the given schema.
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Fig. 4 An example DataGuide+

label path. In this paper, we augment the DataGuide with
keywords contained in value nodes to support keyword que-
ries at the schema level. We call the augmented DataGuide
DataGuide+ and use it as the schema. Every non-value node
in a DataGuide+ is assigned a preorder number.4 Hereafter,
we call a node of the DataGuide+ a schema node to distin-
guish it from a node of XML data, which we call an instance
node. For ease of explanation, we may refer to a schema node
by its label path.

Example 4 Figure 4 shows the DataGuide+ for the XML
data in Fig. 1b. Every unique label path of the XML data
appears exactly once in the DataGuide+. For example, in
the XML data, the label path “bib.conf.paper.author" appears
twice, and so does “bib.journal.article.authors.author". In con-
trast, in the DataGuide+, each label path appears only once.

2.3 Query models

2.3.1 Keyword query

We model a keyword query as a set of keywords [30]. As in
the literature [6,19–21,30,31,45], each query keyword may
match (1) labels of elements or attributes or (2) keywords
contained in value nodes of the XML data.

2.3.2 XPath query

We consider a subset of XPath that uses the child (“/”) and
descendant (“//”) axes and predicates (“[]”). We model a
query that belongs to this set as a twig pattern [10]. In the
twig pattern a node, called a query node [10], represents a
label (or a value), and an edge represents the parent–child or
ancestor–descendant relationship between two nodes. One
node of the twig pattern is marked as the query result node

4 We can use other numbering schemes without loss of generality. For
example, to handle schema evolution, we can use Compact Dynamic
Quaternary String (CDQS) encoding [24], which allows for updates
without the original nodes having to be renumbered.

Fig. 5 An example twig pattern

[34] and is distinguished from other nodes by placing it in
a box. A query node that has more than one child node is
called a branching query node [34]. A leaf node of the twig
pattern is called a leaf query node.

Example 5 Figure 5 shows an example twig pattern that rep-
resents the XPath query Q1. In Fig. 5, paper is the query
result node and, at the same time, the branching query node.
Keywords are located in leaf query nodes “XML" and “Levy".

Q1: /bib/conf/paper[“XML"][“Levy"]

2.4 Quality metrics of XML keyword search

As quality metrics for keyword queries, we use precision
and recall, which have been widely used in the field of infor-
mation retrieval (IR). Formula (1) shows the definitions of
precision and recall [5]. Here, R is the set of nodes relevant
to the query (i.e., desired results) in the database, and A is the
set of nodes retrieved as the answer to the query (i.e., actual
query results). Precision is the fraction of the retrieved nodes
(i.e., A) that are relevant, and recall is the fraction of the
relevant nodes (i.e., R) that have been retrieved. The search
quality is good when both precision and recall are close to
1.0 [5].

precision = |R ∩ A|
|A| , recall = |R ∩ A|

|R| (1)

3 Structural consistency

In this section, we formally define the notions of structural
consistency and structural anomaly in XML keyword search.
We also propose an efficient algorithm that resolves structural
anomaly at the schema level.

3.1 The concept

We first define the result structure of a query result in Defini-
tion 3. Here, a query result is a subtree rooted at an SLCA in
the XML data. We define structural containment and struc-
tural equivalence of result structures in Definition 4. We then
define the structural consistency and the structural anomaly
in Definition 5.

Definition 3 The result structure of a query result qr ,
denoted as rs(qr), is a (schema-level) twig pattern com-
posed of the label path from the root of XML data to the
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(a) (b)

Fig. 6 The result structure of a query result paper(6). a A query result
paper(6). b rs(paper(6))

root qrroot of qr (simply, the incoming label path) and the
ancestor–descendant edges from qrroot to query keywords. In
the result structure rs(qr), the node corresponding to qrroot

is marked as the query result node.

In Definition 3, we note that the incoming label path infor-
mation is sufficient to define the structural consistency, but
we attach query keywords to find query results corresponding
to the result structure in query processing.

Example 6 Suppose that a keyword query Q = {“XML", “Levy"}

is issued on the XML data in Fig. 1a. Figure 6 shows a query
result paper(6) and its result structure. Note that a query result
is a subtree of XML data (i.e., an instance), and its result
structure is a twig pattern (i.e., a part of schema).

Definition 4 Given a keyword query Q and the set of query
results Q R = {qr1, qr2, . . . , qrm} of Q, the result structure
rs(qri ) structurally contains the result structure rs(qr j ), as
denoted by rs(qri ) ≺ rs(qr j ), if and only if the incom-
ing label path of rs(qri ) is a proper prefix of that of
rs(qr j ). rs(qri ) and rs(qr j ) are structurally equivalent, as
denoted by rs(qri ) ≡ rs(qr j ), if and only if their incoming
label paths are identical. We define rs(qri ) � rs(qr j ) as
rs(qri ) ≺ rs(qr j ) or rs(qri ) ≡ rs(qr j ).

Definition 5 Given a keyword query Q and the set of query
results Q R = {qr1, qr2, . . . , qrm} of Q, structural consis-
tency is a property where the following condition is satisfied
for Q R: (∀qri ∈ Q R) ((¬∃qr j ∈ Q R)(rs(qri ) ≺ rs(qr j ))).
Structural anomaly is a property where structural consistency
is violated, i.e., (∃qri∃qr j ∈ Q R) (rs(qri ) ≺ rs(qr j )).

Example 7 Suppose that a keyword query Q = {“XML", “Levy"}

is issued on the XML data in Fig. 1a, and that a set of query
results Q R = {conf(51), paper(6)} is obtained. Figure 7 shows
their result structures. We see that rs(conf(51))≺ rs(paper(6)).
Thus, Q R has structural anomaly.

We resolve structural anomaly, thereby preserving struc-
tural consistency, by removing query results whose struc-
ture is not the same as a smallest result structure as defined

(a) (b)

Fig. 7 The result structures of query results causing structural anom-
aly. a rs(conf(51)). b rs(paper(6))

Fig. 8 A naive algorithm for resolving structural anomaly

in Definition 6. By enforcing structural consistency, we can
remove spurious results having the same result structure con-
sistently.

Definition 6 Given a keyword query Q and the set of query
results Q R = {qr1, qr2, . . . , qrm} of Q, the set of smallest
result structures of Q R is {rs(qri )|qri ∈ Q R ∧ (¬∃qr j ∈
Q R)(rs(qri ) ≺ rs(qr j ))}

In Definition 6, “smallest” refers to the resulting subtrees
since resulting subtrees are smaller if their incoming label
paths are longer.

Lemma 1 Given a keyword query Q, the set of query results
Q R = {qr1, qr2, . . . , qrm} of Q, and the set of small-
est result structures S RS = {srs1, srs2, . . . , srsn} of Q R,
structural consistency holds for Q R if the following con-
dition is satisfied for Q R : (∀qri ∈ Q R)((∃srs j ∈
S RS)(rs(qri ) ≡ srs j )).

Proof It is straightforward from the definition of the smallest
result structure. �

Figure 8 shows a naive algorithm that resolves structural
anomaly at the instance level. The algorithm consists of the
following four steps: (1) computing all the SLCAs, (2) find-
ing smallest result structures of the SLCAs, (3) removing
SLCAs whose result structures are not smallest result struc-
tures, and (4) returning the set of SLCAs preserving structural
consistency.
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3.2 Schema-level structural anomaly resolution

Obviously, the naive algorithm would always be slower than
existing SLCA-based algorithms. We propose an efficient
algorithm, called schema-level structural anomaly resolu-
tion, that resolves structural anomaly at the schema level.
In this algorithm, we first find smallest result structures at
the schema level. We then compute only those query results
that correspond to the smallest result structures by evaluat-
ing structured queries constructed from the smallest result
structures. We prove in Sect. 3.2.4 that we can find the
smallest result structures using the schema without incurring
false dismissal. To do that we first define the schema-level
SLCA in Sect. 3.2.1. We then formally analyze the relation-
ship between the set of schema-level SLCAs and the set of
instance-level SLCAs in Sect. 3.2.2. Through analysis, we
show that simple query evaluation using the schema-level
SLCAs cannot obtain the same query results as the instance-
level algorithm does. In Sect. 3.2.3, we present a solution
for this problem, which we call iterative kth-ancestor gen-
eralization. In Sect. 3.2.4, we present a novel algorithm that
resolves structural anomaly at the schema level using the
schema-level SLCAs and iterative kth-ancestor generaliza-
tion. We finally prove in Theorem 1 that the schema-level
and the instance-level algorithms produce an equivalent set
of query results that preserve structural consistency.

3.2.1 Schema-level SLCA

We first define the schema-level LCA in Definition 7 and
then define the set of schema-level SLCAs in Definition 8.
In contrast, we call SLCAs in the XML data instance-level
SLCAs. Hereafter, ancestor(sa, s) denotes that node sa is an
ancestor of node s, and ancestor-or-self(sa, s) denotes that
ancestor(sa, s) or sa = s.

Definition 7 Let G be a DataGuide+ and S be the set of all
schema nodes in G. For n schema nodes s1, s2, . . . , sn ∈ S,
sa ∈ S is the schema-level LCA of these n schema nodes if
and only if the following conditions are satisfied: (1) (∀1 ≤
i ≤ n) (ancestor-or-self sa, si , (2) ¬∃sb ∈ S (ancestorsa,

sb ∧ ∀1 ≤ i ≤ n (ancestor-or-self (sb, si ))). The schema-
level LCA sa for s1, s2, . . . , sn is denoted as LC A
(s1, s2, . . . , sn).

We note that, in Definition 7, the LC A is defined for n
schema nodes; in Definition 8, the LC A_SET is defined
for m sets of schema nodes. Given a keyword query Q =
{w1, w2, . . . , wm} and a DataGuide+ G, Si (1 ≤ i ≤ m)

denotes the set of schema nodes directly containing wi in G.

Definition 8 Given a keyword query Q ={w1, w2, . . . , wm}
and the set S of all schema nodes in a DataGuide+ G, the
set of schema-level SLCAs SLC A_SET (S1, S2, . . . , Sn) =

{sa |(sa ∈ LC A_SET (S1, S2, . . . , Sn))∧(¬∃sb ∈ LC A_SET
(S1, S2, . . . , Sn))(ancestor(sa, sb))} where LC A_SET
(S1, S2, . . . , Sm) = {sa |(sa ∈ S) ∧ (∃s1 ∈ S1, ∃s2 ∈
S2, . . . , ∃sm ∈ Sm)(sa = LC A(s1, s2, . . . , sm))}.

Example 8 Suppose that a keyword query Q = {“XML", “Levy"}

is issued on the XML data in Fig. 1b. In the DataGuide+
in Fig. 4, the set of schema-level LCAs is {“bib", “bib.conf",

“bib.conf.paper", “bib.journal", “bib.journal.article"}, and the set of
schema-level SLCAs is {“bib.conf.paper", “bib.journal.article"}

since these schema nodes do not contain other schema-level
LCAs.

3.2.2 The relationship between the set of schema-level
SLCAs and the set of instance-level SLCAs

To explain the relationship between the set of schema-level
SLCAs and the set of instance-level SLCAs, we first define
the schema structure of a schema node in Definition 9. Since
both the schema structure of a schema node and the result
structure of a query result are defined as twig patterns, we will
use the same notions of structural equivalence and structural
containment for schema structures.

Definition 9 The schema structure of a schema node s,
denoted as ss(s), is a twig pattern composed of the incoming
label path from the root of DataGuide+ to s and the ancestor–
descendant edges from s to query keywords. In the schema
structure ss(s), the node corresponding to s is marked as the
query result node.

Given a keyword query, the set SS of schema structures of
schema-level SLCAs is largely equivalent to the set S RS of
smallest result structures of instance-level SLCAs. However,
there exist cases where SS and S RS are not equivalent since
the schema loses some instance-level information by storing
only unique label paths of the instance nodes. For example, in
the XML data in Fig. 1a, “Levy" and “Lu" appear in the instance
nodes with the label path “bib.conf.paper. author.ln", but they
appear in different instance nodes, ln(65) and ln(68). Nonethe-
less, in the DataGuide+ in Fig. 4, they appear in the same
schema node with the label path “bib.conf. paper.author.ln"

since their label paths are the same. Thus, in effect, the
schema loses the information that “Levy" and “Lu" appear in
different instance nodes with the same label path.

There are two cases where S RS and SS are not equiva-
lent: case 1 for some ss j ∈ SS, there exists an srsi ∈ S RS
such that srsi ≺ ss j , and case 2 for some ss j ∈ SS, there
exists no srsi ∈ S RS such that srsi � ss j . We note that
ss j ≺ srsi does not hold according to the definition of
the schema-level SLCA. In case 1, if we compute query
results corresponding to ss j , we will miss query results cor-
responding to srsi , i.e., we will incur false dismissal. Exam-
ple 9 shows an instance of false dismissal. In Sect. 3.2.3, we
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(a) (b)

Fig. 9 An example of false dismissal. a srsi . b ss j

propose a solution to this problem, which we call iterative
kth-ancestor generalization. In case 2, if we blindly apply
iterative kth-ancestor generalization for ss j , we could end
up with incurring structural anomaly. We call ss j ∈ SS such
that (¬∃srsi ∈ S RS)(srsi � ss j ) a phantom schema struc-
ture. Example 10 shows an example of the phantom schema
structure. In the next section, we will provide a solution to
eliminate phantom schema structures.

Example 9 Consider a keyword query Q = {“Levy", “Lu"}
issued on the XML data in Fig. 1a. Figure 9a, b shows
srsi ∈ S RS and ss j ∈ SS, respectively. Here, srsi ≺ ss j . In
the XML data in Fig. 1a, we see that there is a query result
corresponding to srsi , paper(61), but there is no query result
corresponding to ss j .

Example 10 Suppose that a keyword query Q = {“XML", “IR"}
is used. In the XML data in Fig. 10a, S RS = {rs(v1)}. In the
DataGuide+ in Fig. 10b, SS = {ss(s1), ss(s2)}. Thus, we do
not have an srs rs(v2) such that rs(v2) � ss(s2), and ss(s2)

is a phantom schema structure. In this case, if we applied
kth-ancestor generalization to s2, we would find conf(1) in
Fig. 10a as a result, which causes structural anomaly because
rs(conf(1))≺ rs(v1).

We now formally state the relationship between S RS and
SS, which will be used in iterative kth-ancestor generaliza-
tion.

Lemma 2 Given a keyword query Q, for all srsi ∈ S RS,
there exists ss j ∈ SS such that srsi � ss j .

Proof See Appendix A. �
We can obtain srsi ∈ S RS by computing the set Q R j of

the query results corresponding to ss j ∈ SS. If Q R j is non-
empty, then we have obtained srsi inS RS such that srsi ≡
ss j . If Q R j is empty, we can obtain srsi ∈ S RS such that
srsi ≺ ss j by applying iterative kth-ancestor generalization.

3.2.3 Iterative kth-ancestor generalization

In this section, we present iterative kth-ancestor general-
ization to solve the problems of false dismissal and phantom

(a)

(b)

Fig. 10 An example of a phantom schema structure. a XML data.
b The DataGuide+ for the XML data in (a)

schema structures. We iteratively find a kth-ancestor sa of the
schema-level SLCA s such that ss(sa) ≡ srs ∈ S RS where
srs ≺ ss(s). We define the kth-ancestor in Definition 10.

Definition 10 Given two nodes, sa and s, sa is the kth-
ancestor of s if sa is an ancestor of s and depth(s) =
depth(sa)+k, where depth(s) is the length of the path from
the root to s.

Example 11 We can obtain srsi ∈ S RS in Fig. 9a by finding
the second-ancestor of the schema-level SLCA in Fig. 9b.

Lemma 3 Given a keyword query Q, suppose that srsi ∈
S RS structurally contains ss(s) ∈ SS, i.e., srsi ≺ ss(s).
Then, there must exist a kth-ancestor sa(1 ≤ k ≤ depth(s))
of s such that ss(sa) ≡ srsi ∈ S RS.

Proof See Appendix B. �
In iterative kth-ancestor generalization, we iteratively find

the kth-ancestor sa of the schema-level SLCA s from the
parent of s (i.e., k = 1) until the set of the query results
corresponding to ss(sa) is non-empty. Here, obtaining non-
empty results indicates that srs ∈ S RS has been found. Thus,
we solve the false dismissal problem.

To eliminate phantom schema structures during iterative
kth-ancestor generalization, we need to iteratively check
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structural consistency. Initially, there is no structural anomaly
for the set of schema-level SLCAs. As schema-level SLCAs
are generalized, structural anomaly can be incurred by their
ancestors in the schema. Then, computing query results cor-
responding to the kth-ancestor incurring structural anomaly
in the schema will incur structural anomaly in the instances.
For example, in Fig. 10b, the schema structure of the first-
ancestor of s2, ss(conf(1)), structurally contains the schema
structure ss(s1) of the schema-level SLCA s1. In this case,
if we compute query results corresponding to ss(conf(1)), we
obtain conf(1) in Fig. 10a. Here, rs(conf(1))≺ rs(v1) causing
structural anomaly. Thus, we iteratively remove ancestors
incurring structural anomaly and stop applying generaliza-
tion for them. That is, we remove phantom schema structures.

We note that one srsi ∈ S RS can structurally contain
multiple schema structures ss(s1), ss(s2), . . . , ss(sn) ∈ SS.
In such cases, if we blindly generalize all the schema-level
SLCAs s1, s2, . . . , sn , we obtain duplicate query results cor-
responding to srsi . Thus, we must generalize only one
schema-level SLCA for srsi . This constraint is also enforced
by iteratively checking structural consistency. Suppose that
s1, s2, . . . , sn are being generalized to srsi in this order. It
is clear that s j (1 ≤ j ≤ n − 1) will be removed since s j ,
when sufficiently generalized, must become the ancestor of
sn . Therefore, we can guarantee that only one schema-level
SLCA, sn , is generalized.

3.2.4 Putting it altogether

Figure 11 shows an enhanced algorithm that resolves struc-
tural anomaly at the schema-level using the schema-level
SLCAs and iterative kth-ancestor generalization. This algo-
rithm produces the same query results as the instance-level
algorithm in Fig. 8 does. We will present the detailed query
processing method of this algorithm in Sect. 4. Step 1 finds
the set of schema-level SLCAs Sunmarked = {s1, s2, . . . , sm},
and Step 2 computes the set of the query results correspond-
ing to ss(si )(1 ≤ i ≤ m) by evaluating the XPath query
that represents ss(si ). Here, we convert ss(si ) to an XPath
query to make our method run on top of any query evalua-
tion engine that supports XPath. Step 3 applies iterative kth-
ancestor generalization for si ∈ Sunmarked. In Step 3.2.1.1,
we check whether an srs ∈ S RS such that srs ≡ ss(si )

has been found by examining whether Q Ri is non-empty.
If it has, in Step 3.2.1.1.1, we move such si to Smarked. If
not, in Step 3.2.1.2.1, we obtain the parent of si using the
parent(si ) function. In Step 3.2.1.2.2.1, we remove si , which
incurs structural anomaly, from Sunmarked.

Example 12 Suppose that a keyword query Q = {“XML",
“IR"} is used to query the XML data in Fig. 10a. In Step 1,
Sunmarked = {s1, s2}. In Step 2, the set Q R1 of the query
results corresponding to ss(s1) is non-empty ({title(4)}), but

Fig. 11 The algorithm for resolving structural anomaly at the schema-
level

Q R2 for ss(s2) is empty. In Step 3.2.1.1, since Q R1 �= {},
we move s1 from Sunmarked to Smarked and add Q R1 to the
set Q R of query results. Hence, Sunmarked = {s2}, Smarked =
{s1}, and Q R = {title(4)}. In Step 3.2.1.2, since Q R2 = {},
we generalize s2. Now s2 incurs structural anomaly since
(∃s1 ∈ Smarked)(ss(s2) ≺ ss(s1)). Thus, we remove s2 from
Sunmarked. Now, Sunmarked = {}, and we end the iteration.

In Step 3, even if we process s2 first, we can obtain the
correct result without a problem. In Step 3.2.1.2.2, s2 incurs
structural anomaly since (∃s1 ∈ Sunmarked)(ss(s2) ≺ ss(s1)).
Thus, we remove s2 from Sunmarked obtaining Sunmarked =
{s1} and Smarked = {}. Now we move s1 from Sunmarked to
Smarked, add Q R1 to Q R, and end the iteration.

Theorem 1 The Schema-level Structural Anomaly Reso-
lution algorithm produces the same query results as the
instance-level algorithm in Fig. 8 does.
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Proof By Lemma 2, for every srsi ∈ S RS, there exists
ss(s j ) ∈ SS such that (1) srsi ≡ ss(s j ) or (2) srsi ≺ ss(s j ).
For case 1, we can obtain srsi ∈ S RS by computing the
query results corresponding to ss(s j ) (Step 2). For case 2,
we can obtain srsi ∈ S RS by applying iterative kth-ancestor
generalization according to Lemma 3 (Step 3). In this case,
even if generalization is stopped for s j because of incurring
structural anomaly, we are still able to obtain srsi ∈ S RS
since there always exists a schema-level SLCA sn such that
ss(s j ) ≺ ss(sn)—which is exactly what caused the structural
anomaly—and we can find srsi by generalizing sn . Finally,
ss(s j ) ∈ SS such that (¬∃srsi ∈ S RS)(srsi � ss(s j )), i.e.,
the phantom schema structure, is always removed since the
kth-ancestor sa of s j must eventually incur structural anom-
aly when s j is generalized to the root node. Otherwise, we
contradict the assumption (¬∃srsi ∈ S RS)(srsi � ss(s j ))

since it must be that srsi ≡ ss(sa) at the root node. �

We now analyze the complexity of our schema-level algo-
rithm. Given a keyword query Q = {w1, w2, . . . , wn}, the
worst case time complexity of the schema-level algorithm is
O(|S1|d ∑n

i=2 log|Si |+dCXPath) where Si (1 ≤ i ≤ n) is the
set of schema nodes directly containing the query keyword
wi in the DataGuide+, d the maximum depth of the XML
data, and CXPath the cost of XPath query evaluation, which
will be presented in Sect. 4.2.2. Here, O(|S1|d ∑n

i=2 log|Si |)
[45] is the cost of computing schema-level SLCAs using the
algorithm of Xu and Papakonstantinou [45], and O(dCXPath)

is the cost of iterative kth-ancestor generalization since, in
the worst case, generalization can be applied until one of the
schema-level SLCAs reaches the root node.

Compared with the existing instance-level SLCA algo-
rithm [45], the schema-level algorithm is generally more
efficient since it avoids unnecessary computation of spu-
rious results by removing them early at the schema-level.
The additional overheads of the schema-level algorithm are
the computation of schema-level SLCAs and iterative kth-
ancestor generalization. However, those overheads are small
in practice. First, the cost of the schema-level SLCA com-
putation tends to be very small since the schema is generally
several orders of magnitude smaller than the XML data [4].
Second, the cost of iterative kth-ancestor generalization is
negligible since the generalization occurs only occasionally
and is usually applied only once or twice (according to our
experiments in Sect. 6, the cost of iterative kth-ancestor gen-
eralization is less than 10% of the total query processing
cost). In the worst case, however, our schema-level algo-
rithm could be about twice slower than the instance-level
SLCA algorithm. The reasons are as follows. First, when
the schema is as large as the XML data, the overhead of
schema-level SLCA computation would be almost the same
as the cost of the instance-level SLCA computation. Second,
after obtaining the schema-level SLCAs, we compute query

results that correspond to the schema-level SLCAs by eval-
uating the XPath queries. This query evaluation could also
be as expensive as the instance-level SLCA computation if
there exist few spurious results since then our method loses
the benefit over existing SLCA-based methods of avoiding
unnecessary computation of spurious results through early
removal (see the experimental results of Q D1 and Q D5 in
Fig. 23c and Q X1 and Q X8 in Fig. 27c of Sect. 6).

3.3 A relevance-feedback-based solution for the low recall
problem

When users intend to find more general results (although
this is relatively rare), which we regard as spurious results,
our method can have lower recall than existing methods. For
example, suppose that a user intends to find a conference on
“XML" where “Levy" is the chair. If there is at least one paper
about “XML" authored by “Levy", our method does not retrieve
the desired conference. We call this problem the low recall
problem.

The fundamental cause for this problem is the inherent
ambiguity in keyword search, i.e., the actual intention of
the user is unknown. We can solve this problem by exploit-
ing the user’s relevance feedback. Relevance feedback is
an important way of enhancing search quality using rele-
vance information provided by the user [16,36]. The solu-
tion is as follows. The initial query results are presented to
the user, and the user gives feedback if desired results are
not retrieved5 (this kind of relevance feedback can be easily
implemented using a user-friendly GUI, and users just need
to click a button). This feedback is sent to the system, and
the system generalizes the smallest result structure and finds
results again (we can repeat this feedback process until all
the desired results are retrieved). For example, our method
does not retrieve the desired conference if there is at least
one paper about “XML" authored by “Levy". Since the desired
result has not been retrieved, the user sends feedback to the
system, and the system now finds conferences containing
“XML" and “Levy" by generalizing the smallest result struc-
ture. Then, the user can obtain the desired result. When there
are multiple smallest result structures, we can allow the user
to choose which smallest result structure he wants to gen-
eralize. To do this, we need to group the query results for
each smallest result structure and show each group to the
user.

We implement this relevance-feedback-based solution by
modifying Algorithm 2. In Step 3.2.1.1 of Algorithm 2, we
check whether the set Q Ri of the query results corresponding
to a schema-level SLCA si is non-empty. If Q Ri is empty,

5 We assume that the user has enough knowledge about XML to under-
stand the structure of the results. Thus, the user is able to give feedback
on the structure of the results.
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Fig. 12 XML data having a
recursive schema

we generalize si in Step 3.2.1.2.1 by finding the parent of si .
We implement relevance feedback by modifying Step 3.2.1.1
such that si should be generalized even if Q Ri is non-empty
when the user’s relevance feedback is received.

The reason why relevance feedback is possible is that we
process queries at the schema level. The schema-level pro-
cessing makes the relevance-feedback mechanism feasible
since users just need to give feedback on a small number of
schema-level SLCAs. However, it is hard to apply to instance-
level methods since the number of instance-level SLCAs is
generally much larger than that of schema-level SLCAs.6

Furthermore, it is not clear how we can receive the rele-
vance feedback and generalize the results in the instance-
level SLCA algorithm [45].

We can handle XML data having a recursive schema using
the same technique. Figure 12 shows recursive XML data
where the parent–child relationship between two employees
represents the supervisor–supervisee relationship. Suppose
that the query is “John employee” and the user intends to find
all employees whose name is “John”. In this case, our method
(and also LCA and MLCA) finds only employee(3), resulting
in low recall. We can also resolve this problem by generaliz-
ing the smallest result structure via relevance feedback.

The low recall problem may also be handled by rank-
ing in a spirit similar to the work of Amer-Yahia et al. [3].
Enabling users to exploit partial knowledge of the schema
in user queries [11,27,47] can also help us to disambiguate
user’s intention. We leave these issues for future work.

3.4 Search quality comparisons with earlier methods

In this section, we summarize search quality comparisons
with earlier methods, SLCA [45], MLCA [27] (a variant of

6 According to our experiments in Sect. 6, the average number of
instance-level LCAs is two orders of magnitude larger than that of
schema-level LCAs. Although it is infeasible in practice to give feed-
back on a large number of instance-level SLCAs, we have manually
done experiments on the effect of relevance feedback in existing meth-
ods in Sect. 6.

LCA), XSEarch [11], CVLCA [25], and XReal [6]. XSEarch
and CVLCA are based on a heuristic called interconnection
relationship. According to the heuristic, two nodes are con-
sidered to be semantically related if and only if there are no
two distinct nodes with the same label on the path between
these two nodes (excluding the two nodes themselves).
Li et al. [27] have pointed out that the heuristic could retrieve
spurious results and have shown that MLCA is generally
superior to the heuristic. XReal infers the user’s intention
using the statistics of the underlying XML data.

Since keyword queries are inherently ambiguous, the
desired results of a keyword query depend on the user’s inten-
tion. The user may want to find (1) more specific results or
(2) more general (as opposed to specific) results. For exam-
ple, for a keyword query “XML Levy", the user may want to
find either (1) papers about “XML" authored by “Levy" or (2)
conferences on “XML" where “Levy" is the chair.

When the user’s intention is to find more specific results,
the precision values of our method are higher than or equal to
those of existing methods since our method is able to elimi-
nate more spurious results (i.e., general results) than existing
methods by enforcing structural consistency. In addition, the
recall values of our method and those of existing methods are
the same since our method finds all the specific results, i.e.,
the query results that correspond to smallest result structures,
as existing methods do.

Example 13 Suppose that a keyword query Q = {“XML",
“Levy", “Lu"} is issued on the XML data in Fig. 13. The
user wants to find papers about “XML" authored by “Levy" and
“Lu", and the desired result is paper(2). SLCA, XSEarch, and
CVLCA find not only paper(2) but also spurious (i.e., general)
results conf(10) and conf(17). MLCA can eliminate conf(10)

since in the subtree rooted at conf(10), title(12) and title(15)

are the nodes that contain “XML", and speaker(13) is the node
that contains “Levy" and the LCA of title(15) and speaker(13),
i.e., conf(10), contains the LCA of title(12) and speaker(13),
i.e., keynote(11). XReal retrieves {conf(10), conf(17)} with the
ranking since it infers conf as the desired node type7 based on
the XML document frequency [6]. Our method can eliminate
all the spurious results by enforcing structural consistency.
Thus, compared with LCA, MLCA, XSEarch, CVLCA, and
XReal, our method improves precision without sacrificing
recall.

When the user’s intention is to find more general results,
our method can have lower recall than existing methods,
and we can solve this problem using relevance feedback.

7 Since the highest confidence value (2.67) is significantly higher than
the second highest value (1.41), XReal chooses the one with the high-
est confidence, conf, as the desired node type and retrieves only conf
nodes. We compute the confidence values using Equation (6) in Bao
et al. [6].
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Fig. 13 The case where
structural consistency shows
high precision

Fig. 14 The case where structural consistency shows low recall

The recall values of our method with relevance feedback are
higher than or equal to those of existing methods since we
can eventually obtain the desired results via generalization. In
the worst case, however, the precision values of our method
with relevance feedback could be lower than those of exist-
ing methods since it may find more spurious results during
generalization as we see in Example 14. We note that the
worst case is quite rare in practice.8

Example 14 Suppose that a keyword query Q = {“XML",
“Levy"} is issued on the XML data in Fig. 14 to find con-
ferences on “XML" where “Levy" is the chair. The desired
result is conf_year(20). SLCA and MLCA find
{paper(6), conf_year(20), conf(50)}. XSEarch and CVLCA
find {paper(6), conf_year(20)}. XReal finds {conf_year(3),
conf_year(20)}. Here, paper(6), conf_ year(3), and conf(50) are
spurious results. Our method initially finds only {paper(6)},
and thus, the recall of our method is 0. Using relevance
feedback, our method obtains {conf_year(3), conf_year(20)}
through generalization, and thus, the recall becomes 1.0.
During generalization, our method finds a spurious result
conf_year(3), but the precision value of our method is higher
than those of SLCA and MLCA since the subtree rooted at
conf(50) is much bigger than that of conf_year(3). However, if
we remove the subtree rooted at conf(50) from the XML data

8 To find one, we had to test more than one hundred queries that are
structurally similar to that shown in Example 14 against the NASA and
XMark data sets in Sect. 6. We were not able to find a similar query in
the DBLP data set since its structure is simpler than those of the NASA
and XMark data sets.

(this is the worst case of our method), the precision value
of our method can be lower than those of SLCA and MLCA
(see Figs. 26a, 28a in Sect. 6.2). Compared with XSEarch and
CVLCA, the precision value of our method is lower since our
method finds conf_year(3). Compared with XReal, the preci-
sion value of our method is lower since our method finds
paper(6).

4 Implementation

In this section, we describe the implementation details of
the schema-level structural anomaly resolution. Section 4.1
presents the index structures used in the query processing.
Section 4.2 presents the query processing method.

4.1 Index structures

To speed up query processing, we use indexes for the
DataGuide+ and XML data. We use an inverted index for
a DataGuide+, which we call the schema index, to efficiently
compute the schema-level LCAs. We use an inverted index
for XML data, which we call the instance index, to efficiently
evaluate XPath queries. Inverted indexes have been used in
many XML query processing methods [10,15,27,34]. We
also use a table called LabelPath [34] to store all the label
paths occurring in the DataGuide+.

Table 1 summarizes the notation to be used for explaining
the index structures. In Table 1, if a schema (or an instance)
node s is a value node, we use parent (s) instead of s as a
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Table 1 Summary of notation

Symbols Definitions

snode_id(s) The id of a schema node s

label_path(s) The label path of a schema

(or an instance) node s

label_path_id(s) The id of label_path(s) = snode_id(s)

numeric_label_path(s) label_path(s) represented as a sequence

of snode_ids rather than labels

(numeric_label_path(s)[i] denotes

the i th id)

inode_id(o) The id of an instance node o

node_path(o) The node path of an instance node o

Fig. 15 An example LabelPath table

parameter for all functions since value nodes themselves do
not have ids.

A LabelPath table consists of tuples of the form label_
path_id, label_path〉, where label_path is the label path
of a schema node s, and label_path_id is the same as the
id of s. A B+-tree index is created on the label_path_id
column, and an inverted index on the label_path column.

Example 15 Figure 15 shows the LabelPath table for the
DataGuide+ in Fig. 4. In the DataGuide+, the label path
of the schema node having the id of 6 is “bib.conf.paper".

The schema index stores a list of postings for each
unique value (or label) that appears in the DataGuide+. The
posting of a schema node s has the form 〈snode_id(s),
numeric_label_ path(s)〉. numeric_label_path(s) is used
to find the ancestor nodes of s. Postings in a posting list are
stored in ascending order of snode_id(s).

Example 16 Figure 16 shows the schema index for the
DataGuide+ in Fig. 4. Let s be the schema node with
the value = “Jagadish" in Fig. 4. Then, snode_id(s)= 10 and
numeric_label_ path(s)= 0.1.6.8.10. Thus, a posting 〈10,
0.1.6.8.10〉 is stored in the posting list of “Jagadish".

The instance index stores a list of postings for each
unique keyword (or label) that appears in XML data. The
posting of an instance node o has the form 〈inode_id(o),

Fig. 16 An example schema index

node_path(o), numeric_label_path(o)〉. node_path(o)

is used to find the ancestor nodes of o, and numeric_label
_path(o) is used to find the label path of o. Postings in a
posting list are stored in ascending order of inode_id(o). We
create a B+-tree index, which is called a subindex [42,43],
on each posting list of the instance index in the same way as
was done by Guo et al. [15] and Whang et al. [42,43]. The
key of a subindex is inode_id(o).

Example 17 Figure 1b. Then, inode_id(o)=15, node_
path(o)= 0.1.11.13.15, and label_path(o)= “bib.conf.paper.

author.ln". Since numeric_label_path(o)= 0.1.6.8.10 for
label_path(o) in the DataGuide+ in Fig. 4, a posting
〈15, 0.1.11.13.15, 0.1.6.8.10〉 is stored in the posting list of
“Jagadish".

4.2 Query processing method

The query processing method consists of the following two
steps. The first step presented in Sect. 4.2.1 translates a given
keyword query Q into multiple XPath queries corresponding
to the schema-level SLCAs. The second step presented in
Sect. 4.2.2 evaluates the XPath queries obtained in the first
step.

4.2.1 Query translation

We first compute schema-level SLCAs (or their ancestors)
and then generate XPath queries specifying their schema
structures. Figure 18 shows the algorithm Query translation,
which consists of the following two steps.

In Step 1, we compute the set S of schema-level SLCAs
using the GetSLCA function that implements the SLCA
searching algorithm of Xu and Papakonstantinou [45]. They
use this function to compute instance-level SLCAs, but we
use it here to compute schema-level ones. For each schema-
level SLCA sslcai , we add the snode_id of sslcai to S. In
iterative kth-ancestor generalization, the algorithm is modi-
fied to find ancestors of the schema-level SLCAs.

In Step 2, we generate an XPath query xpqi for each
schema-level SLCA with the snode_id si ∈ S. In the XPath
query generated from si , si becomes the query result node
and, at the same time, the branching query node since si

is a schema-level SLCA of all the query keywords; query
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Fig. 17 An example instance
index

Fig. 18 The query translation algorithm

keywords that are descendants of si become the leaf query
nodes. Here, we first obtain the label path lpi of si by search-
ing the LabelPath table using snode_id(si ). We then make
the query string of xpqi by calling the MakeXPathQueryS-
tring function with lpi and the query keywords. In Step 2.1
of the MakeXPathQueryString function, we do not create a
predicate when wi is the last label of lp. It means that wi is
the label of the schema-level SLCA. Since it is a part of lp
already, a predicate for it is not needed.

Example 18 We translate a keyword query “XML Levy" on
the XML data in Fig. 1b into XPath queries xpq1 and

(a) (b)

Fig. 19 (The XPath queries generated from “XML Levy". a xpq1.
b xpq2

xpq2 in Fig. 19 as follows. In Step 1, we first obtain
the posting lists L1, L2 of “XML", “Levy" by searching the
schema index in Fig. 16. We then compute the set T of
numeric_label_path’s of schema-level SLCAs for L1 and
L2 by evaluating GetSLCA (L1, L2). Here, T = {“0.1.6",
“0.11.12"}. For each sslcai ∈ T , we add snode_id(sslcai ) to
S. Thus, S = {6, 12} in Fig. 4. In Step 2, for the schema-level
SLCA with the snode_id s1 = 6 ∈ S, we first obtain the
label path “bib.conf.paper" of s1 from the LabelPath table in
Fig. 15. We note that the label_path_id = s1 = 6. We then
create predicates for “XML" and “Levy". The predicates are
“[contains(., “XML")]” and “[contains(., “Levy")]”. Finally, we
generate the XPath query xpq1 by concatenating the label
path and the predicates. We similarly generate the XPath
query xpq2 for the schema-level SLCA with the snode_id
s2 = 12.

4.2.2 Query evaluation

The set of XPath queries obtained in the query translation
step can be evaluated with any existing XPath engine. In this
section, we propose an efficient algorithm that simultane-
ously evaluates the specific set of XPath queries generated
by our method.

In general, there are multiple structures matching the
user’s query intention, and thus, multiple XPath queries for
those structures are generated from a keyword query. The
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result of the keyword query is the union of the results of
these XPath queries. As explained in Sect. 4.2.1, an XPath
query xpqi generated from a schema-level SLCA si has one
branching node, i.e., si , and the label path of si is the path
from the root node to si . Query keywords that are descen-
dants of si become the leaf query nodes of xpqi . The query
xpqi finds the instance nodes that have the label path of si

and that contain all the query keywords (this is common to
all xpqi ’s). We exploit this commonality for efficient simul-
taneous computation of multiple queries.

There has been a lot of work on XPath evaluation, but most
of the work focuses on answering one query at a time. Some
research efforts [9,29,48] have been done on answering mul-
tiple queries simultaneously, but they are not optimized for
the specific set of XPath queries that are generated by our
method. Bruno et al. [9] and Zhang et al. [48] only handle
linear XPath queries. Liu et al. [29] handle XPath queries
with branches. This method is not suitable for the specific
set of XPath queries because of the following reasons. They
combine multiple queries into a single structure, called super-
twig query, to exploit query commonalities. They only con-
sider the scenario where query commonalities exist in the
top parts—the parts close to the root node—of multiple orig-
inal queries. However, in the specific set of XPath queries,
much of the query commonalities exist in the bottom parts of
the original queries, which consist of query keywords. Little
query commonalities exist in the top parts since each query
has a unique path from the root node to the branching node.
Thus, in the worst case, the cost of the method is almost the
same as that of processing one query at a time. In contrast,
our algorithm simultaneously evaluates all the queries in this
specific set by exploiting the query commonalities existing
in the bottom parts of the original queries.

Since the queries in this specific set share the same
query keywords that appear in the original keyword query,
we can simultaneously evaluate all the queries by join-
ing the posting lists of the query keywords. We obtain
the posting lists from the instance index introduced in
Sect. 4.1. Suppose that XPath queries xpq1, xpq2, . . . , xpqm

are obtained from a keyword query Q = {w1, w2, . . . , wn}.
We perform an index nested-loop join over the posting lists
L j (1 ≤ j ≤ n) of query keywords w j . For each post-
ing in the outer-most posting list L1, we identify the query
to be evaluated from among xpqi (1 ≤ i ≤ m). Thus,
we simultaneously evaluate different queries while we are
scanning L1. As explained in Sect. 4.1, the posting of an
instance node o has the form 〈inode_id(o), node_path(o),
numeric_label_path(o)〉 where inode_id(o) is the node
id of o, node_path(o) the node path of o, and numeric_
label_path(o) the label path of o that is represented as a
sequence of integer ids rather than labels. node_path(o)

contains the ids of the ancestor nodes of o in the ascending
order, and its last id is inode_id(o). A posting list is sorted

in the ascending order of inode_id(o). Hereafter, we refer
to an instance node o by its posting for ease of exposition.
For each posting o1a in L1, we find the query to be evaluated
using numeric_label_path(o1a). For xpqi (1 ≤ i ≤ m),
if the path pi from the root node to the branching node of
xpqi is a prefix of the label path of o1a , xpqi must be the
query that we need to evaluate for o1a since xpqi finds the
instance nodes that have the label path pi and that contain all
the query keywords. Here, o1a matches the query keyword
w1 since o1a is a posting of w1. We note that at most one xpqi

is found since each query has a unique branching node. We
compute the results only for the postings in L1 that have the
corresponding XPath query to be evaluated. Thus, we avoid
unnecessary computation of spurious results. We note that,
in contrast, the SLCA algorithm [45] computes SLCAs for
all postings in L1 incurring unnecessary computation.

We now explain how we evaluate xpqi . Let di be the
depth of the branching node of xpqi from the root node,
and node_path(o1a)[di ] be the di th id of node_path(o1a).
We need to check if the instance node o with the id
node_path(o1a)[di ] contains all the query keywordsw j (1 ≤
j ≤ n). Here, o corresponds to the query result since
the branching node is the query result node in xpqi . o
clearly contains w1 since o is an ancestor of o1a . o contains
w j (2 ≤ j ≤ n) if there exists o jb ∈ L j for each L j such that
node_path(o jb) and node_path(o1a) have the same prefix
from the root node to di . Since we assign a unique preorder
id to each node in the XML data tree, node_path(o jb) and
node_path(o1a) have the same prefix from the root node
to di if node_path(o jb)[di ] = node_path(o1a)[di ]. Let k
be node_path(o1a)[di ], which is inode_id(o). To check the
existence of o jb ∈ L j such that node_path(o jb)[di ] = k,
we utilize the subindex on L j whose key is inode_id of the
posting in L j , exploiting Lemmas 4 and 5. Here, we do not
need to find all o jb ∈ L j such that node_path(o jb)[di ] = k
since we only need to check if o—which corresponds to the
query result—contains w j . By Lemmas 4 and 5, to check the
existence of o jb ∈ L j such that node_path(o jb)[di ] = k,
we only need to find a posting o jb such that inode_id(o jb)

is the smallest id that is greater than or equal to k in L j and
check whether node_path(o jb)[di ] = k. In summary, we
simultaneously evaluate all the queries xpqi (1 ≤ i ≤ m)

through one scan of L1 and an index nested-loop join over
the posting lists L j (1 ≤ j ≤ n).

Lemma 4 inode_id(o jb) ≥ k if node_path(o jb)[di ] = k.

Proof It is straightforward since we assign a preorder id to
each node. �
Lemma 5 Let inode_id(o jb) be the smallest id that is
greater than or equal to k in L j . If node_path(o jb)[di ] �= k,
then there is no o jb′ ∈ L j such that node_path(o jb′)
[di ] = k.
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Fig. 20 An example of XML
data tree for the proof of
Lemma 5

Proof Suppose that there exists o jb′ ∈ L j such that node_
path(o jb′)[di ] = k. Then, as we see in Fig. 20, o jb′ must
be in the subtree rooted at o(k), and o jb must be in the right
subtree of o(k). Thus, inode_id(o jb) > inode_id(o jb′) ≥
k. This contradicts the assumption that inode_id(o jb) is the
smallest id that is greater than or equal to k in L j . �

Our algorithm uses the idea of XIR [34] that exploits
the schema information—more precisely, the label path—
for XPath query processing. XIR decomposes a given XPath
query into linear XPath queries. A linear XPath query, which
is also known as a linear path expression [34], is an XPath
query without branches. It then finds a set of result node paths
by processing each linear XPath query, and performs prefix
match join between the sets of result node paths. Here, the
prefix match join [34] identifies the prefix (a subpath from
the root to the branching node) of a node path on one side
and finds the matching node paths having the same prefix on
the other side of the join. In contrast to XIR, our algorithm
simultaneously evaluates multiple XPath queries using the
instance index without computing the result node paths a pri-
ori for each linear XPath query. In this sense, our algorithm
is completely different from XIR.

Figure 21 shows the query evaluation algorithm, which
consists of the following two steps.

In Step 1, we obtain necessary information for query
evaluation from the XPath queries. For each XPath query
xpqi (1 ≤ i ≤ m), we first obtain the depth di of the branch-
ing node from the root node (simply, the branching depth).
We then obtain the id label_path_idi of the label path from
the root node to the branching node using the LabelPath table.

In Step 2, we compute the results of the XPath queries.
We first obtain the posting lists of the query keywords. We
then scan the outer-most posting list L1 and perform an index
nested-loop join over the posting lists L j (1 ≤ j ≤ n). For
each posting o1a ∈ L1, we find the query xpqi to be eval-
uated in Step 2.3.1. If found, we do the inner loop step to
check whether the node with the id node_path(o1a)[di ] con-
tains all the query keywords in Step 2.3.2.1. For each posting
list L j (2 ≤ j ≤ n), we check the existence of o jb ∈ L j

such that node_path(o jb)[di ] = node_path(o1a)[di ], by
calling the FindMatchingPosting function in Step 2.3.2.1.1.
The FindMatchingPosting function finds such a posting
using the subindex created on the posting list L j based on
Lemmas 4 and 5. If a posting is found for every posting list

Fig. 21 The query evaluation algorithm

L j (2 ≤ j ≤ n), we return node_path(o1a)[di ] as the result
of xpqi .

Given a set of XPath queries {xpq1, xpq2, . . . , xpqm}
having the same query keywords {w1, w2, . . . wn}, the worst
case time complexity CX Path of the query evaluation algo-
rithm is O(|L1|(m +∑n

j=2 log|L j |)) where L j (1 ≤ j ≤ n)

is the posting list of w j . For each posting in L1, we find the
query to be evaluated from among the m queries and one
posting from each of the other n − 1 posting lists. Finding a
posting in L j using the subindex costs O(log|L j |).

We now compare the performance of our algorithWe now
compare the performance of our algorithm with that of the
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Fig. 22 An example of Algorithm 4

instance-level SLCA algorithm [45]. The worst case com-
plexity of the SLCA algorithm is O(|L1|d ∑n

j=2 log|L j |)
[45] where d is the maximum depth of the XML data. In
practice, d of the SLCA algorithm and m of our algorithm
are small and do not affect performance significantly. Thus,
the “worst case” performance of the two algorithms is almost
the same. The critical benefit of our algorithm over the SLCA
algorithm is that we avoid unnecessary computation of spuri-
ous results by only computing the results of the XPath queries
obtained from schema-level SLCAs. This effect comes from
the fact that we compute the results only for the postings in
L1 that have the corresponding XPath query to be evaluated
(in Step 2.3.2) while the SLCA algorithm computes SLCAs
for all postings in L1.

Example 19 We evaluate the XPath queries xpq1 and xpq2

in Fig. 19 as follows. In Step 1, the branching depth di = 3 for
xpqi (i = 1, 2). Since, in the LabelPath table in Fig. 15, the
id of the label path “bib.conf.paper" is 6 and that of “bib.journal.

article" is 12, label_path_id1 = 6 and label_path_id2 = 12.
In Step 2, we first obtain the posting lists L1, L2 of the query
keywords “Levy", “XML" as shown in Fig. 22. For the posting
〈inode_id(o1a), node_path(o1a), numeric_label_path
(o1a)〉 = 〈10, 0.1.6.8.10, 0.1.6.8.10〉 ∈ L1, numeric_
label_path(o1a)[d1] = label_path_id1, or equivalently,
“0.1.6.8.10"[3] =6. That is, “bib.conf.paper" of xpq1 is a pre-
fix of the label path “bib.conf. paper.author.ln" that corre-
sponds to numeric_label_path(o1a). Thus, xpq1 is the
query to be evaluated, and we do the inner loop step.
We find a posting in L2 such that node_path(o2b)[d1] =
node_path(o1a)[d1]= “0.1.6.8.10"[3] = 6 using the subindex
created on L2. Since there is a posting 〈7, 0.1.6.7, 0.1.6.7〉 ∈
L2 such that “0.1.6.7"[3] =6, we return 6, which is the node id
of paper(6) in Fig. 1b, as the result of xpq1. For the posting
〈106, 0.100.101.103.104.106, 0.11.12.14.15.17〉 ∈ L1, we can
similarly find the result article(101) of xpq2.

5 Related work

There has been a lot of work on keyword search in relational
databases [1,8,17,18,28,32], which inspired XML keyword
search. However, the work on relational databases is not
directly applicable to XML since the schema of XML data
cannot always be mapped to a rigid relational schema [15]
due to the semi-structured and heterogeneous nature of XML.

Our approach provides novel notions and algorithms that are
suitable for the semi-structured and heterogeneous nature of
XML and eliminates spurious results by exploiting the hier-
archical nature of XML.

Extensive research has been done on XML keyword
search. Under the assumption that smaller subtrees are more
relevant to the query, most of the existing methods find the
smallest subtrees containing all the query keywords based
on the concepts of the LCA or its variants. Schmidt et al.
[37] have introduced the notion of the LCA, and Guo et al.
[15] have defined a subset of LCAs and proposed an efficient
ranking method for the subtrees rooted at the nodes in this
set. Xu and Papakonstantinou [46] have studied the proper-
ties of LCAs to accelerate the computation. Hristidis et al.
[19] have focused on computing the whole subtrees rooted
at LCAs. Xu and Papakonstantinou [45] have proposed the
concept of the SLCA and presented algorithms for finding
SLCAs efficiently. Sun et al. [38] have proposed a method
that processes keyword queries involving boolean operators
AND and OR under the SLCA semantics. Li et al. [27] have
proposed the concept of Meaningful LCA (MLCA), a concept
similar to that of SLCA, and incorporated MLCA search in
XQuery. Cohen et al. [11] have attempted to find meaningful
results based on a heuristic called interconnection relation-
ship, and Li et al. [25] have presented an efficient algorithm
for the heuristic.

Liu and Chen [30] have pioneered a novel method for
inferring return nodes for XML keyword search. They have
proposed a system called XSeek, which infers desirable return
nodes by recognizing entities in the XML data. Huang et al.
[21] have addressed the important problem of generating
effective snippets (i.e., summaries) for XML search results.
Liu and Chen [31] have proposed properties to find relevant
nodes that match query keywords in the subtree rooted at
each SLCA. These schemes on generating return nodes are
orthogonal to and can be incorporated into our method as we
see in Sect. 6.

Several research efforts [11,27,47] have been made to
enable users to exploit partial knowledge of the schema in
user queries. The query models used in those methods are
commonly called labeled keyword search [47], which allows
the user to annotate query keywords with labels. For exam-
ple, in labeled keyword search, “XML Levy" is expressed as
“title:XML author:Levy". Using this partial schema information,
labeled keyword search can retrieve more meaningful results
than simple keyword search that specifies only keywords.
The search quality of labeled keyword search relies on the
correctness of the labels in a given query [27]. However, a
casual user is unlikely to have perfect knowledge of those
labels [27]. Our method does not have this problem since it
uses the simple keyword search model.

Yu and Jagadish [47] have proposed novel schema-
based matching methods for labeled keyword search and
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Meaningful Summary Query (schema-aware query). They
contrast with our framework that supports schema-free key-
word search. They use the schema of XML data to define the
matching semantics. In contrast, our method uses the schema
to efficiently resolve structural anomaly instead.

Most recently, Bao et al. [6] have proposed a probabilis-
tic framework for inferring user’s intention and ranking the
query results. They compute the confidence level of each can-
didate node type, which is defined as a label path, using the
statistics of the underlying XML data and use it to infer the
user’s intention. The method of Bao et al. processes queries
at the instance level and additionally uses the schema to
improve search quality. In contrast, our method, being pri-
marily at the schema level, improves not only search quality
using the schema but also search performance by processing
queries at the schema level.

Besides, there has been extensive work done by W3C
to define a full-text extension of XQuery [40], which
has today many implementations such as GalaTex [13].
Amer-Yahia et al. [2] have presented efficient evaluation
algorithms for full-text XQuery queries, and Pradhan [35] has
demonstrated several optimization techniques. In this paper,
our focus is to effectively and efficiently support “schema-
free” XML keyword search where users only need to specify
keywords as opposed to the full-text extension of XQuery
where users must specify structure information as well as
keywords according to the XQuery grammar.

There has been a lot of work on ranking schemes [1,6,8,
15,17,18,20,26,28,41] for keyword search over XML, RDF,
or relational databases. The ranking schemes and the concept
of structural consistency can complement each other to help
users find relevant results. For example, enforcing structural
consistency could be too restrictive for certain applications,
i.e., some query results eliminated by structural consistency
may be relevant to the query. In this case, we can exploit
structural consistency as one of the ranking criteria that mea-
sures the meaningfulness [47] of the results rather than as a
criterion for removing spurious results as has similarly been
suggested by Yu and Jagadish [47].

6 Experimental evaluation

6.1 Experimental setup

The goal of the experiments is to verify the advantage of
our method in terms of search quality and search perfor-
mance. As for search quality, we compare our method with
SLCA [45] and MLCA [27] as they are the state-of-the-art
methods; we exclude XSEarch [11] from the comparison
since Li et al. [27] have shown that MLCA is generally
superior to XSEarch. As for search performance, we
compare our method with SLCA, excluding MLCA from the

comparison, since Xu and Papakonstantinou [45] have shown
that the SLCA searching algorithm generally shows superior
performance over the MLCA searching algorithm. In addi-
tion, we compare the index creation time and index size of our
method with those of the SLCA method to show that an extra
schema index for efficient structural consistency checking
incurs negligible overhead to overall system performance.
We use precision and recall as the measure for search qual-
ity. Following the common practice [11,25,27], we define the
desired results of a keyword query as those returned by struc-
tured queries (XPath queries) corresponding to the keyword
query, which are formulated by the users who participated in
the experiments. We use the wall clock time as the measure
for search performance and index creation, and the number
of pages allocated for the index size.

Independent of the query processing method, we need to
specify which output (i.e., return nodes) generation strate-
gies [30] to use: Subtree Return, Path Return, Subtree-Entity
Return, and Path-Entity Return. Subtree Return outputs the
whole subtree rooted at each query result. Path Return out-
puts the paths from the root of each query result to the query
keywords. Subtree-Entity Return and Path-Entity Return first
find the lowest entity ancestor-or-self node of each query
result, and then, output the subtree rooted at the node and
the paths from the node to the query keywords, respectively.
In the same way as was done by Liu and Chen [30], if a
node with label l1 has a one-to-many relationship with nodes
with label l2, we consider the nodes with label l2 as entities.
According to Liu and Chen [30], Path Return usually has
higher precision but lower recall than Subtree Return since it
returns only paths. The strategies with entities generally have
higher precision and recall than the ones without entities.

We present experimental results using the output strate-
gies with entities since these strategies show superior search
quality over those without. We note that this superiority
has also been verified in all the experiments we performed.
Thus, we omit experimental results for the output strategies
without entities. For complete experimental results including
other output strategies, please refer to our technical report
[23]. Hereafter, “SC” denotes our method; “S-E” a method
with Subtree-Entity Return; “P-E” a method with Path-Entity
Return; and “-U” denotes a method with relevance feedback.
For example, SC-S-E-U denotes our method with Subtree-
Entity Return and with relevance feedback.

We have performed experiments using three real data sets
and one synthetic data set. The first one is the DBLP data set
[33]. We use the same schema used in the experiments by
Xu and Papakonstantinou [45], that groups the DBLP data
set first by journal/conference names, and then, by years. The
second one is the SIGMOD Record data set [33]. The third
one is the NASA data set [33], which consists of astronomi-
cal data. It has a complex and recursive schema and allows a
wider variety of queries than the DBLP and SIGMOD Record
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data sets. The fourth and synthetic one is the XMark bench-
mark data set available at the XMark web site [44]. These
data sets have been extensively used in the existing work
on XML keyword search [11,15,19,25,27,30,37,38,45,47].
Table 2 shows statistics of these data sets. We see that the
size of the schema is significantly smaller than that of the
XML data.

6.1.1 Experiment 1

To compare search performance and analyze the relationship
between search performance and precision/recall in a con-
trolled setting, we have generated the queries in Table 3 for
the DBLP, NASA, and XMark data sets.9 To show the cases
where our method has low precision or recall, which are sel-
dom, we add the following queries: Q D6, Q D7, Q X6, Q X7,
QN4 ∼ QN7. We also include Q D8, Q X8, QN8 to test the
case where users specify very long queries containing 9–13
keywords. We run each query in Table 3 ten times and mea-
sure precision, recall, and the average wall clock time. Since
how the underlying XML data are stored highly affects the
query result construction time, which is not our focus, we
only access the root node r of each query result and report
the number of the descendant nodes of r for the Subtree-
Entity Return when measuring the wall clock time of query
performance.

6.1.2 Experiment 2

To compare search performance for a real set of user queries,
we have obtained 200 queries10 for each of the real data sets
(a total of 600 queries)—the DBLP, SIGMOD Record, and
NASA data sets—from ten graduate students majoring in
databases (but not involved in this project) for this purpose.
We measure the wall clock time for all the queries.

6.1.3 Experiment 3

To show the superiority of the query evaluation algorithm
presented in Sect. 4.2.2, we compare search performance of
our method that uses the algorithm and the one that uses
XIR [34], which does not process multiple XPath queries
simultaneously. We measure the wall clock time for the 600
queries used in Experiment 2.

9 For the XMark data set, the XMark benchmark queries are not used
since the queries are expressed in XQuery and has complex semantics
such as path expressions, join, aggregation, grouping, and ordering.
Since keyword queries have inherently limited expressive power, it is
not feasible to rewrite all the benchmark queries into keyword queries.
For some queries that do not have complex semantics and can easily be
converted into keyword queries, e.g., Q X4 and Q X7, we exploit them.
10 For the list of queries, please refer to http://dblab.kaist.ac.kr/~drlee/
sc.html.

6.1.4 Experiment 4

To compare search quality for real sets of user queries, we
measure precision and recall for the 600 queries used in
Experiment 2.

6.1.5 Experiment 5

To compare the index creation time11 and index size, we mea-
sure the wall clock time and the number of pages allocated.

6.1.6 Experiment 6

To test the scalability of our method, we generate XMark data
sets by varying the size from 1 to 4 GB and from 100 MB to
10 GB. We measure the wall clock time for queries Q X2,
Q X3, Q X4, and Q X8.

All the experiments are conducted on SUN Ultra 60 work-
station with UltraSPARC-II 450MHz CPU and 512 MB of
main memory. We implement all the methods on ODYSS-
EUS ORDBMS [43], which supports the inverted index. The
page size for data and indexes is set to be 4,096 bytes. We
use the Indexed Lookup Eager algorithm [45] as the SLCA
searching algorithm since it generally shows superior per-
formance over other algorithms. Finally, all the methods are
implemented using C++.

6.2 Experimental results

6.2.1 Experiment 1

Figure 23 shows the precision, recall, and wall clock time
for the queries Q D1 ∼ Q D8 in Table 3 over the DBLP data
set. SC-S-E (SC-P-E) improves the query performance by up
to 2.4 times (2.5 times) over SLCA-S-E (SLCA-P-E). The
reason for the improvement is that our method eliminates
spurious results early by enforcing structural consistency at
the schema-level. We note that the recall values of our method
and SLCA are the same. The improvement becomes more
marked when the precision of SLCA is low, i.e., when the
number of spurious results is high. For example, in Fig. 23a,
the precision of SLCA for Q D4 is lower than that for Q D3,
and thus, in Fig. 23c, the query processing time for Q D4

is higher than that for Q D3, while those of our method are
hardly changed. However, if the precision of SLCA is high,
i.e., when there are few spurious results, for a specific query,
our method could be marginally slower than SLCA due to
the overhead of XPath query evaluation and iterative kth-
ancestor generalization. For example, in Fig. 23c, our method
is about 10% slower than SLCA for Q D1 and Q D5.

11 In the index creation time, the time for XML document parsing,
keyword extraction, and data loading is excluded.
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Table 2 Data statistics

Data set Size (MB) No. of instance nodes No. of distinct No. of schema nodes Average
(excl. value nodes) keywords (excl. keywords) depth

SIGMOD Record 0.5 15,263 5,652 12 5

DBLP 127 3,736,406 572,062 145 3

NASA 23 530,528 48,430 110 6

XMark 111 2,048,193 127,905 548 5

Table 3 Query sets

ID Query

DBLP data set

Q D1 “flexibility”

Q D2 “scheduling management”

Q D3 “quality analysis data”

Q D4 “rule programming object system”

Q D5 “Levy J Jagadish H”

Q D6 “flexibility message scheme”

Q D7 “ICDE XML Jagadish”

Q D8 “distributed data base systems performance analysis

Michael Stonebraker John Woodfill”

NASA data set

QN1 “astroObjects”

QN2 “Michael magnitude”

QN3 “photometry galactic cluster Astron”

QN4 “pleiades dataset”

QN5 “PAZh components”

QN6 “pleiades journal”

QN7 “textFile name”

QN8 “accurate positions of 502 stars Eichhorn Googe

Murphy Lukac”

XMark data set

Q X1 “Zurich”

Q X2 “Arizona Mehrdad edu”

Q X3 “Takano sun com mailto”

Q X4 “homepage name”

Q X5 “Helena 96”

Q X6 “mehrdad takano net”

Q X7 “person id person0 name”

Q X8 “harpreet mahony nodak edu 99 lazaro st el svalbard

and jan mayen island”

In Fig. 23a, our method shows low precision for Q D6

and Q D7. For Q D6, there is a conference paper on “flexi-

bility message scheme" in the database, but no journal arti-
cle. In this case, our method finds spurious journal nodes
through generalization, resulting in low precision. For Q D7,
the user wants to find “ICDE" papers about “XML" authored

by “Jagadish", but our method and SLCA return the whole
subtree rooted at “ICDE" conference node (or the paths from
the conference node to the query keywords), resulting in the
same low precision. Even for such queries, the precision of
our method is higher than or equal to that of SLCA since
our method is able to eliminate more spurious results than
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Fig. 23 Precision (a), recall (b), and wall clock time (c) of queries in Table 3 for the DBLP data set
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Fig. 24 Precision (a), recall (b), and wall clock time (c) of queries in Table 3 for the NASA data set

SLCA. For example, for Q D6, our method does not find spu-
rious

conf nodes since there is a paper on “flexibility message

scheme", but SLCA does.
The reason why the SLCA method often has very low pre-

cision is that it often finds more spurious SLCA nodes than
correct ones. For example, there are only five publications of
“Levy" on “XML" in the DBLP data set, but the SLCA method
finds 50 SLCAs for the query “XML Levy", 45 of which are spu-
rious conf nodes. Furthermore, conf nodes typically include
huge subtrees having thousands of nodes. Thus, the number
of retrieved nodes that are spurious becomes very large lead-
ing to very low precision. The Subtree-Entity Return (S-E)
has even lower precision because this strategy returns the
whole subtree rooted at each query result, and the number of
all nodes in the subtree is counted as the number of retrieved
nodes.

Figure 24 shows the precision, recall, and wall clock time
for the NASA data set, having a tendency similar to that of
the DBLP data set except QN4 and QN5.

For QN4, the recall value of our method, SC-S-E and SC-
P-E, is almost 0 (both 1.3×10−4 since they find the same para

nodes). This is because the user’s intention is to find more
general results, which we regard as spurious results, i.e., for
QN4 (“pleiades dataset"), the user’s intention is to find the
subtrees rooted at dataset nodes that contain the keyword
“pleiades". However, our method finds only the para nodes
(i.e., paragraphs) that are contained in the subtrees rooted at
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Fig. 25 Precision (a) and recall (b) of QN4 with relevance feedback
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Fig. 26 Precision (a) and recall (b) of QN5 with relevance feedback

the dataset nodes. In contrast, the SLCA method finds (1) the
para nodes and (2) the dataset nodes that do not have para

nodes containing the keywords “pleiades" and “dataset" (we
note that the recall value of SLCA-S-E for QN4 looks per-
fect in Fig. 24b, but it is not 1.0 since the SLCA method also
finds the para nodes as our method does). We can solve this
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Fig. 27 Precision (a), recall (b), and wall clock time (c) of queries in Table 3 for the XMark data set

low-recall problem using relevance feedback. The result is
shown in Fig. 25. Using relevance feedback, we can general-
ize the para nodes to the dataset nodes and obtain the desired
results. With feedback, our method SC-S-E-U (or SC-P-E-
U) and the SLCA method SLCA-S-E-U (or SLCA-P-E-U)
show the same recall values. For all the methods, the preci-
sion values are the same (1.0).

For QN5 (“PAZh components"), the precision and recall
values of our method are both 0 constituting the worst case
of our method. Here, the user’s intention is to find the sub-
trees rooted at the dataset nodes that (1) have altname nodes
whose value is “PAZh" and (2) contain the keyword “compo-

nents". However, our method finds holding nodes only since
there are holding nodes that contain the keywords “PAZh" and
“components". In contrast, the SLCA method finds (1) the
holding nodes and (2) the desired dataset nodes. We can also
solve this problem by generalizing the holding nodes to the
dataset nodes. The result is shown in Fig. 26. In Fig. 26a, the
precision values of our method with feedback SC-S-E-U (or
SC-P-E-U) are worse than those of the SLCA method without
feedback SLCA-S-E (or SLCA-P-E) because we find spuri-
ous results during generalization while the SLCA method
without feedback does not as explained in Example 14 of
Sect. 3.412. However, SC-S-E-U (or SC-P-E-U) shows the
same precision values with those of SLCA-S-E-U (or SLCA-
P-E-U) since the SLCA method with feedback also finds
the same spurious results during generalization. With feed-
back, our method and the SLCA method show the same recall
values.

Figure 27 shows the precision, recall, and wall clock time
for the XMark data set, showing a similar tendency to those
of the DBLP and NASA data sets. Similar to QN5 in the
NASA dataset, Q X5 constitutes the worst case of our method.
Figure 28 shows the results of Q X5 with relevance feedback.
With feedback, our method and the SLCA method show the
same precision and recall values.

12 In Example 14, conf_year nodes correspond to dataset nodes; chair
to altname; “Levy" to “PAZh"; “XML" to “components"; paper to
holding.

SC-S-E SLCA-S-E SC-S-E-U SLCA-S-E-U
SC-P-E SLCA-P-E SC-P-E-U SLCA-P-E-U

0.2

1

0

0.4
0.6
0.8

10-2

1

10-1

10-3

(a) (b) 
S-E P-E S-E P-E

Fig. 28 Precision and recall of Q X5 with relevance feedback

6.2.2 Experiment 2

Figure 29 shows the search performance results for a real
set of user queries. The Y -axis represents the fraction of
queries for which our algorithm has a given range of per-
formance improvement over the SLCA algorithm. The per-
formance improvement is defined as the wall clock time
TSLCA-S-E of SLCA over the wall clock time TSC-S-E of SC
and denoted as x . For the NASA data set in Fig. 29c, SC-S-E
(SC-S-E-U) outperforms SLCA-S-E by more than 10% for
69% (66%) of queries. In contrast, SLCA-S-E outperforms
SC-S-E (SC-S-E-U) for only 10% (12%) of queries. Fig-
ure 29a, b shows a tendency similar to that of the NASA data
set. We omit the results for the Path-Entity Return (P-E) since
they show a tendency similar to those of the Subtree-Entity
Return (S-E).

6.2.3 Experiment 3

Our method that uses the algorithm presented in Sect. 4.2.2
outperforms the one that uses XIR [34] by 1.8–5.2 times
since the algorithm simultaneously evaluates multiple XPath
queries while XIR evaluates one query at a time.

6.2.4 Experiment 4

Figures 30 and 31 show the precision (denoted as p) and
the recall (denoted as r ) of 200 queries over the DBLP data
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Fig. 29 The search
performance results of 600
queries for the DBLP (a),
SIGMOD Record (b), and
NASA (c) data sets. The Y -axis
represents the fraction of queries
for which our algorithm has a
given range of performance
improvement over the SLCA
algorithm

(a) (b)

(c)

set and the SIGMOD Record data set, respectively. The Y -
axis of the figures represents the fractions of queries having
given precision/recall ranges. MLCA and SLCA often find
more spurious nodes than correct ones. For example, for the
query “activity recognition", they find 130 results, 122 of which
are spurious conf or journal nodes. Thus, for the DBLP data
set, the precision of SLCA and MLCA is less than 0.5 for
46–87% of queries! For the SIGMOD Record data set, their
precision is less than 0.5 for 23–59% of queries. In con-
trast, the precision of our method is 1.0 for all queries since
it eliminates all the spurious results by enforcing structural
consistency. We note that the recall values of our method,
MLCA, and SLCA are the same. These results are similar to
those of Experiment 1.

In Fig. 31b, SC-S-E, MLCA-S-E, and SLCA-S-E show
low recall for about 16% of queries. In this case, the users
want the articles of an author, e.g., “Jennifer Widom", but all
methods return the author in the articles since the author is
the lowest entity containing all the query keywords. With
feedback, our method SC-S-E-U (or SC-P-E-U) and existing
methods MLCA-S-E-U and SLCA-S-E-U (or MLCA-P-E-U
and SLCA-P-E-U) show the same higher recall values as in
Fig. 31b. The precision values of our method are still higher
than or equal to those of existing methods as in Fig. 31a.
The average number of relevance feedbacks provided by the

users for the 200 queries on the SIGMOD Record data set is
0.36/query.

Figure 32 shows the precision and the recall of 200
queries over the NASA data set. The precision of SLCA
and MLCA is less than 0.5 for 35–56% of queries. In
contrast, the precision of our method is less than 0.5 for
only 9–10% of queries. Here, our method shows low pre-
cision for some queries due to the complex schema of the
NASA data set. For example, for the query “radio journal",
the user wants to find journal articles on “radio". Our method
finds not only correct results but also spurious results such
as revision nodes, as SLCA and MLCA do, since there
are revision nodes that contain the keywords “radio" and
“journal".

In Fig. 32b, for about 9% of queries, the recall values of
our method without feedback are lower than those of SLCA
and MLCA due to the same reason as in Example 14 of
Sect. 3.4. With feedback, our method SC-S-E-U (or SC-P-
E-U) and existing methods MLCA-S-E-U and SLCA-S-E-U
(or MLCA-P-E-U and SLCA-P-E-U) show the same recall
values as in Fig. 32b. The precision values of our method
are still higher than or equal to those of existing methods
as in Fig. 32a. The average number of relevance feedbacks
provided by the users for the 200 queries on the NASA data
set is 0.30/query.
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(a)

(b)

Fig. 30 Precision (a) and recall (b) of 200 queries for the DBLP data
set. The Y -axis represents the fraction of queries having a given preci-
sion/recall range

6.2.5 Experiment 5

Figure 33 shows the index creation time and the index
size. All methods use an inverted index for XML data and
the Dewey index [30] to find the lowest entity ancestor
of each query result. SC-S-E and SC-P-E additionally use
the schema index for efficient structural consistency check-
ing. Thus, the index creation time of SC-S-E and SC-P-E
is about 5–7% longer, and the index size is about 5–7%
larger than those of SLCA-S-E and SLCA-P-E. This veri-
fies that an extra schema index incurs negligible overhead
to overall system performance. We note that the index is
bigger than the original data due to the space required for
storing id paths from the root to each node. SLCA-based
methods have similar space overhead since they also use
id paths, i.e., Dewey numbers. We could reduce the space
by exploiting the UTF-8 encoding as an efficient way to
represent id paths, which was proposed by Tatarinov et al.
[39].

6.2.6 Experiment 6

Figures 34 and 35 show the processing time of queries Q X2,
Q X3, Q X4, and Q X8 as the data set size is varied from
1 to 4 GB and from 100 MB to 10 GB. As we can see,
the processing time of all methods increases approximately

Fig. 31 Precision (a) and recall
(b) of 200 queries for the
SIGMOD Record data set. The
Y -axis represents the fraction of
queries having a given
precision/recall range

(a)

(b)
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Fig. 32 Precision (a) and recall
(b) of 200 queries for the NASA
data set. The Y -axis represents
the fraction of queries having a
given precision/recall range

(a)

(b)

linearly when the data set size increases and that our methods
are largely superior or comparable to SLCA-based methods.

7 Conclusions

We have proposed a new notion of structural consistency (and
structural anomaly) in XML keyword search. By exploiting
structural consistency, we can eliminate spurious results hav-
ing the same result structure consistently. We have introduced
the concept of the result structure in Definition 3 and the
smallest result structure in Definition 6. We have formally
defined the structural anomaly in Definition 5 as a phenom-
enon where there exist result structures that structurally con-
tain other result structures. We have defined the structural
consistency as a property where there is no structural anom-
aly in the query results.

We have proposed a naive algorithm that resolves struc-
tural anomaly at the instance level. We have then proposed
an advanced algorithm that resolves structural anomaly at
the schema level. To this end, we have formally analyzed
the relationship between the set of schema-level SLCAs and
the set of instance-level SLCAs in Lemmas 2–3, identified
the discrepancies between them, and proposed the notion
of iterative kth-ancestor generalization to resolve the anom-
alies (false dismissal and phantom schema structures) that
are caused by these discrepancies. We have formally proved

(b) (a)

Fig. 33 Index creation time (a) and index size (b) for the DBLP and
XMark data sets

that the proposed algorithms produce the same set of results
preserving structural consistency in Theorem 1. We have pro-
posed a solution using relevance feedback for the problem
where our method has low recall; this problem occurs when
it is not the user’s intention to find more specific results.
We have provided an efficient algorithm that simultaneously
evaluates multiple XPath queries generated by our method.
We have implemented our method in a full-fledged object-
relational DBMS.

We have performed extensive experiments using real
and synthetic data sets. Experimental results show that our
method improves precision significantly compared with the
existing methods while providing comparable recall for most
queries. Experimental results also show that our method
improves the query performance over the existing methods
significantly by removing spurious results early.
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(b) (a) (c) (d) 

Fig. 34 Query processing time with increasing data set size from 1 to 4 GB in a linear scale. a Q X2, b Q X3, c Q X4, d Q X8

(b) (a) (c) (d) 

Fig. 35 Query processing time with increasing data set size from 100 MB to 10 GB in a logarithmic scale
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8 Appendix

8.1 A. Proof of Lemma 2

Let {w1, w2, . . . , wn} be the set of query keywords of Q, and
l1, l2, . . . , lm be the incoming label path of srsi . We need to
show that there always exists a schema-level SLCA s such
that l1, l2, . . . , lm is a prefix of the label path of s. Since srsi

is a smallest result structure of instance-level SLCAs, there
exists an instance node v such that l1, l2, . . . , lm is the label
path of v, and w1, w2, . . . , wn are descendants of v. It follows
that there exists a schema node sa such that l1, l2, . . . , lm
is the label path of sa and w1, w2, . . . , wn are descendants
of sa (i.e., srsi ≡ ss(sa)) since the DataGuide+ has every
unique label path of instance nodes. Thus, by the definition

of schema-level SLCA, there exists a schema-level SLCA s
such that ss(sa) � ss(s). �

8.2 B. Proof of Lemma 3

Let I L P(srsi ) be the incoming label path of srsi , and
I L P(ss j ) be the incoming label path of ss j . Since srsi ≺
ss j I L P(srsi ) is a proper prefix of I L P(ss j ). This implies
that there must exist a kth-ancestor sa(1 ≤ k ≤ depth(s))
of the schema-level SLCA s whose label path is the same as
I L P(srsi ). Here, ss(sa) ≡ srsi since the label path of sa is
the same as I L P(srsi ). �
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