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ABSTRACTIn video-on-demand (VOD) systems, as the size of the bu�erallo
ated to user requests in
reases, initial laten
y and mem-ory requirements in
rease. Hen
e, the bu�er size must beminimized. The existing stati
 bu�er allo
ation s
heme,however, determines the bu�er size based on the assumptionthat the system is in the fully loaded state. Thus, when thesystem is in a partially loaded state, the s
heme allo
ates abu�er larger than ne
essary to a user request. This paperproposes a dynami
 bu�er allo
ation s
heme that allo
atesto user requests bu�ers of the minimum size in a partiallyloaded state as well as in the fully loaded state. The inherentdiÆ
ulty in determining the bu�er size in the dynami
 bu�erallo
ation s
heme is that the size of the bu�er 
urrently be-ing allo
ated is dependent on the number of and the sizesof the bu�ers to be allo
ated in the next servi
e period.We solve this problem by the predi
t-and-enfor
e strategy,where we predi
t the number and the sizes of future bu�ersbased on inertia assumptions and enfor
e these assumptionsat runtime. Any violation of these assumptions is resolvedby deferring servi
e to the violating new user request untilthe assumptions are satis�ed. Sin
e the size of the 
urrentbu�er is dependent on the sizes of the future bu�ers, thesize is represented by a re
urren
e equation. We providea solution to this equation, whi
h 
an be 
omputed at thesystem initialization time for runtime eÆ
ien
y. We haveperformed extensive analysis and simulation. The resultsshow that the dynami
 bu�er allo
ation s
heme redu
es ini-tial laten
y (averaged over the number of user requests inservi
e from one to the maximum 
apa
ity) to 129:4 � 111:0of that for the stati
 one and, by redu
ing the memory re-quirement, in
reases the number of 
on
urrent user requeststo 2.36 � 3.25 times that of the stati
 one when averagedover the amount of system memory available. These resultsdemonstrate that the dynami
 bu�er allo
ation s
heme sig-ni�
antly improves the performan
e and 
apa
ity of VODsystems.
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1. INTRODUCTIONRe
ent advan
es in 
ommuni
ation and video data te
hnolo-gies su
h as 
ompression and digitalization have enabledthe transmission of even large amounts of video data overnetworks. These te
hnologies are widely used for appli
a-tions su
h as video-on-demand (VOD), on-line tutorials, andvideo games.VOD systems provide video data to users upon user re-quests. There are two important 
hara
teristi
s of videodata. First, the amount of video data is voluminous. Se
-ond, video data must be 
ontinuously provided to the user.The former requires that VOD systems use bu�ers for man-aging data by blo
k units be
ause systems 
annot store theentire video data in memory. The latter mandates bu�ermanagement of VOD systems to retrieve new data blo
ksinto the bu�er before a user request uses up the data in thebu�er.In bu�er management of VOD systems, it is importantto minimize memory requirements and initial laten
y [3℄.Initial laten
y is the duration between the arrival of a userrequest and the arrival of the requested video data in theserver's main memory. By minimizing main memory re-quirements, the system 
an support a larger number of 
on-
urrent user requests with the same amount of memory.By minimizing initial laten
y, the system 
an provide VCRfun
tions with shorter response time, and thus, 
an improvethe quality of servi
e. We note that VCR fun
tions like fastforward and fast rewind are 
onsidered new user requests inmost VOD systems [2, 3, 7, 8℄.Several bu�er s
heduling methods for VOD systems havebeen proposed that minimize memory requirements and ini-tial laten
y [3, 4, 7, 9, 17℄. The bu�er s
heduling methoddetermines the order of �lling data bu�ers allo
ated to userrequests. These methods use stati
 bu�er allo
ation to al-lo
ate bu�ers to user requests. The stati
 bu�er allo
ations
heme determines the minimum bu�er size based on theassumption that the system is in the fully loaded state, i.e.,the system servi
es the maximum number of user requeststhat 
an be supported. The system 
onsistently allo
atesthis bu�er size to all user requests regardless of the system'sload. VOD systems must allo
ate larger bu�ers to user re-quests as the number of user requests in servi
e in
reases.Thus, the stati
 bu�er allo
ation s
heme has a disadvantagein that it uses memory ineÆ
iently by allo
ating a largerbu�er than ne
essary when the system is not in the fullyloaded state. Hen
e, the stati
 s
heme in
reases memoryrequirements and initial laten
y of systems [3, 4, 6℄.



To and Hamidzadeh [14℄ re
ently proposed a s
heme forimproving eÆ
ien
y in memory usage of the stati
 bu�erallo
ation s
heme. This s
heme allo
ates unused memoryto user requests in servi
e when the system is in a partiallyloaded state, thus utilizing all the systemmemory. Sin
e thiss
heme allo
ates more memory to user requests in servi
e,however, the time for the next servi
e 
an be delayed. Due tothe extended servi
e time, the s
heme 
an servi
e a new userrequest sooner. A

ordingly, this s
heme 
an de
rease initiallaten
y for newly arriving requests [14℄. Sin
e the s
heme
omputes the initial bu�er size based on the stati
 bu�erallo
ation s
heme, however, it also has the disadvantage ofallo
ating an unne
essarily large bu�er as in the stati
 bu�erallo
ation s
heme.This paper proposes a dynami
 bu�er allo
ation s
hemethat dynami
ally allo
ates the minimum bu�er size in a par-tially loaded state as well as in the fully loaded state. Theinherent diÆ
ulty in allo
ating the bu�er in the dynami
bu�er allo
ation s
heme is that the size of the bu�er 
ur-rently being allo
ated is dependent on the number of andthe sizes of the bu�ers to be allo
ated in the future, whi
hare yet to be determined. We provide a solution to this prob-lem using the predi
t-and-enfor
e strategy to be des
ribed inSe
tion 3. Further, due to the dependen
y on the future, thebu�er size is determined by a re
urren
e equation. We alsoprovide a solution to this equation in Se
tion 3.The advantages of this s
heme are as follows. First, thiss
heme removes the stati
 bu�er allo
ation s
heme's prob-lem of allo
ating unne
essarily large bu�ers in a partiallyloaded state. Se
ond, by allo
ating the minimum bu�ersize, our s
heme signi�
antly improves the average initiallaten
y and the average number of 
on
urrent user requeststhat 
an be supported. Third, this s
heme is independentof bu�er s
heduling methods and is appli
able to all ex-isting bu�er s
heduling methods. To validate our s
heme,we demonstrate that our dynami
 s
heme 
an be used withrepresentative bu�er s
heduling methods: the Round-Robinmethod [3, 4, 5℄, the Sweep method [3, 4, 5℄, and the GSSmethod [17℄.The remainder of this paper is organized as follows: Se
-tion 2 presents related work on the VOD system model. Se
-tion 3 presents the dynami
 bu�er allo
ation s
heme pro-posed in this paper. Se
tion 4 evaluates the dynami
 bu�erallo
ation s
heme through extensive simulation and analy-sis. The results are 
ompared with those of the stati
 s
hemein terms of initial laten
y and the number of 
on
urrent userrequests that 
an be supported. Finally, Se
tion 5 
on
ludesthe paper.
2. RELATED WORKThis se
tion 
overs the model of VOD systems, existingbu�er s
heduling methods used in bu�er management, andthe stati
 bu�er allo
ation s
heme.
2.1 The Model of Video-on-Demand SystemsThe basi
 ar
hite
ture of VOD systems, shown in Figure 1,
onsists of disks storing video data, a bu�er allo
ated to ea
huser request, and a server that retrieves video data from thedisks to the bu�er. We de�ne a servi
e as the work that theserver retrieves video data from the disk and �lls ea
h bu�erwith the data. We also de�ne the servi
e period as the timeinterval it takes for the server to �ll all the bu�ers in servi
eone time with video data. We de�ne the 
onsumption rate

as the rate at whi
h ea
h user request 
onsumes video data,and disk laten
y as the sum of disk seek time and rotationaldelay [5℄.
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Figure 1: The basi
 ar
hite
ture of video-on-demandsystems.The server of a VOD system allo
ates one bu�er to ea
huser request that arrives at the system. The server 
ontin-uously provides users with video data by periodi
ally �llingthe bu�ers allo
ated to user requests. The bu�er s
hedulingmethod determines the order in whi
h the server �lls thebu�ers with data. In this paper we use three representativebu�er s
heduling methods. The Round-Robin method ser-vi
es ea
h bu�er periodi
ally in the order of allo
ation [3,4, 5℄. The Sweep method servi
es bu�ers in the order ofthe data's position in a disk in order to minimize the diskseek time [3, 4, 5℄. The GSS method �rst 
onstru
ts severalgroups of bu�ers. Then, the GSS method servi
es bu�erswithin ea
h group with the Sweep method, while servi
ingea
h group with the Round-Robin method [17℄.To redu
e the system's memory requirements, bu�ers al-lo
ated to ea
h user request share memory. That is, userrequests release memory for bu�ers right after they use thedata in bu�ers (i.e., using the use-it and toss-it poli
y). Theserver allo
ates the released memory to the bu�ers of otheruser requests [4, 11℄. Memory is allo
ated and released bythe page unit. A

ordingly, no memory fragmentation 
ano

ur be
ause of memory sharing. In this paper, however,we assume that memory is allo
ated and released by thevariable length unit but not by the page unit [4℄. Generally,sin
e the utilization of the last memory page is below 100%,the result under this assumption is di�erent from the a
tualresult. Sin
e the memory page is mu
h smaller than thebu�er size, however, the di�eren
e between the results fromthis assumption is negligible [4℄.For the sake of simpli
ity, we assume that the video data's
onsumption rate of all user requests is equal1[4℄. To re-du
e disk laten
y, we assume that video data is 
ontiguouslystored in disks2[3, 14℄. Thus, only one disk laten
y o

urswhen the server servi
es one bu�er.1As argued by Chang and Gar
ia-Molina[4℄, the s
heme we dis-
uss in this paper 
an be adapted to work with variable displayrates using two methods. The �rst is to use the maximal rate.The se
ond is to use the greatest 
ommon divisor of the displayrates as the unit display rate and to treat ea
h display rate as amultiple of the unit one.2To satisfy this assumption, Chang and Gar
ia-Molina [3℄ haveproposed a data stru
ture 
alled 
hunk. A 
hunk 
onsists of phys-i
ally 
ontiguous several pages and is at least twi
e larger than themaximum bu�er size. Generally, sin
e whole video data 
annotbe 
ontinuously stored in disks, it is stored by the blo
k unit. Inthis 
ase, if the bu�er size is variable, the data for one bu�er 
anspan to the next adja
ent blo
k. To solve this problem, Changand Gar
ia-Molina have devised a me
hanism that stores data in
hunks using repli
ation so that the server 
an always retrieve thedata for one bu�er from only one 
hunk.



Table 1 shows the variables used in this paper. The max-imum number N of 
on
urrent user requests that 
an besupported is determined by the video data's 
onsumptionrate CR and the disk data transfer rate TR. In order fora disk to servi
e N user requests under the requirements ofthe time-wise 
ontinuity, TR must be greater than or equalto N�CR { the 
onsumption rate of N user requests. In the
ase TR = N � CR, however, a disk 
annot guarantee thetime-wise 
ontinuity be
ause disk laten
y o

urs wheneverthe disk servi
es a user request. Thus, TR must be greaterthan N � CR and satisfy Equation (1). N is the largestinteger satisfying Equation (1) be
ause N is the maximumvalue. N < TRCR (1)Table 1: The variables used in this paper.Variable Des
riptionTR disk data transfer rate (bits/se
)CR video data's 
onsumption rate (bits/se
)DL disk laten
yDLRR disk laten
y in Round-Robin methodDLSweep disk laten
y in Sweep methodDLGSS disk laten
y in GSS methodT servi
e periodBS bu�er sizeBSRR bu�er size in Round-Robin methodBSSweep bu�er size in Sweep methodBSGSS bu�er size in GSS methodN maximum number of 
on
urrent user requeststhat 
an be supportedn number of user requests in servi
ek number of additional requests
2.2 Buffer Scheduling MethodsThis se
tion introdu
es existing resear
h on representativebu�er s
heduling methods and their 
hara
teristi
s: initiallaten
y and disk laten
y.A bu�er stores the data that a user request 
onsumesuntil the next servi
e time. Thus, in order to determine thebu�er size, we must 
al
ulate the servi
e period, whi
h is thetime interval until the next servi
e time. To 
al
ulate theservi
e period, it is ne
essary to estimate the disk laten
yo

urring at the servi
e time of ea
h bu�er. If this 
al
ulatedvalue is less than the a
tual value, some bu�ers may be
omeempty be
ause bu�ers smaller than ne
essary are allo
ated.Therefore, VOD Systems determine the bu�er size using theworst disk laten
y. In this se
tion we dis
uss the worst-
asedisk laten
y of ea
h bu�er s
heduling method.
2.2.1 The Round-Robin MethodThe Round-Robin method s
hedules bu�er servi
es in theorder of bu�er allo
ation. Thus, disk laten
y in this methodis the sum of the disk rotational delay and the disk seek timeover the distan
e between the data used by the previouslyservi
ed bu�er and the bu�er 
urrently being servi
ed. Theworst disk laten
y, DLRR, is the sum of the maximum diskrotational delay and the worst disk seek time o

urring whenthe disk arm moves over all the 
ylinders on the disk. Ifwe represent the disk seek time fun
tion for x 
ylinders as
(x), the maximum disk rotational delay as �, and the totalnumber of 
ylinders as Cyln, DLRR is (
(Cyln) + �) [4℄.Sin
e the Round-Robin method does not take advantage ofdata lo
ation on disks, the disk laten
y in this method ismu
h longer, and the bu�er size is mu
h larger than the

Sweep or the GSS method. Thus, the Round-Robin methodrequires more system memory than the Sweep or the GSSmethod.Chang and Gar
ia-Molina [4℄ proved that, in order tomaximize memory sharing among the bu�ers, ea
h bu�er'sservi
e time must be equal. They applied this result tothe Round-Robin method, and proposed a bu�er s
hedul-ing method 
alled the Fixed-Stret
h S
heme. In addition,to redu
e initial laten
y, they proposed a bu�er s
hedulingmethod, 
alled BubbleUp [3℄, based on the Fixed-Stret
hS
heme. While the Fixed-Stret
h S
heme servi
es bu�ersin a �xed order, BubbleUp dynami
ally adjusts the orderto servi
e a newly arriving user request right after the ser-vi
e in exe
ution is 
ompleted. We use BubbleUp for theRound-Robin method when applying to the dynami
 bu�erallo
ation s
heme. Equation (2) shows that the worst initiallaten
y of BubbleUp, ILRR, is the sum of the servi
e timeof bu�ers being servi
ed 
urrently, DLRR + BSRRTR , and thedisk laten
y for the servi
e of the newly arriving request,DLRR. ILRR = 2 �DLRR + BSRRTR (2)
2.2.2 The Sweep MethodThe Sweep method [4, 12, 15℄ attempts to minimize disk seektime. The method �rst sorts bu�ers by the position at whi
hdata used by those bu�ers are lo
ated on the disk, and then,servi
es the bu�ers in the sorted order. Therefore, the disklaten
y in this method is dependent upon the lo
ation of thedata on the disk. Sin
e the seek time is a 
on
ave fun
tion[13℄ on the number of disk's 
ylinders the disk head movesover, the worst disk laten
y in this method o

urs whenthe data used by n bu�ers in servi
e are apart by an equaldistan
e [4℄. Thus, when the server is servi
ing n bu�ers inthis method, the worst disk laten
y is n� (
(Cyln=n) + �)[4℄. For simpli
ity, we de�ne (
(Cyln=n) + �) as the worstdisk laten
y DLSweep for one bu�er3.Chang and Gar
ia-Molina [4℄ proposed a bu�er s
hedulingmethod 
alled Sweep�. This method improves bu�er's mem-ory sharing in 
omparison with the Sweep method when allthe data used by bu�ers are lo
ated adja
ent to ea
h otheron the disk. In the Sweep method, when data are lo
atedadja
ent to ea
h other on a disk, the a
tual disk laten
y isshorter than the estimated laten
y. Thus, the bu�er's ser-vi
e 
an be 
ompleted within a shorter time than expe
ted.In this 
ase, user requests release only a small amount ofmemory due to la
k of time to 
onsume the data in thebu�ers. A

ordingly, the Sweep method has little memoryfor bu�ers to share. On the other hand, the Sweep� methodimproves bu�er's memory sharing by adjusting the time ofinitiating the servi
e of the last bu�er within a servi
e pe-riod and therefore redu
es memory requirements. That is,the Sweep� method servi
es the last bu�er to be servi
ed ina servi
e period as late as possible, enabling the bu�er toreuse the memory released by other bu�ers.3Sin
e disk laten
y is used to 
al
ulate the servi
e period, VODsystems always use the sum of disk laten
ies of all bu�ers be-ing servi
ed within a servi
e period. Thus, although we de�neDLSweep as shown in this paper, the sum of disk laten
ies of allbu�ers being servi
ed within a servi
e period is invariable, andthe result derived in this paper is not a�e
ted. We use this de�ni-tion only to explain several of existing bu�er s
heduling methods
onsistently.



In the Sweep� method, a newly arriving request is notservi
ed within the 
urrent servi
e period. If it is servi
edduring the servi
e of existing bu�ers, the total seek time maynot be minimized. In addition, sin
e the Sweep� method ad-justs the order of bu�er servi
es a

ording to the lo
ation ofdata used by the bu�ers, the newly arriving request 
ouldbe servi
ed last. Consequently, in the worst 
ase, a new re-quest 
ould arrive at the beginning of a servi
e period andbe servi
ed at the end of the next servi
e period. Equa-tion (3) shows that the initial laten
y in this 
ase, ILSweep,is the sum of the time servi
ing all the n bu�ers in the 
ur-rent period, the time servi
ing all the n bu�ers in the nextperiod, and the time servi
ing the bu�er of a newly arriveduser request [3℄.ILSweep = 2 � n � 0�DLSweep + BSSweepTR 1A +DLSweep + BSSweepTR (3)
2.2.3 The GSS MethodThe GSS (Grouped Sweeping S
heduling) method is a hy-brid between the Round-Robin and Sweep methods that re-du
es memory requirements [17℄. The GSS method 
on-stru
ts G groups with n user requests, and then, servi
esn=G(= g) bu�ers in ea
h group using the Sweep methodand servi
es ea
h group using the Round-Robin method.Thus, the GSS method be
omes the Sweep method wheng = n and the Round-Robin method when g = 1. The GSSmethod determines g in su
h a way that the memory re-quirement is minimized [17℄. In this method, as in the Sweepmethod, we 
an derive g�(
(Cyln=g)+�) as the worst disklaten
y that o

urs when servi
ing a group 
onstru
ted withg bu�ers in the GSS method [4℄, and (
(Cyln=g)+ �) as theworst disk laten
y DLGSS for servi
ing one bu�er.In order to improve bu�er's memory sharing in the GSSmethod, Chang and Gar
ia-Molina [4℄ also proposed theGSS� method, whi
h servi
es ea
h group using the Fixed-Stret
h S
heme and servi
es bu�ers in a group using theSweep� method. In addition, to redu
e the initial laten
y ofthe GSS� method, they extended the GSS� method [6℄ byusing BubbleUp [3℄ instead of the Fixed-Stret
h S
heme forservi
ing ea
h group. We apply the extended GSS� methodto the dynami
 bu�er allo
ation s
heme. Equation (4) showsthat the worst initial laten
y, ILGSS, is the sum of the timeservi
ing the 
urrent group and the time servi
ing the nextgroup 
ontaining the newly arriving request [6℄.ILGSS = 2 � g � 0�DLGSS + BSGSSTR 1A (4)As shown in Equation (2), (3), and (4), initial laten
y in-
reases linearly in proportion to the bu�er size BS regard-less of bu�er s
heduling methods used. That is, sin
e DL,TR, and g in ea
h equation are 
onstants, initial laten
yis determined by only the bu�er size. Thus, in
reasing thebu�er size allo
ated to ea
h user request in
reases initial la-ten
y as well as memory requirements. In this paper, wetry to minimize the bu�er size in order to minimize memoryrequirement and initial laten
y.
2.3 The Static Buffer Allocation SchemeThe stati
 bu�er allo
ation s
heme determines the minimumbu�er size in the fully loaded state, and 
onstantly allo
atesit to all user requests regardless of the system's load state.Thus, although this s
heme has the advantage of simplifying

bu�er allo
ation, it has the disadvantage of allo
ating anunne
essarily large bu�er when the system is in a partiallyloaded state.The minimum bu�er size in the fully loaded state in thestati
 bu�er allo
ation s
heme is derived by 
onsidering onlyuser requests in servi
e, without in
luding new user requests.This is be
ause the system 
annot servi
e any new user re-quest in the fully loaded state. The two 
onditions that thebu�er size must satisfy in the fully loaded state are statedas follows:Condition 1 : The bu�er size must be greater than or equalto the amount of data 
onsumed by a user requestduring a servi
e period.Condition 2 : The system must be able to serve all userrequests in servi
e on
e within a servi
e period.Condition 1 is a ne
essary 
ondition in order to guaranteethe time-wise 
ontinuity of video data for user requests. IfCondition 1 is not satis�ed, some bu�ers in servi
e 
ould beempty. If the system allo
ates too large a bu�er, the system
annot servi
e all of bu�ers within a servi
e period. Thisis be
ause the system requires too mu
h time to servi
e thelarge bu�er. Condition 2 prevents this phenomenon. Equa-tion (5) shows the minimum bu�er size BS(n) in the fullyloaded state, satisfying Conditions 1 and 2. It is proved inthe referen
e [4℄.BS(n) = n� CR �DL � TRTR� n� CR (5)
3. THE DYNAMIC BUFFER ALLOCATION

SCHEMEIn this se
tion, we propose a dynami
 bu�er allo
ation s
heme.Se
tion 3.1 explains the basi
 
on
ept of our s
heme; Se
-tion 3.2 des
ribes the bu�er allo
ation algorithm; and Se
-tion 3.3 presents the equations to 
al
ulate the size of thebu�er to be allo
ated.
3.1 The Basic ConceptWe �rst de�ne some terminology. We de�ne additional re-quests at ea
h bu�er allo
ation time as the user requeststhat arrive within a servi
e period from that time. For ex-ample, in Figure 2, additional requests at the bu�er allo
a-tion time t1 are user requests R1 � R3 that arrive withinthe servi
e period T1 from t1; additional requests at t2 areR2 � R4; additional requests at t3 are R4 � R5. The bu�erallo
ation s
heme dynami
ally estimates the number of ad-ditional requests at ea
h bu�er allo
ation time and utilizesthe estimate when determining the bu�er size. We de�nethe number of estimated additional requests as the numberof additional requests estimated by our dynami
 s
heme andthe number of a
tual additional requests as the a
tual num-ber of additional requests that o

ur. In addition, we de�nesu

essful estimation as the 
ase in whi
h the number of es-timated additional requests is greater than or equal to thenumber of a
tual additional requests, and unsu

essful esti-mation as the opposite. We de�ne a usage period of a bu�eras the servi
e period during whi
h the bu�er would be used.For example, in Figure 2, if the bu�er allo
ated at t1 wouldbe used within the servi
e period T1, then the usage periodof this bu�er is T1.
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Figure 2: An example of additional requests.One might be able to devise a simple dynami
 bu�er al-lo
ation s
heme by applying the number of estimated addi-tional requests to the stati
 bu�er allo
ation s
heme. Thissimple s
heme would determine the bu�er size BS(n+k) byapplying the sum (= n+k) of the number n of user requestsin servi
e and the number k of estimated additional requestsat the start time of ea
h servi
e period to Equation (5). Thissimple s
heme would allo
ate this bu�er size to all user re-quests in this servi
e period. That is, this s
heme tries toprevent the bu�ers of user requests in servi
e from be
om-ing empty by pre-estimating the number of possible userrequests that would be servi
ed within a servi
e period andthen by determining the bu�er size based on the estimation.However, this s
heme has an inherent 
aw. The bu�ers ofuser requests in servi
e 
an be
ome empty when the numberof user requests to be servi
ed during the next servi
e pe-riod is greater than the estimation. This problem is demon-strated in Figure 3. In this �gure, at time t1 � t4, thiss
heme allo
ates the bu�ers whose sizes are BS(4), whi
h isdetermined by the number n(= 3) of user requests in servi
eand the number k(= 1) of estimated additional requests atthe start time t1 of the servi
e period T1. Similarly, at timet5 � t6, this s
heme allo
ates the bu�ers whose sizes areBS(5), whi
h is determined by n(= 4) and k(= 1) at thestart time t5 of the servi
e period T2. However, from theviewpoint of T3 whose start time is t2, the bu�er size allo-
ated at t2 is less than the amount of data to be 
onsumedduring T3, and therefore, this bu�er will be
ome empty.That is, at time t2, this s
heme allo
ates the bu�er sizeBS(4), whi
h is assumed to be equal to the amount of datato be 
onsumed by a user request during the servi
e pe-riod. It is assumed that four bu�ers whose sizes are BS(4)are to be servi
ed during the servi
e period. However, theamount of data 
onsumed during the servi
e period T3 be-
omes larger than BS(4) be
ause the bu�er size allo
atedat time t5 is BS(5). This problem o

urs be
ause the bu�ersize allo
ated at time t2 is determined not based on the us-age period T3 of this bu�er, but based on the usage periodT1 of the bu�er allo
ated at time t1.
t1 t2 t3 t4 t5

 R1

BS(4)
n = 3
k = 1

 R2

BS(4)
 R4

BS(4)
 R1

BS(5)
n = 4
k = 1

 R2

BS(5)

New Request R4

T1

T3

time

BS(4), BS(5): buffer sizes
n : the number of user

requests in service
k : the number of estim-

ated additional requests
T1, T2, T3 : service periods
Ri : the i th newly arriving

user request

T2

 R3

BS(4)

t6

New Request R5Figure 3: An example s
enario in the bu�er allo
a-tion s
heme simply extended by applying the num-ber of estimated additional requests to the stati
bu�er allo
ation s
heme.To prevent this 
aw, we must know the usage period ofea
h bu�er and allo
ate the bu�er size required during thisperiod. For example, in Figure 3, the bu�er size allo
atedat time t2 must be determined based on the usage periodT3 of this bu�er. However, the usage period of the bu�er

is not known at the time of allo
ation. It is determined bythe number of user requests to be servi
ed during the usageperiod and by the bu�er size to be allo
ated to these userrequests. These two values are dynami
ally 
hanging, andthus, the usage period 
annot be determined a priori.To remedy this 
aw, we use the predi
t-and-enfor
e strat-egy. We �rst predi
t the maximum number of user requeststo be servi
ed and the maximum number of additional userrequests during the usage period of the bu�er, using two as-sumptions that we des
ribe shortly. We then determine thebu�er size based on these values predi
ted. At runtime, inorder to enfor
e the assumptions, we 
ontrol the a

eptan
eof newly arriving user requests to keep the number of esti-mated user requests within the limit. Any violation of theseassumptions is resolved by deferring servi
e to the violatingnew user request until the assumptions are satis�ed.We use the following two assumptions, whi
h we 
all iner-tia assumptions. In Figure 4, when a bu�er is allo
ated to auser request R
 at time t
, the usage period of the allo
atedbu�er is T
, and the number of user requests in servi
e andthe number of estimated additional user requests at time t
are n
 and k
, respe
tively.Assumption 1 : the number nj of user requests to be ser-vi
ed at an arbitrary time tj within T
 is less than orequal to n
 + k
 (i.e., nj � n
 + k
).Assumption 2 : the number kj of estimated additional re-quests at an arbitrary time tj within T
 is less than orequal to k
+� (i.e., kj � k
+�). Here, � is an integergreater than or equal to one.
t-1 ti

 Ri

n=ni

k=ki

tc

 Rc

n=nc(≤ ni + ki)
k=kc (≤ ki + α)

t1

T1

time

n : the number of user
requests in service

k : the number of estim-
ated additional requests

T1, Tc : service periods
Ri : the i th newly arriving

user request

tj

 Rj

n=nj(≤ nc + kc)
k=kj (≤ kc + α)

Tc

Current

Figure 4: Assumptions used in the dynami
 bu�erallo
ation s
heme.Assumption1 is based on our expe
tation that the numberof user requests to be servi
ed at an arbitrary time within T
is less than or equal to n
+k
, i.e., based on the system's in-ertia. Assumption 2 implies that the number kj of estimatedadditional requests in
reases by at most � during a usage pe-riod limiting 
hanges in the system's inertia. This assump-tion leaves a room for the number of estimated additionalrequests to in
rease by � when the arrival rate in
reasesin the future. If � is large, the system 
an qui
kly adaptto a large in
rease in the arrival rate. If � is large, how-ever, we might allo
ate unne
essarily large bu�ers to userrequests and 
ause the memory requirements to in
rease.Conversely, if � is small, we 
an de
rease the memory re-quirements. However, the systems 
annot adapt qui
kly toa large in
rease in the arrival rate, and the number of a
tualadditional requests 
an be
ome greater than the number ofestimated additional requests for some period of time. If �is small, many additional requests are delayed to the nextservi
e period, and thus, initial laten
y is in
reased. In thispaper, we use one as the value of � in order to redu
e mem-ory requirements. This is be
ause a VOD system has a shortservi
e period, and the arrival rate of user requests rarelyin
reases by a large amount during this time.



The dynami
 bu�er allo
ation s
heme determines the bu�ersize BSk
(n
)4 as the minimum required in the worst 
ase(nj = n
+k
 and kj = k
+�) allowed by Assumptions 1 and2. Consequently, this s
heme assumes that n
 + k
 bu�erswhose sizes are BSk
+�(n
+ k
) are servi
ed within the us-age period T
 of the bu�er to be allo
ated. Here, k
+� rep-resents the number of estimated additional requests. Thus,in a real environment, if nj � n
 + k
 and kj � k
 + �are satis�ed (i.e., Assumptions 1 and 2 are satis�ed), thenthe allo
ated bu�ers do not be
ome empty. On the otherhand, if nj > n
 + k
 or kj > k
 + � (i.e., Assumption 1 or2 is not satis�ed), then the allo
ated bu�ers may be
omeempty. Therefore, in order to prevent the previously allo-
ated bu�ers (i.e., those allo
ated to user requests that are inservi
e) from be
oming empty, the dynami
 bu�er allo
ations
heme 
ontrols the admission of newly arriving requests tosatisfy Assumption1 and adjusts the number of estimatedadditional requests to satisfy Assumption2. For example, inFigure 4, to prevent the bu�er allo
ated to the user requestRi at time ti (for all i, 1 � i � n
) from be
oming empty,the system 
he
ks whether n
 � ni+ki is satis�ed to 
ontrolthe admission of the requests newly arriving at time t
, andthen, determines k
 so that k
 � ki + � is satis�ed.
3.2 The Buffer Allocation AlgorithmFigure 5 shows the bu�er allo
ation algorithm. In this �gure,RequestList is a list that maintains user requests in servi
esorted by the order of servi
ing di
tated by a spe
i�
 bu�ers
heduling method. Q is a queue for newly arriving userrequests. The parameters ni and ki represent the numberof user requests in servi
e and the number of estimated ad-ditional requests, respe
tively. They are used at the bu�erallo
ation time for the ith(1 � i � n) user request Ri inRequestList.We now explain the algorithm. Pro
edure Dynami
 Bu�erAllo
ation 
omputes the bu�er size for ea
h user request.Pro
edure Admission Control 
ontrols the admission of thenewly arriving user requests. Step 1 in Pro
edure Dynami
Bu�er Allo
ation removes the 
ompleted user requests fromRequestList. Pro
edure Admission Control, whi
h is 
alledin Step 2, 
he
ks whether Assumption 1 is satis�ed for alluser requests in servi
e when the number of user requests inservi
e be
ame (n+1) after admitting a newly arriving userrequest. Sin
e the user requests in servi
e are Ri(1 � i � n)in RequestList, the pro
edure 
he
ks whether Assumption1(i.e., (n+ 1) � ni + ki) is satis�ed for all Ri (i.e., (n+ 1) �nmini=1 (ni + ki)).Step 3 in Pro
edure Dynami
 Bu�er Allo
ation retrieves auser request R
, whi
h is to be servi
ed next, from Request-List. Step 4 
omputes the values n
 and k
. In this step,n
 is set to the number n of user requests being servi
ed at
urrent time, and k
 is set to the sum of klog of additionalrequests arriving during the re
ent Tlog and � provided thatit satis�es Assumption2. Step 5 determines the bu�er sizebased on n
 and k
 and allo
ates the bu�er to R
.To satisfy Assumption2, k
 must be less than or equalto every ki + �(1 � i � n). A

ordingly, k
 must be lessthan or equal to nmini=1 (ki+�). For the future arrival rate, we4We use the notation BSk
(n
) for the bu�er size of the dynami
bu�er allo
ation s
heme sin
e it varies depending on the numberk
 of additional requests.

use klog + � be
ause, as shown in Assumption 2, we assumethat the future arrival rate may in
rease in 
omparison withthe re
ent arrival rate, so that the number of future a
tualadditional requests may in
rease by � 
ompared with thenumber of re
ent a
tual additional requests. We present themethod to determine the value of Tlog in Se
tion 4.Pro
edure Dynami
 Bu�er Allo
atoin/* RequestList 
onsists of n user requests, *//* whi
h are 
urrently in servi
e. */1. For ea
h R 2 RequestList� If (R is 
ompleted) then{ RequestList  RequestList � fRg{ n n � 12. If (Q is not empty) then� Exe
ute Pro
edure Admission Control3. Retrieve a user request R
 from RequestList4. Compute n
 and k
� n
  n� klog  the maximum number of additional requestsarriving during Tlog/* nmini=1 (ki + �) is the minimum value to enfor
e *//* Assumption 2 */� k
  minfklog + �; nmini=1 (ki + �)g5. Allo
ate a bu�er to the user request R
 based on n
 andk
6. goto step 1Pro
edure Admission Control1. While (Q is not empty)begin/* Assumption 1 is satis�ed */If ((n+ 1) � nmini=1 (ni + ki)) then� Get a newly arriving user request Rnew from Q� RequestList  RequestList [ fRnewg� n n+ 1else /* a newly arriving user request is delayed */� return to Pro
edure Dynami
 Bu�er Allo
ationendFigure 5: The dynami
 bu�er allo
ation algorithm.
3.3 Determining the Buffer SizeThe dynami
 bu�er allo
ation s
heme determines the bu�ersize BSk(n) based on the assumption that n + k bu�ers,whose sizes are BSk+�(n+ k), will be operating within theusage period of the bu�er to be allo
ated. Thus, the bu�ersize BSk(n) is represented as a re
urren
e equation in
ludingBSk+�(n + k). The boundary 
ondition of this re
urren
eequation o

urs when the system is in the fully loaded state.In this 
ase, the system servi
es N bu�ers whose sizes areBS0(N) within the usage period of the bu�er to be allo
atedbe
ause n = N and k = 0. Thus, the bu�er size allo
ated bythe dynami
 bu�er allo
ation s
heme is equal to the bu�ersize that would be allo
ated by the stati
 bu�er allo
ations
heme. Theorem1 provides the bu�er size allo
ated by thedynami
 bu�er allo
ation s
heme.Theorem 1. : The bu�er size for supporting n user re-quests in servi
e and k estimated additional requests, usingthe dynami
 bu�er allo
ation s
heme, is BSk(n) shown inEquation (6).



Table 2: The bu�er size allo
ated by the dynami
 bu�er allo
ation s
heme for ea
h bu�er s
heduling method.Bu�er S
heduling Bu�er size BSk(n) supporting n user requests in servi
e and k estimated user requestsMethod n < N n = NRound-Robin (
(Cyln) + �) � CR � "�CRTR �e � e�1Qi=1 �n + i � k + (i�1)�i��2 � � N2�TRTR�N�CR+ (
(Cyln) + �)�e�2Pi=0 8<:�CRTR �i � i+1Qj=1 �n + j � k + (j�1)�j��2 �9=;+ N�CR�TRTR�N�CR�CRTR �e�1 �N � e�1Qj=1 �n + j � k + (j�1)�j��2 �35Sweep� (
(Cyln=n) + �) � CR� "�CRTR �e � e�1Qi=1 �n + i � k + (i�1)�i��2 � � N2�TRTR�N�CR+ (
(Cyln=n) + �)�e�2Pi=0 8<:�CRTR �i � i+1Qj=1 �n + j � k + (j�1)�j��2 �9=;+ N�CR�TRTR�N�CR�CRTR �e�1 �N � e�1Qj=1 �n + j � k + (j�1)�j��2 �35GSS� (
(Cyln=g) + �) � CR� "�CRTR �e � e�1Qi=1 �n + i � k + (i�1)�i��2 � � N2�TRTR�N�CR+ (
(Cyln=g) + �)�e�2Pi=0 8<:�CRTR �i � i+1Qj=1 �n + j � k + (j�1)�j��2 �9=;+ N�CR�TRTR�N�CR�CRTR �e�1 �N � e�1Qj=1 �n + j � k + (j�1)�j��2 �35BSk(n) =8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>: DL � CR�"�CRTR �e � e�1Qi=1 �n + i � k + (i�1)�i��2 � � N2�TRTR�N�CR+e�2Pi=0 8<:�CRTR �i � i+1Qj=1 �n + j � k + (j�1)�j��2 �9=;+�CRTR �e�1 � N � e�1Qj=1 �n + j � k + (j�1)�j��2 �35 ,n < NDL � N�CR�TRTR�N�CR ,n = N(6),where e = 266666 �2 �k+rk2+��(2�(N�n)�k)+�24� 377777Proof: Refer to Appendix A.In Theorem1, the formula when n < N represents the bu�ersize allo
ated by the dynami
 bu�er allo
ation s
heme in apartially loaded state; the formula when n = N representsthe bu�er size in the fully loaded state. The bu�er size forea
h bu�er s
heduling method 
an be obtained by repla
ingDL in Equation (6) with ea
h bu�er s
heduling method'sdisk laten
y as dis
ussed in Se
tion 2.2. The result is shownin Table 2.Cal
ulating the equations in Table 2 may need 
onsider-able CPU time whenever the server allo
ates a bu�er to auser request. We 
an solve this problem by pre-
omputingthe equations for all-possible values of n and k, and storingthe 
omputed values. When the server a
tually allo
ates thebu�er to a user request, the server uses a stored value. Inthis 
ase, sin
e the maximum values of n and k are N , the
omplexity of memory spa
e requirement is O(N2). Sin
e Nis small, however, the memory spa
e overhead is negligible.
4. PERFORMANCE EVALUATIONIn this se
tion, we evaluate the performan
e of the dynami
bu�er allo
ation s
heme and 
ompare it with the stati
 s
h-eme. Through analysis and simulation, we evaluate for ea
hbu�er allo
ation s
heme initial laten
y and the number of
on
urrent user requests that 
an be supported. Se
tion 4.1des
ribes the environment for performan
e evaluation. Se
-tion 4.2 evaluates initial laten
y. Se
tion 4.3 evaluates thenumber of 
on
urrent user requests that the system 
an sup-port.

4.1 The Environment for Performance Evalu-
ationWe evaluate the performan
e for a VOD system using aSeagate Barra
uda 9LP disk [1, 6℄ having the spe
i�
ationsdes
ribed in Table 3. We assume that a video is 120 minuteslong, en
oded via MPEG-1 with an average transfer rate of1.5Mbps. Following the model proposed in the referen
es [6,13℄, we assume that the disk seek time fun
tion 
(x) for adisk head s
anning x 
ylinders is as in Equation (7). Thevalues of �1, �2, �1, and �2 are in Table 3.
(x) = � �1 + (�1� px); x < 400�2 + (�2� x); x � 400 (7)Table 3: The spe
i�
ation of the Seagate Barra
uda9LP disk. Parameter Name ValueDisk Capa
ity 9.19 GBytesRPM 7,200Min. Transfer Rate TR 120 MbpsMax. Rotational Laten
y Time 8.33 msMax. Seek Time(read) 13.4 ms�1 0.54 ms�2 5 ms�1 0.26 ms�2 0.0014 msN 79In the simulation, we assume that user requests arrive ina Poisson Pro
ess. In addition, we assume that the arrivalrate � of user requests is 
hanged every 30 minutes, and this
hange follows the Zipf distribution whose peak time o

ursafter 9 hours of system servi
e [16℄. The Zipf distributionhas � as a parameter, with � being a number between 0 and1. Setting � = 0 
orresponds to a highly skewed distribution;setting � = 1 
orresponds to a uniform distribution [16℄. Wedo the simulation in 
ases where � is 0.0, 0.5, and 1.0. Inorder to simulate the video viewing pattern of user requests,we assume that the video viewing time of user requests fol-lows a uniform distribution between 0 and 120 minutes [7℄.Figure 6 shows the number of the system's 
on
urrent userrequests for the Zipf distribution with varying values of �.Figure 6 shows that, when � is 0.0 or 0.5, the arrival rate is



high between 7 and 13 hours; when � is 1.0, the arrival rateis uniform. In VOD systems, if the number of user requestsin servi
e is equal to N , a newly arriving user request isreje
ted by the system's admission 
ontrol. Thus, when �is 0.0 or 0.5, many user requests arriving between 7 and 13hours are reje
ted.
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Figure 6: The number of 
on
urrent user requeststhat the system must servi
e when the arrival rate� follows the Zipf distribution with �.We evaluate the performan
e with respe
t to the threerepresentative bu�er s
heduling methods: the Round-Robin,Sweep�, and GSS� methods. As dis
ussed in Se
tion2.2.3,the GSS� method determines the number of bu�ers in agroup in su
h a way that memory requirement is minimized[17℄. Sin
e the memory requirements of the dynami
 bu�erallo
ation s
heme and the stati
 one are minimized when agroup 
onsists of eight bu�ers5, we use eight bu�ers for agroup.In the dynami
 bu�er allo
ation s
heme, we must deter-mine Tlog to measure the number of estimated additional re-quests. Figure 7(a) shows the average number of estimatedadditional requests a

ording to Tlog. The average numberof estimated additional requests is obtained by averagingover the di�erent bu�er allo
ation times. In this �gure, theaverage number of estimated additional requests in
reases asTlog in
reases. This is be
ause klog, whi
h is used in deter-mining the number of estimated additional requests, is themaximum number of a
tual additional requests per servi
eperiod that o

urs during Tlog.Figure 7(b) shows the su

essful estimation probabilityof ea
h bu�er s
heduling method a

ording to Tlog. Theprobability also in
reases as Tlog does be
ause the numberof estimated additional requests in
reases as Tlog in
reases.However, when Tlog is larger than 
ertain values (40 min-utes in the Round-Robin method, 20 minutes in the Sweep�and GSS� method), the su

essful estimation probability islarger than 99% in ea
h s
heduling method.In the dynami
 bu�er allo
ation s
heme, memory require-ments in
rease as the number of estimated additional re-quests in
reases, and initial laten
y in
reases as the su
-
essful estimation probability de
reases. Thus, we need tokeep the number of estimated additional requests as smallas possible provided that the su

essful estimation probabil-ity does not degrade signi�
antly. For this paper, we use 40minutes as the value of Tlog in the Round-Robin method, 20minutes in the Sweep� and GSS� method.5These results are derived from the analysis of memory require-ment for ea
h bu�er allo
ation s
heme. The analysis 
an be foundin the referen
e [10℄ for the dynami
 one and in the referen
e [4℄for the stati
 one.

Figure 8 shows the bu�er size allo
ated by ea
h bu�er al-lo
ation s
heme for ea
h bu�er s
heduling method. Thestati
 bu�er allo
ation s
heme determines the bu�er size us-ing Equation (5), and the dynami
 one using Equation (6).In Figure 8, the bu�er sizes of the stati
 bu�er allo
ations
heme are 
onstants sin
e the s
heme determines the bu�ersize assuming the fully loaded state of the system. However,the bu�er sizes of the dynami
 one vary a

ording to thenumber of user requests in servi
e.
4.2 Initial LatencyWe evaluate �rst the worst initial laten
y through analy-sis, and then, evaluate the average initial laten
y throughsimulation.Figure 9 shows the worst initial laten
y of ea
h bu�er allo-
ation s
heme for ea
h bu�er s
heduling method. We obtainthis �gure by applying the bu�er size of ea
h bu�er allo
a-tion s
heme to Equations (2), (3), and (4), whi
h express theworst initial laten
ies of ea
h bu�er s
heduling method. Asshown in Figure 9, as the number of user requests in servi
ede
reases, we have a shorter initial laten
y in the dynami
bu�er allo
ation s
heme 
ompared with the stati
 s
heme.This is be
ause the dynami
 one allo
ates smaller bu�ers ifthere are fewer number of user requests in servi
e.Figure 10 shows the average initial laten
y obtained thr-ough simulation. To avoid noise, we run simulation �vetimes with di�erent random seed value for the arrival timeof the user request. In Figure 10, ex
ept for vibration, thetrend of the graph is similar to that of the analyti
 re-sult in Figure 9. As shown in Figure 10, the initial laten
yof the dynami
 bu�er allo
ation s
heme is, in most 
ases,smaller than that of the stati
 s
heme regardless of the bu�ers
heduling methods and the number of user requests in ser-vi
e. The numbers in Figure 10 are smaller in the absolutes
ale than those in Figure 9 be
ause the former shows theaverage values and the latter shows the worst ones. Fig-ure 10 shows vibration be
ause initial laten
y is a�e
ted bythe arrival time of an individual user request. On the otherhand, Figure 9 shows steady trends be
ause it assumes theworst 
ase.Table 4 shows the average redu
tion ratio of the aver-age initial laten
y for the dynami
 bu�er allo
ation s
hemeover the stati
 one a

ording to di�erent bu�er s
hedulingmethods and arrival rate patterns (i.e., the Zipf parameter�). The average redu
tion ratio is obtained from Figure 10by averaging the redu
tion ratios over di�erent numbers ofuser requests in servi
e. Table 4 shows that the dynami
bu�er allo
ation s
heme redu
es the average initial laten
yto 111:59 � 110:97 of that for the stati
 one in the Round-Robin method, 119:65 � 119:50 in the Sweep� method, and129:38 � 127:96 in the GSS� method on the average.Table 4: The average redu
tion ratio of the initial la-ten
y for the dynami
 bu�er allo
ation s
heme overthe stati
 one.Zipf parameter Average Redu
tion Ratio(�) Round-Robin Sweep� GSS�0.0 111:04 119:50 127:960.5 111:59 119:65 128:481.0 110:97 119:60 129:38



ba ca da ea fa ga ha ia
�� �QY~��¦¥�¤Z

r§�_QTQ �Qv¤¥���¥��
r���¥� ���Q��¢¦�¤¥¤

(i) Round-Robin Method (ii ) Sweep* Method (iii ) GSS* Method

(a) The Average Number of Estimated Additional Requests

�� �QY~��¦¥�¤Z

r§�_QTQ �Qv¤¥���¥��
r���¥� ���Q��¢¦�¤¥¤

�� �QY~��¦¥�¤Z

r§�_QTQ �Qv¤¥���¥��
r���¥� ���Q��¢¦�¤¥¤

ba ca da ea fa ga ha ia
�� �QY~��¦¥�¤Z

�¦���¤¤�¦�Qv¤¥���¥� �Q
�£ ������¥ªQYVZ

(i) Round-Robin Method (iii ) GSS* Method

(b) Successful Estimation Probabil ity

ba ca da ea fa ga ha ia
�� �QY~��¦¥�¤Z

�¦���¤¤�¦�Qv¤¥���¥� �Q
�£ ������¥ªQYVZ

ba ca da ea fa ga ha ia
�� �QY~��¦¥�¤Z

�¦���¤¤�¦�Qv¤¥���¥� �Q
�£ ������¥ªQYVZ

Distribution of user requests’
arrival rate (θ of a Zipf Distribution )

:                      : 0.0                    : 0.5           : 1.0

(ii ) Sweep* Method

b_f
c

c_f
d

d_f
e

e_f

b_f
c

c_f
d

d_f
e

e_f

ba ca da ea fa ga ha ia
b_f
c

c_f
d

d_f
e

e_f

ba ca da ea fa ga ha ia

jf
jg
jh
ji
jj

baa

jf
jg
jh
ji
jj

baa

jf
jg
jh
ji
jj

baa

Figure 7: The average number of estimated additional requests and the su

essful estimation probability ofea
h bu�er s
heduling method a

ording to Tlog.
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Figure 8: The bu�er size vs. the number of user requests in servi
e in the stati
 and dynami
 bu�er allo
ations
hemes.
(a) Round-Robin Method (b) Sweep* Method (c) GSS* Method

           :  Static Buffer Allocation Scheme                              :  Dynamic Buffer Allocation Scheme

y ����K��K����K}�� ����K��K~��¡���

t������Kw�����¤KS�������T

\ \[ ][ ^[ _[ `[ a[ b[ bd[
[Y_
[Yc
\Y]
\Ya
]

y ����K��K����K}�� ����K��K~��¡���

t������Kw�����¤KS�������T

\ \[ ][ ^[ _[ `[ a[ b[ bd
[

]`
`[
b`

\[[
\]`
\`[

y ����K��K����K}�� ����K��K~��¡���

t������Kw�����¤KS�������T

\ \[ ][ ^[ _[ `[ a[ b[ bd
[
_
c

\]
\a
][

Figure 9: The worst initial laten
y of the stati
 and dynami
 bu�er allo
ation s
hemes obtained throughanalysis.
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(i) θ = 0.0 (ii ) θ = 0.5 (iii ) θ = 1.0
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Figure 10: The average initial laten
y of the stati
 and dynami
 bu�er allo
ation s
hemes obtained throughsimulation.
4.3 The Number of Concurrent User RequestsIn VOD systems, to servi
e a greater number of user re-quests 
on
urrently with the same amount of memory, wemust redu
e memory requirements. Analysis of the mem-ory requirement for ea
h bu�er allo
ation s
heme 
an befound in the referen
e [10℄. The dynami
 bu�er allo
ations
heme redu
es memory requirements signi�
antly when thenumber of user requests in servi
e is small. Most VOD sys-tems use multiple disks due to voluminous amounts of videodata. When using multiple disks, disk load imbalan
e o

ursbe
ause of di�ering popularity of videos [16℄. Many user re-quests 
ould be biased into a spe
i�
 disk 
ausing disk loadimbalan
e. In this environment, the dynami
 bu�er allo
a-tion s
heme is able to redu
e memory usage for disks thatservi
e fewer user requests and utilize the saved memory fordisks that servi
e greater user requests. Thus, the dynami
bu�er allo
ation s
heme 
an servi
e more 
on
urrent userrequests than the stati
 bu�er allo
ation s
heme given thesame amount of memory.Figure 11 shows the simulation result of the number of
on
urrent user requests that 
an be servi
ed by the VODsystem having ten Seagate Barra
uda 9LP disks for theRound-Robin method a

ording to di�erent sizes of mainmemory available. Results for other bu�er s
heduling meth-

ods are similar. Analyti
al results 
an be found in the refer-en
e [10℄. These results are obtained under the assumptionthat the number of user requests arriving to ea
h disk followsa Zifp distribution with � of 0.0, 0.5, and 1.0, respe
tively.A

ording to the referen
e [16℄, the popularity of video datafollows the Zipf distribution with � = 0:271.Figure 11 shows that the dynami
 bu�er allo
ation s
hemeservi
es more user requests 
on
urrently than the stati
 oneregardless of the distributions of disk load. This is be
ausethe dynami
 bu�er allo
ation s
heme uses memory e�e
-tively than the stati
 s
heme. In a system with 11 Gbytesof memory, both bu�er allo
ation s
hemes servi
e the samenumber of 
on
urrent user requests. This is be
ause, byhaving suÆ
ient memory, the number of 
on
urrent userrequests is determined only by the limitation of the disk'sperforman
e.Table 5 shows the average improvement in the number of
on
urrent user requests for the dynami
 bu�er allo
ations
heme over the stati
 one a

ording to di�erent distribu-tions of disk load (i.e., the Zipf parameter �). The averageimprovement ratio is obtained from Figure 11 by averagingthe improvement ratios over di�erent amounts of systemmemory. Table 5 shows that the dynami
 s
heme in
reasesthe number of 
on
urrent user requests by 2.36 � 3.25 times
ompared with that of the stati
 one on the average.
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on
urrent user requests servi
ed by the Round-Robin method obtained throughsimulation.Table 5: The average improvement ratio of the num-ber of 
on
urrent user requests for the dynami
bu�er allo
ation s
heme over the stati
 one.Distribution of Disk Load (�) Average Improvement Ratio0.0 2.360.5 2.781.0 3.25
5. CONCLUSIONSWe have proposed a dynami
 bu�er allo
ation s
heme thatredu
es initial laten
y and memory requirement in VODsystems. The existing stati
 bu�er allo
ation s
heme de-termines the bu�er size assuming the fully loaded systemstate. Thus, the stati
 s
heme allo
ates an unne
essarilylarge bu�er when the system is not in the fully loaded state.In 
ontrast, the dynami
 bu�er allo
ation s
heme allo
atesthe minimum bu�er size in a partially loaded state as wellas in the fully loaded state. Smaller bu�ers result in smallerinitial laten
y and memory requirements. Smaller memoryrequirements, in turn, result in servi
ing more 
on
urrentusers.The inherent diÆ
ulty in determining the bu�er size inthe dynami
 bu�er allo
ation s
heme is that the size of thebu�er 
urrently being allo
ated depends on the number ofand the sizes of the bu�ers to be allo
ated in the next ser-vi
e period. To solve this diÆ
ulty, we have proposed thepredi
t-and-enfor
e strategy, where we predi
t the numberof and the sizes of future bu�ers based on inertia assump-tions and enfor
e these assumptions at runtime. Any vio-lation of these assumptions is resolved by deferring servi
eto the violating new user request until the assumptions aresatis�ed.The dynami
 bu�er allo
ation s
heme 
an be used withany bu�er s
heduling methods be
ause it is independent ofthem. To demonstrate this appli
ability of this, we haveapplied the dynami
 bu�er allo
ation s
heme to the threerepresentative bu�er s
heduling methods: the Round-Robin(BubbleUp), Sweep�, and GSS� methods.We have also derived detailed equations for the bu�er sizesto be allo
ated by our dynami
 bu�er allo
ation s
heme.The bu�er size is represented as a re
urren
e equation be-
ause of its dependen
y on the sizes of the bu�ers to be allo-
ated in the future. We have solved this equation in Theo-rem1 and derived the bu�er size for ea
h s
heduling methodin Table 2. The results in Table 2 
an be pre-
omputed atthe system initialization time.

Through analysis and simulations, we have validated thatour dynami
 bu�er allo
ation s
heme signi�
antly outper-forms the stati
 s
heme both in initial laten
y and in thenumber of 
on
urrent user requests that 
an be supported.Our simulation results show that the dynami
 bu�er allo
a-tion s
heme redu
es initial laten
y (averaged over the num-ber of user requests in servi
e from one to the maximum
apa
ity) to 129:4 � 111:0 of that for the stati
 one and, byredu
ing the memory requirement, in
reases the number of
on
urrent user requests to 2.36 � 3.25 times that of thestati
 one when averaged over the amount of system mem-ory available. These results demonstrate that the dynami
bu�er allo
ation s
heme signi�
antly improves the perfor-man
e and 
apa
ity of VOD systems.
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e a VOD system must provide data to a user requestduring the usage period T of ea
h bu�er, as shown in Equa-tion (8), the bu�er size BSk(n) is greater than or equal toT � CR, whi
h is the amount of data that a user request
onsumes during T . In addition, as des
ribed in Se
tion 3.1,sin
e the dynami
 bu�er allo
ation s
heme must be able toservi
e n + k bu�ers whose sizes are BSk+�(n + k) withinthe usage period T of the bu�er to be allo
ated, it must sat-isfy Equation (9). In Equation (9), BSk+�(n+k)TR +DL is thetime that the server takes to servi
e one bu�er whose size isBSk+�(n+k). Equation (8) and Equation (9) are expandedinto Equation (10), a re
urren
e inequality.BSk(n) � T � CR (8)T � (n + k) �  BSk+�(n + k)TR +DL! (9)BSk(n) � (n + k) �  BSk+�(n + k)TR +DL!� CR (10)

Sin
e VOD systems 
an 
on
urrently servi
e a maximumof N user requests, the number of user requests that mustbe servi
ed within a usage period is less than or equal toN . Therefore, BSk(N) is the bu�er size allo
ated by thedynami
 bu�er allo
ation s
heme in the fully loaded stateand be
omes Equation (11), whi
h is identi
al to BS(N)of Equation (5) derived in Se
tion 2.3. We 
an obtain thebu�er size BSk(n) allo
ated by the dynami
 bu�er allo
a-tion s
heme in a partially loaded state by expanding Equa-tion (10). Equation (10) is expanded into Equation (12). InEquation (12), n+e�k+ (e�1)�e��2 is greater than or equalto N . Sin
e the number of 
on
urrent user requests is lessthan or equal to N , however, n+e�k+ (e�1)�e��2 is repla
edby N . Thus, Equation (12) be
omes Equation (13). By re-pla
ing BSk(N) with Equation (11), Equation (13) be
omesEquation (14).BSk(N) = DL � N � CR � TRTR�N � CR (11)BSk(n) � (n + k) �  BSk+�(n + k)TR +DL!� CR , n < N= CRTR � (n + k) � BSk+�(n + k) + (n + k) � DL� CR� CRTR � (n + k) � (CRTR � (n + 2 � k + �)�BSk+2��(n + 2 � k + �) + (n + 2 � k + �) �DL � CRo +(n + k) �DL � CR=  CRTR!2 � (n + k) � (n + 2 � k + �) �BSk+2��(n + 2 � k + �) +(n + k) �DL � CR �  CRTR � (n + 2 � k + �) + 1!�...�  CRTR!e � eYi=1 n + i � k + (i � 1) � i � �2 ! �BSk  n + e � k + (e � 1) � e � �2 ! +DL � CR �e�1Xi=0 8<: CRTR!i � i+1Yj=1 n + j � k + (j � 1) � j � �2 !9=; (12),where e = 266666 �2 �k+rk2+��(2�(N�n)�k)+�24� 377777=  CRTR!e � e�1Yi=1  n + i � k + (i � 1) � i � �2 ! �N � BSk(N) +DL � CR �24e�2Xi=0 8<: CRTR!i � i+1Yj=1 n + j � k + (j � 1) � j � �2 !9=;+ (13) CRTR!e�1 � N � e�1Yj=1  n + j � k + (j � 1) � j � �2 !35BSk(n) =8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>: DL � CR�"�CRTR �e � e�1Qi=1 �n + i � k + (i�1)�i��2 � � N2�TRTR�N�CR+e�2Pi=0 8<:�CRTR �i � i+1Qj=1 �n + j � k + (j�1)�j��2 �9=;+�CRTR �e�1 � N � e�1Qj=1 �n + j � k + (j�1)�j��2 �35 ,n < NDL � N�CR�TRTR�N�CR ,n = N(14),where e = 266666 �2 �k+rk2+��(2�(N�n)�k)+�24� 377777

View publication stats

https://www.researchgate.net/publication/3297224



