Dynamic Buffer Allocation in Video-on-Demand Systems

Sang-Ho Lee, Kyu-Young Whang, Yang-Sae Moon

Department of Computer Science and

Advanced Information Technology Research Center (AlTrc)
Korea Advanced Institute of Science and Technology (KAIST)

Taejon, Korea

{sangho,kywhang,ysmoon}@mozart.kaist.ac.kr

ABSTRACT

In video-on-demand (VOD) systems, as the size of the buffer
allocated to user requests increases, initial latency and mem-
ory requirements increase. Hence, the buffer size must be
minimized. The existing static buffer allocation scheme,
however, determines the buffer size based on the assumption
that the system is in the fully loaded state. Thus, when the
system is in a partially loaded state, the scheme allocates a
buffer larger than necessary to a user request. This paper
proposes a dynamic buffer allocation scheme that allocates
to user requests buffers of the minimum size in a partially
loaded state as well as in the fully loaded state. The inherent
difficulty in determining the buffer size in the dynamic buffer
allocation scheme is that the size of the buffer currently be-
ing allocated is dependent on the number of and the sizes
of the buffers to be allocated in the next service period.
We solve this problem by the predict-and-enforce strategy,
where we predict the number and the sizes of future buffers
based on inertia assumptions and enforce these assumptions
at runtime. Any violation of these assumptions is resolved
by deferring service to the violating new user request until
the assumptions are satisfied. Since the size of the current
buffer is dependent on the sizes of the future buffers, the
size is represented by a recurrence equation. We provide
a solution to this equation, which can be computed at the
system initialization time for runtime efficiency. We have
performed extensive analysis and simulation. The results
show that the dynamic buffer allocation scheme reduces ini-
tial latency (averaged over the number of user requests in
service from one to the maximum capacity) to 2;7 ~ ”1—_0
of that for the static one and, by reducing the memory re-
quirement, increases the number of concurrent user requests
to 2.36 ~ 3.25 times that of the static one when averaged
over the amount of system memory available. These results
demonstrate that the dynamic buffer allocation scheme sig-
nificantly improves the performance and capacity of VOD
systems.

Permission to make digital or hard copies of all or part of thiork for
personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage #yat copies
bear this notice and the full citation on the first page. Toycoiherwise, to
republish, to post on servers or to redistribute to listquies prior specific
permission and/or a fee.

ACM SIGMOD 200May 21-24, Santa Barbara, California, USA
Copyright 2001 ACM 1-58113-332-4/01/05$5.00.

ll-Yeol Song
College of Information Science and Technology
Drexel University
Philadelphia, Pennsylvania 19104, USA

song@drexel.edu

1. INTRODUCTION

Recent advances in communication and video data technolo-
gies such as compression and digitalization have enabled
the transmission of even large amounts of video data over
networks. These technologies are widely used for applica-
tions such as video-on-demand (VOD), on-line tutorials, and
video games.

VOD systems provide video data to users upon user re-
quests. There are two important characteristics of video
data. First, the amount of video data is voluminous. Sec-
ond, video data must be continuously provided to the user.
The former requires that VOD systems use buffers for man-
aging data by block units because systems cannot store the
entire video data in memory. The latter mandates buffer
management of VOD systems to retrieve new data blocks
into the buffer before a user request uses up the data in the
buffer.

In buffer management of VOD systems, it is important
to minimize memory requirements and initial latency [3].
Initial latency is the duration between the arrival of a user
request and the arrival of the requested video data in the
server’s main memory. By minimizing main memory re-
quirements, the system can support a larger number of con-
current user requests with the same amount of memory.
By minimizing initial latency, the system can provide VCR
functions with shorter response time, and thus, can improve
the quality of service. We note that VCR functions like fast
forward and fast rewind are considered new user requests in
most VOD systems [2, 3, 7, 8].

Several buffer scheduling methods for VOD systems have
been proposed that minimize memory requirements and ini-
tial latency [3, 4, 7, 9, 17]. The buffer scheduling method
determines the order of filling data buffers allocated to user
requests. These methods use static buffer allocation to al-
locate buffers to user requests. The static buffer allocation
scheme determines the minimum buffer size based on the
assumption that the system is in the fully loaded state, i.e.,
the system services the maximum number of user requests
that can be supported. The system consistently allocates
this buffer size to all user requests regardless of the system’s
load. VOD systems must allocate larger buffers to user re-
quests as the number of user requests in service increases.
Thus, the static buffer allocation scheme has a disadvantage
in that it uses memory inefficiently by allocating a larger
buffer than necessary when the system is not in the fully
loaded state. Hence, the static scheme increases memory
requirements and initial latency of systems [3, 4, 6].

To and Hamidzadeh [14] recently proposed a scheme for
improving efficiency in memory usage of the static buffer
allocation scheme. This scheme allocates unused memory
to user requests in service when the system is in a partially
loaded state, thus utilizing all the system memory. Since this
scheme allocates more memory to user requests in service,
however, the time for the next service can be delayed. Due to
the extended service time, the scheme can service a new user
request sooner. Accordingly, this scheme can decrease initial
latency for newly arriving requests [14]. Since the scheme
computes the initial buffer size based on the static buffer
allocation scheme, however, it also has the disadvantage of
allocating an unnecessarily large buffer as in the static buffer
allocation scheme.

This paper proposes a dynamic buffer allocation scheme
that dynamically allocates the minimum buffer size in a par-
tially loaded state as well as in the fully loaded state. The
inherent difficulty in allocating the buffer in the dynamic
buffer allocation scheme is that the size of the buffer cur-
rently being allocated is dependent on the number of and
the sizes of the buffers to be allocated in the future, which
are yet to be determined. We provide a solution to this prob-
lem using the predict-and-enforce strategy to be described in
Section 3. Further, due to the dependency on the future, the
buffer size is determined by a recurrence equation. We also
provide a solution to this equation in Section 3.

The advantages of this scheme are as follows. First, this
scheme removes the static buffer allocation scheme’s prob-
lem of allocating unnecessarily large buffers in a partially
loaded state. Second, by allocating the minimum buffer
size, our scheme significantly improves the average initial
latency and the average number of concurrent user requests
that can be supported. Third, this scheme is independent
of buffer scheduling methods and is applicable to all ex-
isting buffer scheduling methods. To validate our scheme,
we demonstrate that our dynamic scheme can be used with
representative buffer scheduling methods: the Round-Robin
method [3, 4, 5], the Sweep method [3, 4, 5], and the GSS
method [17].

The remainder of this paper is organized as follows: Sec-
tion 2 presents related work on the VOD system model. Sec-
tion 3 presents the dynamic buffer allocation scheme pro-
posed in this paper. Section 4 evaluates the dynamic buffer
allocation scheme through extensive simulation and analy-
sis. The results are compared with those of the static scheme
in terms of initial latency and the number of concurrent user
requests that can be supported. Finally, Section 5 concludes
the paper.

2. RELATED WORK

This section covers the model of VOD systems, existing
buffer scheduling methods used in buffer management, and
the static buffer allocation scheme.

2.1 The Model of Video-on-Demand Systems

The basic architecture of VOD systems, shown in Figure 1,
consists of disks storing video data, a buffer allocated to each
user request, and a server that retrieves video data from the
disks to the buffer. We define a service as the work that the
server retrieves video data from the disk and fills each buffer
with the data. We also define the service period as the time
interval it takes for the server to fill all the buffers in service
one time with video data. We define the consumption rate

as the rate at which each user request consumes video data,
and disk latency as the sum of disk seek time and rotational
delay [5].

User Requests

Buffer, |——> 1'\:‘
s
Buffer, |——) l\i
-
Buffer, I——) 1\

s .
Buffer, |——> 1@

Figure 1: The basic architecture of video-on-demand
systems.

VOD System

The server of a VOD system allocates one buffer to each
user request that arrives at the system. The server contin-
uously provides users with video data by periodically filling
the buffers allocated to user requests. The buffer scheduling
method determines the order in which the server fills the
buffers with data. In this paper we use three representative
buffer scheduling methods. The Round-Robin method ser-
vices each buffer periodically in the order of allocation [3,
4, 5]. The Sweep method services buffers in the order of
the data’s position in a disk in order to minimize the disk
seek time [3, 4, 5]. The GSS method first constructs several
groups of buffers. Then, the GSS method services buffers
within each group with the Sweep method, while servicing
each group with the Round-Robin method [17].

To reduce the system’s memory requirements, buffers al-
located to each user request share memory. That is, user
requests release memory for buffers right after they use the
data in buffers (i.e., using the use-it and toss-it policy). The
server allocates the released memory to the buffers of other
user requests [4, 11]. Memory is allocated and released by
the page unit. Accordingly, no memory fragmentation can
occur because of memory sharing. In this paper, however,
we assume that memory is allocated and released by the
variable length unit but not by the page unit [4]. Generally,
since the utilization of the last memory page is below 100%,
the result under this assumption is different from the actual
result. Since the memory page is much smaller than the
buffer size, however, the difference between the results from
this assumption is negligible [4].

For the sake of simplicity, we assume that the video data’s
consumption rate of all user requests is equal'[4]. To re-
duce disk latency, we assume that video data is contiguously
stored in disks?[3, 14]. Thus, only one disk latency occurs
when the server services one buffer.

! As argued by Chang and Garcia-Molina[4], the scheme we dis-
cuss in this paper can be adapted to work with variable display
rates using two methods. The first is to use the maximal rate.
The second is to use the greatest common divisor of the display
rates as the unit display rate and to treat each display rate as a
multiple of the unit one.

2To satisfy this assumption, Chang and Garcia-Molina [3] have
proposed a data structure called chunk. A chunk consists of phys-
ically contiguous several pages and is at least twice larger than the
maximum buffer size. Generally, since whole video data cannot
be continuously stored in disks, it is stored by the block unit. In
this case, if the buffer size is variable, the data for one buffer can
span to the next adjacent block. To solve this problem, Chang
and Garcia-Molina have devised a mechanism that stores data in
chunks using replication so that the server can always retrieve the
data for one buffer from only one chunk.

Table 1 shows the variables used in this paper. The max-
imum number N of concurrent user requests that can be
supported is determined by the video data’s consumption
rate CR and the disk data transfer rate TR. In order for
a disk to service IV user requests under the requirements of
the time-wise continuity, TR must be greater than or equal
to NxCR the consumption rate of NV user requests. In the
case TR = N x CR, however, a disk cannot guarantee the
time-wise continuity because disk latency occurs whenever
the disk services a user request. Thus, TR must be greater
than N x CR and satisfy Equation (1). N is the largest
integer satisfying Equation (1) because N is the maximum

value.

TR
— (1)
CR

Table 1: The variables used in this paper.

Variable Description

TR disk data transfer rate (bits/sec)

CR video data’s consumption rate (bits/sec)

DL disk latency

DLEE disk latency in Round-Robin method

DLSweeP | disk latency in Sweep method

DLGSS disk latency in GSS method

T service period

BS buffer size

BSER buffer size in Round-Robin method

BSSweep | puffer size in Sweep method

BSYSS | buffer size in GSS method

N maximum number of concurrent user requests
that can be supported

n number of user requests in service

k number of additional requests

2.2 Buffer Scheduling Methods

This section introduces existing research on representative
buffer scheduling methods and their characteristics: initial
latency and disk latency.

A buffer stores the data that a user request consumes
until the next service time. Thus, in order to determine the
buffer size, we must calculate the service period, which is the
time interval until the next service time. To calculate the
service period, it is necessary to estimate the disk latency
occurring at the service time of each buffer. If this calculated
value is less than the actual value, some buffers may become
empty because buffers smaller than necessary are allocated.
Therefore, VOD Systems determine the buffer size using the
worst disk latency. In this section we discuss the worst-case
disk latency of each buffer scheduling method.

2.2.1 The Round-Robin Method

The Round-Robin method schedules buffer services in the
order of buffer allocation. Thus, disk latency in this method
is the sum of the disk rotational delay and the disk seek time
over the distance between the data used by the previously
serviced buffer and the buffer currently being serviced. The
worst disk latency, DL®® is the sum of the maximum disk
rotational delay and the worst disk seek time occurring when
the disk arm moves over all the cylinders on the disk. If
we represent the disk seek time function for z cylinders as
~(x), the maximum disk rotational delay as 6, and the total
number of cylinders as Cyln, DL®® is (y(Cyln) +) [4].
Since the Round-Robin method does not take advantage of
data location on disks, the disk latency in this method is
much longer, and the buffer size is much larger than the

Sweep or the GSS method. Thus, the Round-Robin method
requires more system memory than the Sweep or the GSS
method.

Chang and Garcia-Molina [4] proved that, in order to
maximize memory sharing among the buffers, each buffer’s
service time must be equal. They applied this result to
the Round-Robin method, and proposed a buffer schedul-
ing method called the Fixed-Stretch Scheme. In addition,
to reduce initial latency, they proposed a buffer scheduling
method, called BubbleUp [3], based on the Fixed-Stretch
Scheme. While the Fixed-Stretch Scheme services buffers
in a fixed order, BubbleUp dynamically adjusts the order
to service a newly arriving user request right after the ser-
vice in execution is completed. We use BubbleUp for the
Round-Robin method when applying to the dynamic buffer
allocation scheme. Equation (2) shows that the worst initial
latency of BubbleUp, IL®F is the sum of the service time

of buffers being serviced currently, DLEF + B‘;;R, and the

disk latency for the service of the newly arriving request,
DLRR.

RR
BS
- oxprBR 77 (2)
TR

L BR

2.2.2 The Sweep Method

The Sweep method [4, 12, 15] attempts to minimize disk seek
time. The method first sorts buffers by the position at which
data used by those buffers are located on the disk, and then,
services the buffers in the sorted order. Therefore, the disk
latency in this method is dependent upon the location of the
data on the disk. Since the seek time is a concave function
[13] on the number of disk’s cylinders the disk head moves
over, the worst disk latency in this method occurs when
the data used by n buffers in service are apart by an equal
distance [4]. Thus, when the server is servicing n buffers in
this method, the worst disk latency is n x (y(Cyln/n) + 0)
[4]. For simplicity, we define (y(Cyln/n) + 6) as the worst
disk latency DL°"*? for one buffer®.

Chang and Garcia-Molina [4] proposed a buffer scheduling
method called Sweep”. This method improves buffer’s mem-
ory sharing in comparison with the Sweep method when all
the data used by buffers are located adjacent to each other
on the disk. In the Sweep method, when data are located
adjacent to each other on a disk, the actual disk latency is
shorter than the estimated latency. Thus, the buffer’s ser-
vice can be completed within a shorter time than expected.
In this case, user requests release only a small amount of
memory due to lack of time to consume the data in the
buffers. Accordingly, the Sweep method has little memory
for buffers to share. On the other hand, the Sweep™ method
improves buffer’s memory sharing by adjusting the time of
initiating the service of the last buffer within a service pe-
riod and therefore reduces memory requirements. That is,
the Sweep™ method services the last buffer to be serviced in
a service period as late as possible, enabling the buffer to
reuse the memory released by other buffers.

3Since disk latency is used to calculate the service period, VOD
systems always use the sum of disk latencies of all buffers be-
ing serviced within a service period. Thus, although we define
DT.5weeP a5 shown in this paper, the sum of disk latencies of all
buffers being serviced within a service period is invariable, and
the result derived in this paper is not affected. We use this defini-
tion only to explain several of existing buffer scheduling methods
consistently.

In the Sweep™ method, a newly arriving request is not
serviced within the current service period. If it is serviced
during the service of existing buffers, the total seek time may
not be minimized. In addition, since the Sweep™ method ad-
justs the order of buffer services according to the location of
data used by the buffers, the newly arriving request could
be serviced last. Consequently, in the worst case, a new re-
quest could arrive at the beginning of a service period and
be serviced at the end of the next service period. Equa-
tion (3) shows that the initial latency in this case, IL5"*°P,
is the sum of the time servicing all the n buffers in the cur-
rent period, the time servicing all the n buffers in the next
period, and the time servicing the buffer of a newly arrived
user request [3].

BsSweep

) +DLSWeP 4 = (3)
TR

Sweep
BS
1LSweer _ o5y n x [prSweer 4

TR

2.2.3 The GSS Method

The GSS (Grouped Sweeping Scheduling) method is a hy-
brid between the Round-Robin and Sweep methods that re-
duces memory requirements [17]. The GSS method con-
structs G groups with n user requests, and then, services
n/G(= g) buffers in each group using the Sweep method
and services each group using the Round-Robin method.
Thus, the GSS method becomes the Sweep method when
g = n and the Round-Robin method when g = 1. The GSS
method determines g in such a way that the memory re-
quirement is minimized [17]. In this method, as in the Sweep
method, we can derive g x (y(Cyln/g)+6) as the worst disk
latency that occurs when servicing a group constructed with
g buffers in the GSS method [4], and (y(Cyln/g) +6) as the
worst disk latency DLY®® for servicing one buffer.

In order to improve buffer’s memory sharing in the GSS
method, Chang and Garcia-Molina [4] also proposed the
GSS* method, which services each group using the Fixed-
Stretch Scheme and services buffers in a group using the
Sweep™ method. In addition, to reduce the initial latency of
the GSS* method, they extended the GSS* method [6] by
using BubbleUp [3] instead of the Fixed-Stretch Scheme for
servicing each group. We apply the extended GSS™ method
to the dynamic buffer allocation scheme. Equation (4) shows
that the worst initial latency, TL%%9 is the sum of the time
servicing the current group and the time servicing the next
group containing the newly arriving request [6].

LG5S - 2xg>((DLGSS+

BsGSS
) (4)

TR

As shown in Equation (2), (3), and (4), initial latency in-
creases linearly in proportion to the buffer size BS regard-
less of buffer scheduling methods used. That is, since DL,
TR, and g in each equation are constants, initial latency
is determined by only the buffer size. Thus, increasing the
buffer size allocated to each user request increases initial la-
tency as well as memory requirements. In this paper, we
try to minimize the buffer size in order to minimize memory
requirement and initial latency.

2.3 The Static Buffer Allocation Scheme

The static buffer allocation scheme determines the minimum
buffer size in the fully loaded state, and constantly allocates
it to all user requests regardless of the system’s load state.
Thus, although this scheme has the advantage of simplifying

buffer allocation, it has the disadvantage of allocating an
unnecessarily large buffer when the system is in a partially
loaded state.

The minimum buffer size in the fully loaded state in the
static buffer allocation scheme is derived by considering only
user requests in service, without including new user requests.
This is because the system cannot service any new user re-
quest in the fully loaded state. The two conditions that the
buffer size must satisfy in the fully loaded state are stated
as follows:

Condition 1: The buffer size must be greater than or equal
to the amount of data consumed by a user request
during a service period.

Condition 2: The system must be able to serve all user
requests in service once within a service period.

Condition 1 is a necessary condition in order to guarantee
the time-wise continuity of video data for user requests. If
Condition 1 is not satisfied, some buffers in service could be
empty. If the system allocates too large a buffer, the system
cannot service all of buffers within a service period. This
is because the system requires too much time to service the
large buffer. Condition 2 prevents this phenomenon. Equa-
tion (5) shows the minimum buffer size BS(n) in the fully
loaded state, satisfying Conditions 1 and 2. It is proved in
the reference [4].

(n) n X CR X DL x TR)
BS(n = _— 5
TR —n X CR

3. THEDYNAMIC BUFFER ALLOCATION
SCHEME

In this section, we propose a dynamic buffer allocation scheme.
Section 3.1 explains the basic concept of our scheme; Sec-
tion 3.2 describes the buffer allocation algorithm; and Sec-
tion 3.3 presents the equations to calculate the size of the
buffer to be allocated.

3.1 The Basic Concept

We first define some terminology. We define additional re-
quests at each buffer allocation time as the user requests
that arrive within a service period from that time. For ex-
ample, in Figure 2, additional requests at the buffer alloca-
tion time ¢; are user requests R; ~ Rj3 that arrive within
the service period 71 from t¢1; additional requests at t» are
R»> ~ Ry4; additional requests at t3 are R4 ~ Rs. The buffer
allocation scheme dynamically estimates the number of ad-
ditional requests at each buffer allocation time and utilizes
the estimate when determining the buffer size. We define
the number of estimated additional requests as the number
of additional requests estimated by our dynamic scheme and
the number of actual additional requests as the actual num-
ber of additional requests that occur. In addition, we define
successful estimation as the case in which the number of es-
timated additional requests is greater than or equal to the
number of actual additional requests, and unsuccessful esti-
mation as the opposite. We define a usage period of a buffer
as the service period during which the buffer would be used.
For example, in Figure 2, if the buffer allocated at ¢; would
be used within the service period T, then the usage period
of this buffer is 7.

< T i< T
tim t t % % > T, T, Ts: service periods
t T t T T ty T ty T R : the i™ newly arriving
user request
R, R, Ry R R

Additional Additional
~—

Reguestsat t i Requests a t,
Additional Requests at t,

Figure 2: An example of additional requests.

One might be able to devise a simple dynamic buffer al-
location scheme by applying the number of estimated addi-
tional requests to the static buffer allocation scheme. This
simple scheme would determine the buffer size BS(n+k) by
applying the sum (= n+ k) of the number n of user requests
in service and the number & of estimated additional requests
at the start time of each service period to Equation (5). This
simple scheme would allocate this buffer size to all user re-
quests in this service period. That is, this scheme tries to
prevent the buffers of user requests in service from becom-
ing empty by pre-estimating the number of possible user
requests that would be serviced within a service period and
then by determining the buffer size based on the estimation.

However, this scheme has an inherent flaw. The buffers of
user requests in service can become empty when the number
of user requests to be serviced during the next service pe-
riod is greater than the estimation. This problem is demon-
strated in Figure3. In this figure, at time #; ~ t4, this
scheme allocates the buffers whose sizes are BS(4), which is
determined by the number n(= 3) of user requests in service
and the number k(= 1) of estimated additional requests at
the start time ¢; of the service period T;. Similarly, at time
ts ~ tg, this scheme allocates the buffers whose sizes are
BS(5), which is determined by n(= 4) and k(= 1) at the
start time t5 of the service period T»>. However, from the
viewpoint of T5 whose start time is t2, the buffer size allo-
cated at ts is less than the amount of data to be consumed
during T3, and therefore, this buffer will become empty.
That is, at time t2, this scheme allocates the buffer size
BS(4), which is assumed to be equal to the amount of data
to be consumed by a user request during the service pe-
riod. Tt is assumed that four buffers whose sizes are BS(4)
are to be serviced during the service period. However, the
amount of data consumed during the service period T3 be-
comes larger than BS(4) because the buffer size allocated
at time ¢5 is BS(5). This problem occurs because the buffer
size allocated at time ¢» is determined not based on the us-
age period T3 of this buffer, but based on the usage period
T: of the buffer allocated at time ¢;.

BS(4), BS(5): buffer sizes

I Ts > N
[Xe T >/« T, n:the nupber _of user
tim } | } 4 + } > requestsin service

t ¢ ¢ t § § k:the number of estim-

* 2 N N ° ° ated additional requests

R, R, R, Ry R R T, T,, T3 service periods
BS(4) BS(4) BY(4) BS(4) BS(5) BY(5) R : the i newly arriving
" f New Request R, n= ;‘ NewRequest R, USEr request

Figure 3: An example scenario in the buffer alloca-
tion scheme simply extended by applying the num-
ber of estimated additional requests to the static
buffer allocation scheme.

To prevent this flaw, we must know the usage period of
each buffer and allocate the buffer size required during this
period. For example, in Figure 3, the buffer size allocated
at time t» must be determined based on the usage period
T3 of this buffer. However, the usage period of the buffer

is not known at the time of allocation. It is determined by
the number of user requests to be serviced during the usage
period and by the buffer size to be allocated to these user
requests. These two values are dynamically changing, and
thus, the usage period cannot be determined a priori.

To remedy this flaw, we use the predict-and-enforce strat-
egy. We first predict the maximum number of user requests
to be serviced and the maximum number of additional user
requests during the usage period of the buffer, using two as-
sumptions that we describe shortly. We then determine the
buffer size based on these values predicted. At runtime, in
order to enforce the assumptions, we control the acceptance
of newly arriving user requests to keep the number of esti-
mated user requests within the limit. Any violation of these
assumptions is resolved by deferring service to the violating
new user request until the assumptions are satisfied.

We use the following two assumptions, which we call iner-
tia assumptions. In Figure4, when a buffer is allocated to a
user request R. at time %., the usage period of the allocated
buffer is T., and the number of user requests in service and
the number of estimated additional user requests at time .
are n. and k., respectively.

Assumption 1: the number n; of user requests to be ser-
viced at an arbitrary time ¢; within T, is less than or
equal to n. + ke (i.e., nj < ne + ke).

Assumption 2: the number k; of estimated additional re-
quests at an arbitrary time ¢; within T¢ is less than or
equal to k. +a (i.e., k; < kc+a). Here, o is an integer
greater than or equal to one.

Current
j T, j(T, > n:the number of user
time } 1 1 | > requestsin service
ty t t. t t k:the number of estim-
' ! 1 ated additional requests
R R R T,, T, : service periods

n=n n=n(s ni+ k) n=ny(< n.+ k) R : the i" newly arriving

k=ki k=k (s k+) k=k (< k.+ a) user reguest

Figure 4: Assumptions used in the dynamic buffer
allocation scheme.

Assumption 1 is based on our expectation that the number
of user requests to be serviced at an arbitrary time within 7T
is less than or equal to n.+ k., i.e., based on the system’s in-
ertia. Assumption 2 implies that the number k; of estimated
additional requests increases by at most a during a usage pe-
riod limiting changes in the system’s inertia. This assump-
tion leaves a room for the number of estimated additional
requests to increase by a when the arrival rate increases
in the future. If a is large, the system can quickly adapt
to a large increase in the arrival rate. If a is large, how-
ever, we might allocate unnecessarily large buffers to user
requests and cause the memory requirements to increase.
Conversely, if « is small, we can decrease the memory re-
quirements. However, the systems cannot adapt quickly to
a large increase in the arrival rate, and the number of actual
additional requests can become greater than the number of
estimated additional requests for some period of time. If «
is small, many additional requests are delayed to the next
service period, and thus, initial latency is increased. In this
paper, we use one as the value of « in order to reduce mem-
ory requirements. This is because a VOD system has a short
service period, and the arrival rate of user requests rarely
increases by a large amount during this time.

The dynamic buffer allocation scheme determines the buffer
size BSk_(n.)* as the minimum required in the worst case
(nj = ne+ke and k; = k.+a) allowed by Assumptions1 and
2. Consequently, this scheme assumes that n. + k. buffers
whose sizes are BSj,+q(nc + k) are serviced within the us-
age period T, of the buffer to be allocated. Here, k. +a rep-
resents the number of estimated additional requests. Thus,
in a real environment, if n; < n. + k. and k; < k. + «
are satisfied (i.e., Assumptions1 and 2 are satisfied), then
the allocated buffers do not become empty. On the other
hand, if n; > nc + kc or kj > k. + « (i.e., Assumption1 or
2 is not satisfied), then the allocated buffers may become
empty. Therefore, in order to prevent the previously allo-
cated buffers (i.e., those allocated to user requests that are in
service) from becoming empty, the dynamic buffer allocation
scheme controls the admission of newly arriving requests to
satisfy Assumptionl and adjusts the number of estimated
additional requests to satisfy Assumption 2. For example, in
Figure 4, to prevent the buffer allocated to the user request
R; at time ¢; (for all 4, 1 < i < n.) from becoming empty,
the system checks whether n. < n; +k; is satisfied to control
the admission of the requests newly arriving at time ¢, and
then, determines k. so that k. < k; + « is satisfied.

3.2 The Buffer Allocation Algorithm

Figure 5 shows the buffer allocation algorithm. In this figure,
RequestList is a list that maintains user requests in service
sorted by the order of servicing dictated by a specific buffer
scheduling method. @ is a queue for newly arriving user
requests. The parameters n; and k; represent the number
of user requests in service and the number of estimated ad-
ditional requests, respectively. They are used at the buffer
allocation time for the i*"(1 < i < n) user request R; in
RequestList.

We now explain the algorithm. Procedure Dynamic_Buffer
_Allocation computes the buffer size for each user request.
Procedure Admission_Control controls the admission of the
newly arriving user requests. Step 1 in Procedure Dynamic_
Buffer_Allocation removes the completed user requests from
RequestList. Procedure Admission_Control, which is called
in Step 2, checks whether Assumption1 is satisfied for all
user requests in service when the number of user requests in
service became (n+ 1) after admitting a newly arriving user
request. Since the user requests in service are R;(1 <i < n)
in RequestList, the procedure checks whether Assumption 1
(i.e., (n+1) < n; +k;) is satisfied for all R; (ie., (n+1) <

n

Step 3 in Procedure Dynamic_Buffer_Allocation retrieves a
user request R., which is to be serviced next, from Request-
List. Step4 computes the values n. and k.. In this step,
n. i8S set to the number n of user requests being serviced at
current time, and k. is set to the sum of ko4 of additional
requests arriving during the recent Tj,4 and « provided that
it satisfies Assumption2. Step5 determines the buffer size
based on n. and k. and allocates the buffer to R..

To satisfy Assumption2, k. must be less than or equal
to every k; + a(l < i < n). Accordingly, k. must be less

n
than or equal to rnl{l(kz +). For the future arrival rate, we
i=

*We use the notation BSy, (nc) for the buffer size of the dynamic
buffer allocation scheme since it varies depending on the number
k. of additional requests.

use kiog + a because, as shown in Assumption 2, we assume
that the future arrival rate may increase in comparison with
the recent arrival rate, so that the number of future actual
additional requests may increase by a compared with the
number of recent actual additional requests. We present the
method to determine the value of Tjog in Section 4.

Procedure Dynamic_Buffer_Allocatoin
/* RequestList consists of n user requests, */
/* which are currently in service. */
1. For each R € RequestList
e If (R is completed) then
— RequestList <+ RequestList — {R}
—n+<n-—1
2. If (Q is not empty) then

e Execute Procedure Admission_Control
3. Retrieve a user request R. from RequestList

4. Compute n. and k.
e n. < n

® ki,g + the maximum number of additional requests
arriving during 7,4
/* rlnz?(kl + a) is the minimum value to enforce */
/* A;sumption 2 n */
o k.« min{k;oy + f!Jl‘ﬂ:l?(kz + a)}
5. Allocate a buffer to the user request R. based on n. and

ke

6. goto step 1

Procedure Admission_Control

1. While (Q is not empty)
begin
/* Assumptionl is satisfied */
If (n+1) < rﬁ?(m + k:)) then

e Get a newly arriving user request R,eq.w from Q
e RequestList < RequestList U {Rypew}
e n+<n-+1
else
/* a newly arriving user request is delayed */
e return to Procedure Dynamic_Bujffer_Allocation

end

Figure 5: The dynamic buffer allocation algorithm.

3.3 Determining the Buffer Size

The dynamic buffer allocation scheme determines the buffer
size BSj(n) based on the assumption that n + k buffers,
whose sizes are BSj4q(n + k), will be operating within the
usage period of the buffer to be allocated. Thus, the buffer
size BSj(n) is represented as a recurrence equation including
BSkia(n + k). The boundary condition of this recurrence
equation occurs when the system is in the fully loaded state.
In this case, the system services N buffers whose sizes are
BSy(N) within the usage period of the buffer to be allocated
because n = N and k = 0. Thus, the buffer size allocated by
the dynamic buffer allocation scheme is equal to the buffer
size that would be allocated by the static buffer allocation
scheme. Theorem 1 provides the buffer size allocated by the
dynamic buffer allocation scheme.

Theorem 1. : The buffer size for supporting n user re-
quests in service and k estimated additional requests, using
the dynamic buffer allocation scheme, is BSy(n) shown in
Equation (6).

Table 2: The buffer size allocated by the dynamic buffer allocation scheme for each buffer scheduling method.

Buffer Scheduling |

Buffer size BSy(n) supporting n user requests in service and k estimated user requests |

Method |

n< N

n=N |

Round-Robin

(n+i X k 4+ (i—l)zxixa) %

N2xTR "
TR-NXCR

(v(Cyln) +6)x

e—2 i1 .)
CR\? . G- Xjxa NXCRXTR
ZEO{(TR XJQI("'+JX’°+ 2)}+ TR-NXCR
CRYye—1 e—l() (jfl)xjxn)-
= x N x I n+4+j Xk g
(58) ;
a1 1w 2
Sweep* (v(Cyln/n) + 8) x CR x [(%)" x I (n +ixk4 U 1)2“”‘) x TR IR 1 | (v(Cyln/n) + 8)x
e—2 o it . .
CR)\? . (G—1)XjiXa NXCRXTR
zgo{(T) ngl(n'+]>(k+ R)}+ TR-NxCR
—1
($82)° T nNxT (n+]xk+(]*])><]x“)
j=
e—1 . . 2
GSS* (+(CyIn/g) +6) x CR x [(%—R)F)T (w4 Lt) o JEXTR oL | (iCutn /o) + 6
e—2 it1 .)
CR)? . (J—1)XjXa NXCRXTR
ZEO{(T) X]E1 ("+’Xk+ 2)}"’ TR-NXCR

BSy(n) =
DL x CRX
Y .) 2
C e € . . (i—1)XiXao NxXTR
[(ﬁ) * I ("*”“’* p))X TR-NxCR T
e—2 o it .)
CR)? xR (]—1)><]><a)
Eo{(T) xjgl(n+1>< R (6)
— e—1 . .
(%)elxijgl(nﬁ»jxk{.H#)] < N
NXCRXTR —
DL X TR=N%CR n=N
’73k+\/k2+nx(2x(Nn)k)+”f
Jwhere e = _
Proof: Refer to Appendiz A. 0

In Theorem 1, the formula when n < N represents the buffer
size allocated by the dynamic buffer allocation scheme in a
partially loaded state; the formula when n = N represents
the buffer size in the fully loaded state. The buffer size for
each buffer scheduling method can be obtained by replacing
DL in Equation (6) with each buffer scheduling method’s
disk latency as discussed in Section 2.2. The result is shown
in Table 2.

Calculating the equations in Table 2 may need consider-
able CPU time whenever the server allocates a buffer to a
user request. We can solve this problem by pre-computing
the equations for all-possible values of n and k, and storing
the computed values. When the server actually allocates the
buffer to a user request, the server uses a stored value. In
this case, since the maximum values of n and k are N, the
complexity of memory space requirement is O(N?). Since N
is small, however, the memory space overhead is negligible.

4. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the dynamic
buffer allocation scheme and compare it with the static sch-
eme. Through analysis and simulation, we evaluate for each
buffer allocation scheme initial latency and the number of
concurrent user requests that can be supported. Section 4.1
describes the environment for performance evaluation. Sec-
tion 4.2 evaluates initial latency. Section4.3 evaluates the
number of concurrent user requests that the system can sup-
port.

4.1 The Environment for Performance Evalu-
ation

We evaluate the performance for a VOD system using a
Seagate Barracuda 9LP disk [1, 6] having the specifications
described in Table 3. We assume that a video is 120 minutes
long, encoded via MPEG-1 with an average transfer rate of
1.5Mbps. Following the model proposed in the references [6,
13], we assume that the disk seek time function v(z) for a
disk head scanning =z cylinders is as in Equation (7). The
values of pl, p2, v1, and v2 are in Table 3.

ul+ (v1 x Va),

< 400
(=) = { u2 + (v2 X 2), > 400 M

Table 3: The specification of the Seagate Barracuda
9LP disk.

Parameter Name [Value

Disk Capacity | 9.19 GBytes
RPM | 7,200
Min. Transfer Rate TR | 120 Mbps
Max. Rotational Latency Time | 8.33 ms
Max. Seek Time(read) | 13.4 ms
pl | 0.54 ms
u2 | 5 ms
vl | 0.26 ms
v2 | 0.0014 ms
N | 79

In the simulation, we assume that user requests arrive in
a Poisson Process. In addition, we assume that the arrival
rate X of user requests is changed every 30 minutes, and this
change follows the Zipf distribution whose peak time occurs
after 9 hours of system service [16]. The Zipf distribution
has 0 as a parameter, with 6 being a number between 0 and
1. Setting # = 0 corresponds to a highly skewed distribution;
setting # = 1 corresponds to a uniform distribution [16]. We
do the simulation in cases where 6 is 0.0, 0.5, and 1.0. In
order to simulate the video viewing pattern of user requests,
we assume that the video viewing time of user requests fol-
lows a uniform distribution between 0 and 120 minutes[7].

Figure 6 shows the number of the system’s concurrent user
requests for the Zipf distribution with varying values of 6.
Figure 6 shows that, when 6 is 0.0 or 0.5, the arrival rate is

high between 7 and 13 hours; when 6 is 1.0, the arrival rate
is uniform. In VOD systems, if the number of user requests
in service is equal to N, a newly arriving user request is
rejected by the system’s admission control. Thus, when 6
is 0.0 or 0.5, many user requests arriving between 7 and 13
hours are rejected.

o 300
S 6 of aZipf
g 20 Distribution
g £ 200 —:00
c% 150 / \L fg'g
;%9, 10(2 WA —
& 5
ﬁ 0 N=79
@ 02 46 8 1012 14 16 18 20 22 24

Time (hours)

Figure 6: The number of concurrent user requests
that the system must service when the arrival rate
)\ follows the Zipf distribution with 6.

We evaluate the performance with respect to the three
representative buffer scheduling methods: the Round-Robin,
Sweep®, and GSS* methods. As discussed in Section 2.2.3
the GSS* method determines the number of buffers in a
group in such a way that memory requirement is minimized
[17]. Since the memory requirements of the dynamic buffer
allocation scheme and the static one are minimized when a
group consists of eight buffers®, we use eight buffers for a
group.

In the dynamic buffer allocation scheme, we must deter-
mine T},4 to measure the number of estimated additional re-
quests. Figure 7(a) shows the average number of estimated
additional requests according to Tj,,. The average number
of estimated additional requests is obtained by averaging
over the different buffer allocation times. In this figure, the
average number of estimated additional requests increases as
T4 increases. This is because kiog, which is used in deter-
mining the number of estimated additional requests, is the
maximum number of actual additional requests per service
period that occurs during Tjog.

Figure 7(b) shows the successful estimation probability
of each buffer scheduling method according to Tj,y. The
probability also increases as Tj,, does because the number
of estimated additional requests increases as Tj,4 increases.
However, when Tj,, is larger than certain values (40 min-
utes in the Round-Robin method, 20 minutes in the Sweep™
and GSS™ method), the successful estimation probability is
larger than 99% in each scheduling method.

In the dynamic buffer allocation scheme, memory require-
ments increase as the number of estimated additional re-
quests increases, and initial latency increases as the suc-
cessful estimation probability decreases. Thus, we need to
keep the number of estimated additional requests as small
as possible provided that the successful estimation probabil-
ity does not degrade significantly. For this paper, we use 40
minutes as the value of T},4 in the Round-Robin method, 20
minutes in the Sweep™ and GSS™ method.

5These results are derived from the analysis of memory require-
ment for each buffer allocation scheme. The analysis can be found
in the reference [10] for the dynamic one and in the reference [4]
for the static one.

Figure 8 shows the buffer size allocated by each buffer al-
location scheme for each buffer scheduling method. The
static buffer allocation scheme determines the buffer size us-
ing Equation (5), and the dynamic one using Equation (6).
In Figure8, the buffer sizes of the static buffer allocation
scheme are constants since the scheme determines the buffer
size assuming the fully loaded state of the system. However,
the buffer sizes of the dynamic one vary according to the
number of user requests in service.

4.2 Initial Latency

We evaluate first the worst initial latency through analy-
sis, and then, evaluate the average initial latency through
simulation.

Figure 9 shows the worst initial latency of each buffer allo-
cation scheme for each buffer scheduling method. We obtain
this figure by applying the buffer size of each buffer alloca-
tion scheme to Equations (2), (3), and (4), which express the
worst initial latencies of each buffer scheduling method. As
shown in Figure9, as the number of user requests in service
decreases, we have a shorter initial latency in the dynamic
buffer allocation scheme compared with the static scheme.
This is because the dynamic one allocates smaller buffers if
there are fewer number of user requests in service.

Figure 10 shows the average initial latency obtained thr-
ough simulation. To avoid noise, we run simulation five
times with different random seed value for the arrival time
of the user request. In Figure 10, except for vibration, the
trend of the graph is similar to that of the analytic re-
sult in Figure9. As shown in Figure 10, the initial latency
of the dynamic buffer allocation scheme is, in most cases,
smaller than that of the static scheme regardless of the buffer
scheduling methods and the number of user requests in ser-
vice. The numbers in Figure 10 are smaller in the absolute
scale than those in Figure9 because the former shows the
average values and the latter shows the worst ones. Fig-
ure 10 shows vibration because initial latency is affected by
the arrival time of an individual user request. On the other
hand, Figure9 shows steady trends because it assumes the
worst, case.

Table4 shows the average reduction ratio of the aver-
age initial latency for the dynamic buffer allocation scheme
over the static one according to different buffer scheduling
methods and arrival rate patterns (i.e., the Zipf parameter
f). The average reduction ratio is obtained from Figure 10
by averaging the reduction ratios over different numbers of
user requests in service. Table4 shows that the dynamic
buffer allocation scheme reduces the average initial latency
to ﬁ ~ ﬁ of that for the static one in the Round-
Robin method, —— ~

1
.] 19.65 19.50
. *
39.38 ~ 37.96 in the GSS™ method on the average.

in the Sweep™ method, and

Table 4: The average reduction ratio of the initial la-
tency for the dynamic buffer allocation scheme over
the static one.

Zipf parameter || Average Reduction Ratio |

(6) | Round-Robin Sweep* Gss* |
T T T
0.0 1,04 19,50 37.96
05 i i i
: 11.59 19.65 28.48
1.0 1 1 1
: 10.97 1960 79 38

Distribution o user requests

. . LA : 100 105 & 110
arrival rate (6 of aZipf Distribution)
Sy 45 el P 45 >y 45
22 . 52 5 .
g% 35 . 3% 35 " 1l|5% 35
82 .3 e 8% /‘——k"././la/a G ’k——./‘/‘_k_d
B fg_g oG 3 r——//a”‘a/a—a/ ey ¢ — /
2z 25 25 25 35 25
g3 —F—a g3 < g3 < M——G\B/q
o 90— o o e,
°% 95 L v 45 C °Se 45 oy
10 20 30 40 50 60 70 80 10 20 30 40 50 60 70 80 10 20 30 40 50 60 70 80
TIog (Minutes) TIog (Minutes) TIog (Minutes)
(i) Round-Robin Method (i) Sweep* Method (iii) GSS* Method
(a) The Average Number of Estimated Additional Requests
(%]
g 100 W{; £ 100 W‘ £ 100 W 2
oo oo o
<o 3@ sy
e Ul L N7 i SI=s
=3 =m Sm
i% 97 i% 97 i% 97
s S S
LT 25 96 £5 96
g 95 L ! I I L L I g 95 L L L L L L - g 95 I L I I I I I
10 20 30 40 50 60 70 80 10 20 30 40 50 60 70 80 10 20 30 40 50 60 70 80
T, (Minutes) T, (Minutes) T, (Minutes)
log log log

(i) Round-Robin Method

(ii) Sweep* Method

(b) Succes<ul Estimation Probability

(iii) GSS* Method

Figure 7: The average number of estimated additional requests and the successful estimation probability of
each buffer scheduling method according to Tj.,.

——— Static Buffer Allocation Scheme

——e——: Dynamic Buffer Allocaion Scheme

(s@1hqN) 8ZIS Jeyng

25 » 25 w 25
/ =4 <
20 / @ 20 @ 20
(%] 2]
15 / N 15 N 15 -~
10 = 10 el = 10 /
i g o H e
i _A_,.w"’r g ° & o
0 0 -gr"'/ 0 M",
1 10 20 30 40 50 60 70 79 1 10 20 30 40 50 60 70 79 1 10 20 30 40 50 60 70 79

Number of User Requests in Service

Number of User Requests in Service

Number of User Requests in Service

(a) Round-Robin Method

(b) Sweep* Method

(c) GSS Method

Figure 8: The buffer size vs. the number of user requests in service in the static and dynamic buffer allocation

schemes.
———: Static Buffer Allocation Scheme ——e——: Dynamic Buffer Allocation Scheme
=3 2 5 150 5 20
5,4 || 5 125 25 L 7
- — / —
) / 2 100 & / /
®1.2 o / g 12
a 2 75 o
2 / 2 / < g / /
g0¢8 - Z 50 7 7
@ o
(e} [¢] [e]
904 S 25 / 9 4
€ 4 -»-'*"'/’ N 1 R»-"'{ ““““““““
1 10 20 30 40 50 60 70 79 1 10 20 30 40 50 60 70 79 1 10 20 30 40 50 60 70 79
Number of User Requests in Service Number of User Requests in Service Number of User Requests in Service

Figure 9: The worst initial latency of the static and dynamic buffer

analysis.

(a) Round-Robin Method

(b) Swegp* Method

(c) GSS* Method

allocation schemes obtained through

. Static Buffer Allocaion Scheme

———: Dynamic Buffer Allocation Scheme

> 1.6 > 1.6 > 1.6
< < <
< A e {1 3 h
ﬁ§12 | 8 1.2J & 12H \
2} » © wn ©
2 I (TS e & \
S = 0.8 Y ¥ S = 0.8 “Y” g = 0.8)+F ¥ 'v
%E Nv %2 j %Q_’
=& 04 =5 04 =5 0.4
E J 3 3 J
3 =) 3
(2} Q Q
< 0 < 0 S E——— — < 0
1 10 20 30 40 50 60 70 79 1 10 20 30 40 50 60 70 79 1 10 20 30 40 50 60 70 79
Number of User Requests in Service Number of User Requests in Service Number of User Requests in Service
(i) 8=0.0 (i) 6=05 (i) 6= 1.0
(a) RoundRobin Method
125 125 125
: Vil Az .
—~Q —~Q —~Q
8% 75 8% 75 8% 75
o 3 O 3 o 3
sS= //\/ /J S = / f S= /f
28 50 /./ f 28 50 / / 28 50 ///"‘I _'/
L o &=
2 25 2 25 2 25
@ @ @
2 o g o e g o P
1 10 20 30 40 50 60 70 79 1 10 20 30 40 50 60 70 79 1 10 20 30 40 50 60 70 79
Number of User Requests in Service Number of User Requests in Service Number of User Requests in Service
(i) 6=00 (i) 6=05 (i) 6=1.0
(b) Sweep* Method
> 20 > 20 > 20
< < <
@ @ @
8 FM\I\,MJN-’“W g 16 g 16
—~Q —~Q —~Q
=9 o) MN,W ~ W\IV\IW\AM—WFQ.;
25 12 &s 12 gs 12 !
g = = g =
o2 8 a2 8 a2 8
o / /" o= / f L / /
2 4 24 2 4
@ @ @
1 10 20 30 40 50 60 70 79 1 10 20 30 40 50 60 70 79 1 10 20 30 40 50 60 70 79
Number of User Requests in Service Number of User Requests in Service Number of User Requests in Service
(i) 6=00 (i) 6=05 (i) 6=1.0

(c) GSS Method

Figure 10: The average initial latency of the static and dynamic buffer allocation schemes obtained through

simulation.

4.3 The Number of Concurrent User Requests

In VOD systems, to service a greater number of user re-
quests concurrently with the same amount of memory, we
must reduce memory requirements. Analysis of the mem-
ory requirement for each buffer allocation scheme can be
found in the reference [10]. The dynamic buffer allocation
scheme reduces memory requirements significantly when the
number of user requests in service is small. Most VOD sys-
tems use multiple disks due to voluminous amounts of video
data. When using multiple disks, disk load imbalance occurs
because of differing popularity of videos [16]. Many user re-
quests could be biased into a specific disk causing disk load
imbalance. In this environment, the dynamic buffer alloca-
tion scheme is able to reduce memory usage for disks that
service fewer user requests and utilize the saved memory for
disks that service greater user requests. Thus, the dynamic
buffer allocation scheme can service more concurrent user
requests than the static buffer allocation scheme given the
same amount of memory.

Figure 11 shows the simulation result of the number of
concurrent user requests that can be serviced by the VOD
system having ten Seagate Barracuda 9LP disks for the
Round-Robin method according to different sizes of main
memory available. Results for other buffer scheduling meth-

ods are similar. Analytical results can be found in the refer-
ence [10]. These results are obtained under the assumption
that the number of user requests arriving to each disk follows
a Zifp distribution with 6 of 0.0, 0.5, and 1.0, respectively.
According to the reference [16], the popularity of video data
follows the Zipf distribution with § = 0.271.

Figure 11 shows that the dynamic buffer allocation scheme
services more user requests concurrently than the static one
regardless of the distributions of disk load. This is because
the dynamic buffer allocation scheme uses memory effec-
tively than the static scheme. In a system with 11 Gbytes
of memory, both buffer allocation schemes service the same
number of concurrent user requests. This is because, by
having sufficient memory, the number of concurrent user
requests is determined only by the limitation of the disk’s
performance.

Table 5 shows the average improvement in the number of
concurrent user requests for the dynamic buffer allocation
scheme over the static one according to different distribu-
tions of disk load (i.e., the Zipf parameter #). The average
improvement ratio is obtained from Figure 11 by averaging
the improvement ratios over different amounts of system
memory. Table5 shows that the dynamic scheme increases
the number of concurrent user requests by 2.36 ~ 3.25 times
compared with that of the static one on the average.

—: Static Buffer Allocaion Scheme

——e——: Dynamic Buffer Allocaion Scheme

9 900 9 900 S 900

3 3 3

g 750 ///7 ° 750 ///7"’ 2 750 //.//‘”'

2 Z 600 / € Z 600 / / 8 Z 600 / /

C3 C3 CE 4

&g 450 / xg 450 / o 50 ¢

D = o = D =

0. 300 — o 300 T o 800

@ [0) (0]

2 150 2 150 S 150

® 1234568678910 11| 123456782910 117 123456789 10 11
Amount of System Memory (Gbytes) Amount of System Memory (Gbytes) Amount of System Memory (Gbytes)

(8 6=00

(b) 6=05

(c)8=10

Figure 11: The number of concurrent user requests serviced by the Round-Robin method obtained through

simulation.

Table 5: The average improvement ratio of the num-
ber of concurrent user requests for the dynamic
buffer allocation scheme over the static one.

[Distribution of Disk T.oad (f) [Average Improvement Ratio |

0.0 2.36
0.5 2.78
1.0 3.25

5. CONCLUSIONS

We have proposed a dynamic buffer allocation scheme that
reduces initial latency and memory requirement in VOD
systems. The existing static buffer allocation scheme de-
termines the buffer size assuming the fully loaded system
state. Thus, the static scheme allocates an unnecessarily
large buffer when the system is not in the fully loaded state.
In contrast, the dynamic buffer allocation scheme allocates
the minimum buffer size in a partially loaded state as well
as in the fully loaded state. Smaller buffers result in smaller
initial latency and memory requirements. Smaller memory
requirements, in turn, result in servicing more concurrent
users.

The inherent difficulty in determining the buffer size in
the dynamic buffer allocation scheme is that the size of the
buffer currently being allocated depends on the number of
and the sizes of the buffers to be allocated in the next ser-
vice period. To solve this difficulty, we have proposed the
predict-and-enforce strategy, where we predict the number
of and the sizes of future buffers based on inertia assump-
tions and enforce these assumptions at runtime. Any vio-
lation of these assumptions is resolved by deferring service
to the violating new user request until the assumptions are
satisfied.

The dynamic buffer allocation scheme can be used with
any buffer scheduling methods because it is independent of
them. To demonstrate this applicability of this, we have
applied the dynamic buffer allocation scheme to the three
representative buffer scheduling methods: the Round-Robin
(BubbleUp), Sweep”, and GSS™ methods.

We have also derived detailed equations for the buffer sizes
to be allocated by our dynamic buffer allocation scheme.
The buffer size is represented as a recurrence equation be-
cause of its dependency on the sizes of the buffers to be allo-
cated in the future. We have solved this equation in Theo-
rem 1 and derived the buffer size for each scheduling method
in Table2. The results in Table2 can be pre-computed at
the system initialization time.

Through analysis and simulations, we have validated that
our dynamic buffer allocation scheme significantly outper-
forms the static scheme both in initial latency and in the
number of concurrent user requests that can be supported.
Our simulation results show that the dynamic buffer alloca-
tion scheme reduces initial latency (averaged over the num-
ber of user requests in service from one to the maximum
capacity) to ﬁ ~ ﬁ of that for the static one and, by
reducing the memory requirement, increases the number of
concurrent user requests to 2.36 ~ 3.25 times that of the
static one when averaged over the amount of system mem-
ory available. These results demonstrate that the dynamic
buffer allocation scheme significantly improves the perfor-
mance and capacity of VOD systems.

6. ACKNOWLEDGEMENTS

This work was supported by the Korea Science and Engi-
neering Foundation (KOSEF) through the Advanced Infor-
mation Technology Research Center (AITrc). The authors
benefited from visiting the Computer Science Department
of Stanford University in Summer 2000 in completing the
work presented in this paper.

7. REFERENCES

[1] Seagate Barracuda 9LP Family Product Specification.
Seagate, Inc., 1998 (available from URL:
http://www.seagate.com).

[2] S. Berson, S. Ghandeharizadeh, R. Muntz, and X. Ju.
Staggered striping in multimedia information systems.
In Proc. Int’l Conf. on Management of Data, ACM
SIGMOD, pages 79-90, 1994.

[3] E. Chang and H. Garcia-Molina. Bubbleup: Low
latency fast-scan for media servers. In Proc. 5th ACM
Int’l Conf. on Multimedia, pages 87-98, 1997.

[4] E. Chang and H. Garcia-Molina. Effective memory use
in a media server. In Proc. 23rd Int’l Conf. on Very
Large Data Bases, pages 496 505, 1997.

[5] E. Chang and H. Garcia-Molina. Cost-based media
server design. In Proc. 8th Int’l Workshop on Research
Issues in Data Engineering, pages 76 83, 1998.

[6] E. Chang and H. Garcia-Molina. Accounting for
memory use, cost, throughput, and latency in the
design of a media server. Technical Report
SIDL-WP-1998-0096, Stanford University, 1998
(available from
http://www-db.stanford.edu/pub/papers/jvld98.ps).

[7] A. Dan, D. Sitaram, and P. Shahabuddin. Scheduling
policies for an on-demand video server with batching.
In Proc. 2nd ACM Int’l Conf. on Multimedia, pages
15-23, 1994.

[8] J. K. Dey-Sircar, J. D. Salehi, J. F. Kurose, and
D. Towsley. Providing ver capabilities in large-scale
video servers. In Proc. 2nd ACM Int’l Conf. on
Multimedia, pages 25 32, 1994.

[9] L. Goluchik, J. C. S. Lui, and R. R. Muntz. Adaptive
piggybacking: A novel techniques for data sharing in
video-on-demand storage servers. Multimedia Systems,
ACM, 4(3):140-155, 1996.

[10] S.-H. Lee, Y.-S. Moon, K.-Y. Whang, and S. I.-Y.
Dynamic buffer allocation in video-on-demand
systems. Technical Report 00-11-006, Advanced
Information Technology Research Center (AITrc),
KAIST, 2000 (available from
http://aitrc.kaist.ac.kr/research/search.html).

[11] D. J. Makaroff and R. T. Ng. Schemes for
implementing buffer sharing in continuous-media
systems. Information Systems, 20(6):445 465, 1995.

[12] H. Pan, L. H. Ngoh, and A. A. Lazar. A
buffer-inventory-based dynamic scheduling algorithm
for multimedia-on-demand servers. Multimedia
Systems, ACM, 6(2):125-136, 1998.

[13] C. Ruemmler and J. Wikes. An introduction to disk
drive modeling. IEEE Computer, 27(3):17 28, 1994.

[14] T.-P. J. To and B. Hamidzadeh. Dynamic real-time
scheduling strategies for interactive continuous media
servers. Multimedia Systems, ACM, 7(2):91-106, 1999.

[15] F. A. Tobagi, J. Pang, R. Baird, and M. Gang.
Streaming RAID™ a disk array management
system for video files. In Proc. 1st ACM Int’l Conf. on
Multimedia, pages 393 400, 1993.

[16] J. L. Wolf, P. S. Yu, and H. Shachnai. Disk load
balancing for video-on-demand systems. Multimedia
Systemns, ACM, 5(6):358 370, 1997.

[17] P. S. Yu, M.-S. Chen, and D. D. Kandlur. Grouped
sweeping scheduling for dasd-based multimedia
storage management. Multimedia Systems, ACM,
1(1):99-109, 1993.

Appendix A Proof of Theorem 1

Since a VOD system must provide data to a user request
during the usage period T of each buffer, as shown in Equa-
tion (8), the buffer size BSy(n) is greater than or equal to
T x CR, which is the amount of data that a user request
consumes during T'. In addition, as described in Section 3.1,
since the dynamic buffer allocation scheme must be able to
service n + k buffers whose sizes are BSkyq(n + k) within
the usage period T of the buffer to be allocated, it must sat-

isfy Equation (9). In Equation (9), 224" 4 D1 s the
time that the server takes to service one buffer whose size is
BSji+ta(n+k). Equation (8) and Equation (9) are expanded

into Equation (10), a recurrence inequality.

BSp(n) > T xCR (8)
s 4k

T > (n+k)x(”+;7;+)+DL) (9)

BSp(n) > (n+k)x (m‘*;i;:*'k) + nr,) x CR (10)

Since VOD systems can concurrently service a maximum
of N user requests, the number of user requests that must
be serviced within a usage period is less than or equal to
N. Therefore, BS,(N) is the buffer size allocated by the
dynamic buffer allocation scheme in the fully loaded state
and becomes Equation (11), which is identical to BS(IN)
of Equation (5) derived in Section2.3. We can obtain the
buffer size BSi(n) allocated by the dynamic buffer alloca-
tion scheme in a partially loaded state by expanding Equa-
tion (10). Equation (10) is expanded into Equation (12). In
Equation (12), n+e x k+ M# is greater than or equal
to N. Since the number of concurrent user requests is less
than or equal to N, however, n+exk+ (671)# is replaced
by N. Thus, Equation (12) becomes Equation (13). By re-
placing BSy(NN) with Equation (11), Equation (13) becomes
Equation (14).

N xXCR Xx TR

BSL(N) = DLX*TR—NXCR (11)

BS » + ke
BSp(n) > (n+lc)><(7’“"""(n+)+DL)><(,‘R n< N
TR
CR
= — X (n+k) XBSpia(n+k)+(n+k)x DL X CR
TR
CR CR
> —x(n+k]x{—><(n+2xk+a)><
TR TR
Bsk+2><a(n,+2xk+u)+(n,+2><k+n)xnr,xCR}+
(n+ k) x DL x CR
CR\?2
= e X (n+k)X(n+2Xk+a)x
TR
BSpioxa(n +2 % k+a)+
CR
(n+k)><DL><(,‘R><(—x(n+2><k+a)+1)
TR
>
CR\¢€ © i — 1) X i X
> (_) XH("+ixk+w)x
TR i=1 2
(e —1) X e X a
BSp [n+exk4+ —"—"— |+ DL x CR x
2
e—1 cr\i it1 i — 1) xj x
Z{(—) x H(n+jxk+7(]) ") 12)
i=0 TR =1 2
%—k+\/k2+ux(2x(N—n)—k)+‘z—2
,where e = -
CR\€ e—1 i — 1) X i X
= (—) xH(n+ixk+w)x
TR i=1 2
N x BSp(N)+ DL x CR x
e—2 cr\i itl G—-1)xjxa
[Z {(—) x 11 (n+j><k+7) + (13)
i=0 TR j=1 2
cr\e—1 e—1 G -1 Xjixa
— xNx [[(n+ixkt —-—"——
TR =1 2
DL x CRx
.1)) 2
c e € . . (i—1)XiXao N“xXTR
[(ﬁ) Xigl("Jr’X’"* 2)X"rﬁfwxcnJr
e—2 ;i1))
CR)i ; G=DXjxXa
B = 2\ (FR) Xj51("+”’°+ 2)}+ (14)

Zo
1 e—1 .)
%)e xNx[‘[(n+jxk+(]1)#) n < N
=1
NXCRXTR —
DL X TR-NXCR m =N
"”k+\/k2+ux(2x(Nn)k)+“’2
P) 1
where e = _

https://www.researchgate.net/publication/3297224

