
Dynamic Buffer Allocation
in Video-on-Demand Systems

Sang-Ho Lee, Member, IEEE, Kyu-Young Whang, Senior Member, IEEE,

Yang-Sae Moon, Member, IEEE, Wook-Shin Han, Member, IEEE, and

Il-Yeol Song, Member, IEEE Computer Society

Abstract—In video-on-demand (VOD) systems, as the size of the buffer allocated to user requests increases, initial latency and

memory requirements increase. Hence, the buffer size must be minimized. The existing static buffer allocation scheme, however,

determines the buffer size based on the assumption that the system is in the fully loaded state. Thus, when the system is in a

partially loaded state, the scheme allocates a buffer larger than necessary to a user request. This paper proposes a dynamic buffer

allocation scheme that allocates to user requests buffers of the minimum size in a partially loaded state, as well as in the fully

loaded state. The inherent difficulty in determining the buffer size in the dynamic buffer allocation scheme is that the size of the

buffer currently being allocated is dependent on the number of and the sizes of the buffers to be allocated in the next service

period. We solve this problem by the predict-and-enforce strategy, where we predict the number and the sizes of future buffers

based on inertia assumptions and enforce these assumptions at runtime. Any violation of these assumptions is resolved by

deferring service to the violating new user request until the assumptions are satisfied. Since the size of the current buffer is

dependent on the sizes of the future buffers, it is represented by a recurrence equation. We provide a solution to this equation,

which can be computed at the system initialization time for runtime efficiency. We have performed extensive analysis and

simulation. The results show that the dynamic buffer allocation scheme reduces initial latency (averaged over the number of user

requests in service from one to the maximum capacity) to 1
29:4 � 1

11:0 of that for the static one and, by reducing the memory

requirement, increases the number of concurrent user requests to 2:36 � 3:25 times that of the static one when averaged over the

amount of system memory available. These results demonstrate that the dynamic buffer allocation scheme significantly improves

the performance and capacity of VOD systems.

Index Terms—VOD systems, dynamic buffer allocation, multimedia systems, buffer scheduling methods.

æ

1 INTRODUCTION

RECENT advances in communication and video data
technologies such as compression and digitalization

have enabled the transmission of even large amounts of
video data over networks. These technologies are widely
used for applications such as video-on-demand (VOD),
online tutorials, and video games.

VOD systems provide video data to users upon user

requests. There are two important characteristics of video

data: First, the amount of video data is voluminous. Second,

video data must be continuously provided to the user. The
former requires that VOD systems use buffers for managing
data by block units because systems cannot store the entire
video data in memory. The latter mandates buffer manage-
ment of VOD systems to retrieve new data blocks into the
buffer before a user request uses up the data in the buffer.

In buffer management of VOD systems, it is important to
minimize memory requirements and initial latency [1].
Initial latency is the duration between the arrival of a user
request and the arrival of the requested video data in the
server’s main memory. By minimizing main memory
requirements, the system can support a larger number of
concurrent user requests with the same amount of memory.
By minimizing initial latency, the system can provide
VCR functions with shorter response time and, thus, can
improve the quality of service. We note that VCR functions
like fast forward and fast rewind are considered new user
requests in most VOD systems [1], [2], [3], [4].

Several buffer scheduling methods for VOD systems
have been proposed that minimize memory requirements
and initial latency [1], [4], [5], [6], [7]. The buffer scheduling

method determines the order of filling data buffers allocated
to user requests. These methods use static buffer allocation
to allocate buffers to user requests. The static buffer allocation

scheme determines the minimum buffer size based on the
assumption that the system is in the fully loaded state, i.e.,
the system services the maximum number of user requests

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 15, NO. 6, NOVEMBER/DECEMBER 2003 1535

. S.-H. Lee is with the Department of Computer Engineering, Korea
Polytechnic University, 2121 Jungwang-Dong, Shihung-City, Kyonggi-
Do, 429-793, Korea. E-mail: sangho@kpu.ac.kr.

. K.-Y. Whang is with the Department of Computer Science and Advanced
Information Technology Research Center (AITrc), Korea Advanced
Institute of Science and Technology (KAIST), 373-1 Kusong-Dong,
Yusong-Gu, Taejon 305-701, Korea. E-mail: kywhang@mozart.kaist.ac.kr.

. Y.-S. Moon is with the R&D Center of InfraValley, Inc., 5F U-Song Bldg.,
361-10 Yatap-Dong, Bundang-Gu, Sungnam-Si, Kyungki-do 463-868,
Korea. E-mail: ysmoon@mozart.kaist.ac.kr.

. W.-S. Han is with the Department of Computer Engineering, Kyungpook
National University, 1370 Sankyuk-Dong, Puk-Gu, DaeGu 702-701,
Korea. 373-1 Kusong-Dong, Yusong-Gu, Taejom 305-701, Korea.
E-mail: wshan@knu.ac.kr.

. I.-Y. Song is with the College of Information Science and Technology,
Drexel University, Philadelphia, PA 19104.
E-mail: song@drexel.edu.

Manuscript received 13 July 2001; revised 20 Feb. 2002; accepted 11 Mar.
2002.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number 114535.

1041-4347/03/$17.00 ß 2003 IEEE Published by the IEEE Computer Society

Authorized licensed use limited to: Korea University. Downloaded on July 27,2024 at 12:17:16 UTC from IEEE Xplore. Restrictions apply.

that can be supported. The system consistently allocates this
buffer size to all user requests regardless of the system’s
load. VOD systems must allocate larger buffers to user
requests as the number of user requests in service increases.
Thus, the static buffer allocation scheme has a disadvantage
in that it uses memory inefficiently by allocating a larger
buffer than necessary when the system is not in the fully
loaded state. Hence, the static scheme increases memory
requirements and initial latency of systems [1], [5], [8].

To and Hamidzadeh [9] recently proposed a scheme for

improving efficiency in memory usage of the static buffer

allocation scheme. This scheme allocates unused memory to

user requests in service when the system is in a partially

loaded state, thus utilizing all the system memory. Since

this scheme allocates more memory to user requests in

service, however, the time for the next service can be

delayed. Due to the extended service time, the scheme can

service a new user request sooner. Accordingly, this scheme

can decrease initial latency for newly arriving requests [9].

Since the scheme computes the initial buffer size based on

the static buffer allocation scheme, however, it also has the

disadvantage of allocating an unnecessarily large buffer as

in the static buffer allocation scheme.

This paper proposes a dynamic buffer allocation scheme, a

novel approach for the buffer allocation, that dynamically

allocates the minimum buffer size in a partially loaded

state, as well as in the fully loaded state. The inherent

difficulty in allocating the buffer in the dynamic buffer

allocation scheme is that the size of the buffer currently

being allocated is dependent on the number of and the sizes

of the buffers to be allocated in the future, which are yet to

be determined. We provide a solution to this problem using

the predict-and-enforce strategy to be described in Section 3.

Further, due to the dependency on the future, the buffer

size is determined by a recurrence equation. We also

provide a solution to this equation in Section 3.
The advantages of this scheme are as follows: First,

this scheme removes the static buffer allocation scheme’s
problem of allocating unnecessarily large buffers in a
partially loaded state. Second, by allocating the mini-
mum buffer size, our scheme significantly improves the
average initial latency and the average number of
concurrent user requests that can be supported. Third,
this scheme is independent of buffer scheduling methods

and is applicable to all existing buffer scheduling
methods. To validate our scheme, we demonstrate that
our dynamic scheme can be used with representative
buffer scheduling methods: the Round-Robin method [1],
[5], [10], the Sweep method [1], [5], [10], and the GSS
method [6].

The remainder of this paper is organized as follows:
Section 2 presents related work on the VOD system model.
Section 3 presents the dynamic buffer allocation scheme
proposed in this paper. Section 4 analyzes the memory
requirements of the dynamic buffer allocation scheme.
Section 5 evaluates the dynamic buffer allocation scheme
through extensive simulation and analysis. The results are
compared with those of the static scheme in terms of initial
latency and the number of concurrent user requests that can
be supported. Finally, Section 6 concludes the paper.

2 RELATED WORK

This section covers the model of VOD systems, existing
buffer scheduling methods used in buffer management, and
the static buffer allocation scheme.

2.1 The Model of Video-on-Demand Systems

The basic architecture of VOD systems, shown in Fig. 1,
consists of disks storing video data, a buffer allocated to
each user request, and a server that retrieves video data
from the disks to the buffer. We define a service as the work
that the server retrieves video data from the disk and fills
each buffer with the data. We also define the service period as
the time interval it takes for the server to fill all the buffers
in service one time with video data. A service period varies
according to the number of buffers in service. Finally, we
define the consumption rate as the rate at which each user
request consumes video data and disk latency as the sum of
disk seek time and rotational delay [10].

The server of a VOD system allocates one buffer to each
user request that arrives at the system. The server
continuously provides users with video data by periodi-
cally filling all the buffers allocated. The buffer scheduling
method determines the order in which the server fills the
buffers with data. In this paper, we use three representative
buffer scheduling methods. The Round-Robin method
services each buffer periodically in the order of allocation
[1], [5], [10]. The Sweep method services buffers in the order
of the data’s position in a disk in order to minimize the disk
seek time [1], [5], [10]. The GSS method first constructs
several groups of buffers. Then, the GSS method services
buffers within each group with the Sweep method, while
servicing each group with the Round-Robin method [6].

To reduce the system’s memory requirements, buffers
allocated to each user request share memory. That is, user
requests release memory for buffers right after they use the
data in buffers (i.e., using the use-it and toss-it policy). The
server allocates the released memory to the buffers of other
user requests [5], [11]. Memory is allocated and released by
the page unit.1 Accordingly, no memory fragmentation can
occur because of memory sharing. In this paper, however,

1536 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 15, NO. 6, NOVEMBER/DECEMBER 2003

Fig. 1. The basic architecture of video-on-demand systems.

1. Each buffer is composed of several memory pages. These memory
pages do not have to be continuous because, by using memory pointers, we
can represent a buffer as a logically continuous memory block.

Authorized licensed use limited to: Korea University. Downloaded on July 27,2024 at 12:17:16 UTC from IEEE Xplore. Restrictions apply.

we assume that memory is allocated and released by the

variable length unit but not by the page unit [5]. Generally,

since the utilization of the last memory page is below

100 percent, the result under this assumption is different

from the actual result. Since the memory page is much

smaller than the buffer size, however, the difference

between these results is negligible [5].

For the sake of simplicity, we assume that the video

data’s consumption rate of all user requests is equal2 [5]. To

reduce disk latency, we assume that video data is

contiguously stored in disks3 [1], [9]. Thus, only one disk

latency occurs when the server services one buffer.

Table 1 shows the variables used in this paper. The

maximum number N of concurrent user requests that can

be supported is determined by the video data’s consump-

tion rate CR and the disk data transfer rate TR. In order for

a disk to service N user requests under the requirements of

the time-wise continuity, TR must be greater than or equal

to N � CR—the consumption rate of N user requests. In the

case TR ¼ N � CR, however, a disk cannot guarantee the

time-wise continuity because disk latency occurs whenever

the disk services a user request. Thus, TR must be greater

than N � CR and satisfy (1). N is the largest integer

satisfying (1) because N is the maximum value:

N <
TR

CR
: ð1Þ

2.2 Buffer Scheduling Methods

This section introduces existing research on representative

buffer scheduling methods and their characteristics: initial

latency and disk latency.
A buffer stores the data that a user request consumes

until the next service time. Thus, in order to determine the

buffer size, we must calculate the service period, which is
the time interval until the next service time. To calculate the

service period, it is necessary to estimate the disk latency

occurring at the service time of each buffer. If this calculated

value is less than the actual value, some buffers may
become empty because buffers smaller than necessary are

allocated. Therefore, VOD systems determine the buffer size

using the worst disk latency. In this section, we discuss the

worst-case disk latency of each buffer scheduling method.

2.2.1 The Round-Robin Method

The Round-Robin method schedules buffer services in the

order of buffer allocation. Thus, disk latency in this method

is the sum of the disk rotational delay and the disk seek

time over the distance between the data used by the

previously serviced buffer and the buffer currently being

serviced. The worst disk latency, DLRR, is the sum of the

maximum disk rotational delay and the worst disk seek

time occurring when the disk arm moves over all the

cylinders on the disk. If we represent the disk seek time

function for x cylinders as ðxÞ, the maximum disk

rotational delay as �, and the total number of cylinders as

Cyln, DLRR is ððCylnÞ þ �Þ [5].
Chang and Garcia-Molina [5] proved that, in order to

maximize memory sharing among the buffers, each buffer’s

service time must be equal. They applied this result to the

Round-Robin method and proposed a buffer scheduling
method called the Fixed-Stretch Scheme. That is, the Fixed-

Stretch Scheme first determines the buffer size under the

assumption that all buffer’s service times are equal to the

maximum sized buffer’s service time. Then, this scheme
services only one buffer within the maximum sized buffer’s

service time.

In addition, to reduce initial latency, they proposed a

buffer scheduling method, called BubbleUp [1], based on

the Fixed-Stretch Scheme. While the Fixed-Stretch Scheme

services buffers in a fixed order, BubbleUp dynamically

adjusts the order to service a newly arriving user request

right after the service in execution is completed. That is,

since BubbleUp can service a newly arriving user request

without waiting for the completion of the other services

except for one in execution, it can reduce initial latency. We

use BubbleUp for the Round-Robin method when applying

to the dynamic buffer allocation scheme. Equation (2)

shows that the worst initial latency of BubbleUp, ILRR, is

the sum of the service time of buffers being serviced

currently, DLRR þ BSRR

TR , and the disk latency for the service

of the newly arriving request, DLRR:

ILRR ¼ 2�DLRR þBS
RR

TR
: ð2Þ

LEE ET AL.: DYNAMIC BUFFER ALLOCATION IN VIDEO-ON-DEMAND SYSTEMS 1537

TABLE 1
The Variables Used in This Paper

2. As argued by Chang and Garcia-Molina [5], the scheme we discuss in
this paper can be adapted to work with variable display rates using two
methods. The first is to use the maximal rate. The second is to use the
greatest common divisor of the display rates as the unit display rate and to
treat each display rate as a multiple of the unit one.

3. To satisfy this assumption, Chang and Garcia-Molina [1] have
proposed a data structure called chunk. A chunk consists of physically
contiguous several pages and is at least twice larger than the maximum
buffer size. Generally, since whole video data cannot be continuously stored
in disks, it is stored by the block unit. In this case, if the buffer size is
variable, the data for one buffer can span to the next adjacent block. To solve
this problem, Chang and Garcia-Molina have devised a mechanism that
stores data in chunks using replication so that the server can always retrieve
the data for one buffer from only one chunk.

Authorized licensed use limited to: Korea University. Downloaded on July 27,2024 at 12:17:16 UTC from IEEE Xplore. Restrictions apply.

2.2.2 The Sweep Method

The Sweep method [5] attempts to minimize disk seek time.

The method adjusts the order of buffer services according to

the location of data used by the buffers. Therefore, the disk

latency in this method is dependent upon the location of the

data on the disk. Since the seek time is a concave function

[12] on the number of disk’s cylinders the disk head moves

over, the worst disk latency in this method occurs when the

data used by n buffers in service are apart by an equal

distance [5]. Thus, when the server is servicing n buffers in

this method, the worst disk latency is n� ððCyln=nÞ þ �Þ
[5]. For simplicity, we define ððCyln=nÞ þ �Þ as the worst

disk latency DLSweep for one buffer.4

Chang and Garcia-Molina [5] proposed a buffer schedul-
ing method called Sweep*. This method improves buffer’s
memory sharing in comparison with the Sweep method. In
the Sweep method, when data are located adjacent to each
other on a disk, the actual disk latency is shorter than the
estimated latency. Thus, the buffer’s service can be
completed within a shorter time than expected. In this case,
user requests release only a small amount of memory due to
lack of time to consume the data in the buffers. Accordingly,
the Sweep method has little memory for buffers to share.
On the other hand, the Sweep* method improves buffer’s
memory sharing by servicing the last buffer to be serviced
in a service period as late as possible, enabling the buffer to
reuse the memory released by other buffers.

In the Sweep* method, a newly arriving request is not
serviced within the current service period. If it is serviced
during the service of existing buffers, the total seek time
may not be minimized. In addition, since the Sweep*
method adjusts the order of buffer services according to the
location of data used by the buffers, the newly arriving
request could be serviced last. Consequently, in the worst
case, a new request could arrive at the beginning of a
service period and be serviced at the end of the next service
period. Equation (3) shows that the initial latency in this
case, ILSweep, is the sum of the time servicing all the
n buffers in the current period, the time servicing all the
n buffers in the next period, and the time servicing the
buffer of a newly arrived user request [1]:

ILSweep ¼ 2� n� DLSweep þBS
Sweep

TR

� �
þDLSweep þBS

Sweep

TR
:

ð3Þ

2.2.3 The GSS Method

The GSS (Grouped Sweeping Scheduling) method is a
hybrid between the Round-Robin and Sweep methods that
reduces memory requirements [6]. The GSS method
constructs G groups with n user requests and then services
n=Gð¼ gÞ buffers in each group using the Sweep method

and services each group using the Round-Robin method.
Thus, the GSS method becomes the Sweep method when
g ¼ n and the Round-Robin method when g ¼ 1. The
GSS method determines g in such a way that the memory
requirement is minimized [6]. In this method, as in the
Sweep method, we can derive g� ððCyln=gÞ þ �Þ as the
worst disk latency that occurs when servicing a group
constructed with g buffers in the GSS method [5] and
ððCyln=gÞ þ �Þ as the worst disk latency DLGSS for
servicing one buffer.

In order to improve buffer’s memory sharing in the GSS
method, Chang and Garcia-Molina [5] also proposed the
GSS* method, which services each group using the Fixed-
Stretch Scheme and services buffers in a group using the
Sweep* method. In addition, to reduce the initial latency of
the GSS* method, they extended the GSS* method [8] by
using BubbleUp [1] instead of the Fixed-Stretch Scheme for
servicing each group. We apply the extended GSS* method
to the dynamic buffer allocation scheme. Equation (4)
shows that the worst initial latency, ILGSS , is the sum of the
time servicing the current group and the time servicing the
next group containing the newly arriving request [8]:

ILGSS ¼ 2� g� DLGSS þBS
GSS

TR

� �
: ð4Þ

As shown in (2), (3), and (4), initial latency increases
linearly in proportion to the buffer size BS regardless of
buffer scheduling methods used. That is, since DL, TR, and
g in each equation are constants, initial latency is deter-
mined by only the buffer size. Thus, increasing the buffer
size allocated to each user request increases initial latency,
as well as memory requirements. In this paper, we try to
minimize the buffer size in order to minimize memory
requirement and initial latency.

2.3 The Static Buffer Allocation Scheme

The static buffer allocation scheme determines the mini-
mum buffer size in the fully loaded state and constantly
allocates it to all user requests regardless of the system’s
load state. Thus, although this scheme has the advantage of
simplifying buffer allocation, it has the disadvantage of
allocating an unnecessarily large buffer when the system is
in a partially loaded state.

The minimum buffer size in the fully loaded state in the
static buffer allocation scheme is derived by considering
only user requests in service, without including new user
requests. This is because the system cannot service any new
user request in the fully loaded state. The two conditions
that the buffer size must satisfy in the fully loaded state are
stated as follows:

Condition 1. The buffer size must be greater than or equal to
the amount of data consumed by a user request during a
service period.

Condition 2. The system must be able to serve all user
requests in service once within a service period.

Condition 1 is a necessary condition in order to
guarantee the time-wise continuity of video data for user
requests. If Condition 1 is not satisfied, some buffers in
service could be empty. If the system allocates too large a

1538 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 15, NO. 6, NOVEMBER/DECEMBER 2003

4. Since disk latency is used to calculate the service period, VOD systems
always use the sum of disk latencies of all buffers being serviced within a
service period. Thus, although we define DLSweep, as shown in this paper,
the sum of disk latencies of all buffers being serviced within a service
period is invariable, and the result derived in this paper is not affected. We
use this definition only to explain several of existing buffer scheduling
methods consistently.

Authorized licensed use limited to: Korea University. Downloaded on July 27,2024 at 12:17:16 UTC from IEEE Xplore. Restrictions apply.

buffer, the system cannot service all of the buffers within a
service period. This is because the system requires too much
time to service the large buffer. Condition 2 prevents this
phenomenon. Equation (5) shows the minimum buffer size
BSðNÞ in the fully loaded state, satisfying Conditions 1 and
2. BSðNÞ in the equation is the minimum amount of data
required during the time interval that it takes for a system
to service N buffers, and N is the maximum number of user
requests that one disk can support. Equation (5) is proven in
the reference [5]. From (5), we observe that BSðnÞ increases
very rapidly as n approaches TR

CR ð� NÞ:

BSðnÞ ¼ n� CR�DL� TR
TRÿ n� CR : ð5Þ

3 THE DYNAMIC BUFFER ALLOCATION SCHEME

In this section, we propose a dynamic buffer allocation
scheme. Section 3.1 explains the basic concept of our
scheme. Section 3.2 describes the buffer allocation algo-
rithm. Section 3.3 presents the equations to calculate the size
of the buffer to be allocated.

3.1 The Basic Concept

We first define some terminology. We define additional
requests at each buffer allocation time as the user requests
that arrives within a service period from that time. For
example, in Fig. 2, additional requests at the buffer
allocation time t1 are user requests R1 � R3 that arrive
within the service period T1 from t1; additional requests at
t2 are R2 � R4; additional requests at t3 are R4 � R5. The
buffer allocation scheme dynamically estimates the number
of additional requests at each buffer allocation time and
utilizes the estimate when determining the buffer size. We
define the number of estimated additional requests as the
number of additional requests estimated by our dynamic
scheme and the number of actual additional requests as the
actual number of additional requests that occur. In addition,
we define successful estimation as the case in which the
number of estimated additional requests is greater than or
equal to the number of actual additional requests, and
unsuccessful estimation as the opposite. We define the usage
period of a buffer as the service period during which the
buffer would be used without becoming empty. For
example, in Fig. 2, if the buffer allocated at t1 would be
used within the service period T1, then the usage period of
this buffer is T1.

One might be able to devise a simple dynamic buffer
allocation scheme by applying the number of estimated
additional requests to the static buffer allocation scheme.
This simple scheme would determine the buffer size
BSðnþ kÞ by applying the sum (¼ nþ k) of the number n

of user requests in service and the number k of estimated
additional requests at each buffer allocation time to (5). That
is, this scheme tries to prevent the buffer being allocated
from becoming empty by preestimating the number of
possible user requests that would be serviced within a
service period and then by determining the buffer size
based on the estimation.

However, this scheme has an inherent flaw. Even if this
simple scheme estimated the exact number of user requests
to be serviced within a service period, the scheme would not
be able to prevent the buffer being allocated from becoming
empty when the sizes of buffers allocated in the future
increase. This problem is demonstrated in Fig. 3. In this
figure, at time t1, the scheme allocates to the user request R1

a buffer whose size is BSð3Þ, which is determined by the
number nð¼ 2Þ of user requests in service (R1 and R3) and
the number kð¼ 1Þ of estimated additional requests at this
time. Similarly, at time t2 � t4, this scheme allocates to the
requests R2, R3, and R1 the buffers whose sizes are BSð4Þ,
which is determined by nð¼ 3Þ (R2; R3; R1) and kð¼ 1Þ at
each time. In the figure, T1 is the usage period of the buffer
allocated at t1. Since the size of buffer allocated at t1 isBSð3Þ,
however, this buffer can last only during T 01ð< T1Þ. This is
because the buffer size BSð3Þ is the amount of data to be
consumed during the time interval that it takes for a system
to service three buffers of size BSð3Þ, but the sizes of buffers
allocated at t2 and t3 are notBSð3Þ butBSð4Þ. As a result, the
buffer allocated at t1 becomes empty during (T1 ÿ T 01). The
inherent cause of this problem is that the size of the buffer
that should be allocated at current time (t1) is dependent on
the sizes (BSð4Þ at t2 and t3) of the buffers to be allocated in
the future.

To prevent this flaw, we must 1) determine the current

buffer size by reflecting its dependency on the number of and

the sizes of buffers to be allocated in the future and

2) guarantee that the estimated number of user requests to

be serviced within the usage period is equal to or greater than

the actual number of user requests that occur. We first

propose the predict-and-enforce strategy to achieve the latter

objective. Based on this strategy, we then propose the

recurrence equation that determines the current buffer size

considering the buffer sizes in the future to achieve the first

objective.

In the predict-and-enforce strategy, we first predict the

maximum number of user requests to be serviced and the

maximum number of additional user requests during the

usage period of the buffer, using two assumptions that we

describe shortly. We then determine the buffer size based on

LEE ET AL.: DYNAMIC BUFFER ALLOCATION IN VIDEO-ON-DEMAND SYSTEMS 1539

Fig. 2. An example of additional requests.
Fig. 3. An example scenario in the buffer allocation scheme simply

extended by applying the number of user requests to be serviced within

the service period to the static buffer allocation scheme.

Authorized licensed use limited to: Korea University. Downloaded on July 27,2024 at 12:17:16 UTC from IEEE Xplore. Restrictions apply.

these values predicted. At runtime, in order to enforce the

assumptions, we control the acceptance of newly arriving

user requests to keep the number of estimated user requests

within the limit. Any violation of these assumptions is

resolved by deferring service to the violating new user

request until the assumptions are satisfied.
We use the following two assumptions, which we call

inertia assumptions. In Fig. 4, when a buffer is allocated to a
user request Rc at time tc, the usage period of the allocated
buffer is Tc, and the number of user requests in service and
the number of estimated additional user requests at time tc
are nc and kc, respectively:

Assumption 1. The number nj of user requests to be serviced
at an arbitrary time tj within Tc is less than or equal to
nc þ kc (i.e., nj � nc þ kc).

Assumption 2. The number kj of estimated additional
requests at an arbitrary time tj within Tc is less than or
equal to kc þ � (i.e., kj � kc þ �). Here, � is an integer
greater than or equal to one.5

Assumption 1 is based on our expectation that the
number of user requests to be serviced at an arbitrary time
within Tc is less than or equal to nc þ kc, i.e., based on the
system’s inertia. Assumption 2 implies that the number kj
of estimated additional requests increases by at most �
during a usage period limiting changes in the system’s
inertia. This assumption leaves a room for the number of
estimated additional requests to increase by � when the
arrival rate increases in the future. If � is large, the system
can quickly adapt to a large increase in the arrival rate. If �
is large, however, we might allocate unnecessarily large
buffers to user requests and cause the memory require-
ments to increase. Conversely, if � is small, we can decrease
the memory requirements. However, the systems cannot
adapt quickly to a large increase in the arrival rate, and the
number of actual additional requests can become greater
than the number of estimated additional requests for some
period of time. If � is small, many additional requests are
delayed to the next service period and, thus, initial latency
is increased. In this paper, we use one as the value of � in
order to reduce memory requirements. This is because a
VOD system has a short service period and the arrival rate
of user requests rarely increases by a large amount during
this time.

The dynamic buffer allocation scheme determines the
buffer size BSkcðncÞ6 as the minimum required in the
worst case (nj ¼ nc þ kc and kj ¼ kc þ �) allowed by

Assumptions 1 and 2. Consequently, this scheme assumes
that nc þ kc buffers whose sizes are BSkcþ�ðnc þ kcÞ are
serviced within the usage period Tc of the buffer to be
allocated. Here, kc þ � represents the number of estimated
additional requests. Thus, in a real environment, if nj �
nc þ kc and kj � kc þ � are satisfied (i.e., Assumptions 1
and 2 are satisfied), then the allocated buffers do not
become empty. On the other hand, if nj > nc þ kc or kj >
kc þ � (i.e., Assumption 1 or 2 is not satisfied), then the
allocated buffers may become empty. Therefore, in order
to prevent the previously allocated buffers (i.e., those
allocated to user requests that are in service) from
becoming empty, the dynamic buffer allocation scheme
controls the admission of newly arriving requests to
satisfy Assumption 1 and adjusts the number of estimated
additional requests to satisfy Assumption 2. For example,
in Fig. 4, to prevent the buffer allocated to the user
request Ri at time ti (for all i, 1 � i � nc) from becoming
empty, the system checks whether nc � ni þ ki is satisfied
to control the admission of the requests newly arriving at
time tc and then determines kc, so that kc � ki þ � is
satisfied.

3.2 The Buffer Allocation Algorithm

Fig. 5 shows the buffer allocation algorithm. In this figure,
RequestList is a list that maintains user requests in service
sorted by the order of servicing dictated by a specific buffer
scheduling method. Q is a queue for newly arriving user
requests. The parameters ni and ki represent the number of
user requests in service and the number of estimated
additional requests, respectively. They are used at the
buffer allocation time for the ith ð1 � i � nÞ user request Ri

in RequestList.
We now explain the algorithm. Procedure Dynamic_Buf-

fer_Allocation computes the buffer size for each user

1540 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 15, NO. 6, NOVEMBER/DECEMBER 2003

Fig. 4. Assumptions used in the dynamic buffer allocation scheme.

5. When a system is about to start, kc is zero. In this case, if � is zero, then
kj must be zero by Assumption 2 ðkj � kc þ �Þ, and the system cannot
service any new request. Thus, � must be greater than or equal to one.

6. We use the notation BSkc ðncÞ for the buffer size of the dynamic buffer
allocation scheme since it varies depending on the number kc of additional
requests.

Fig. 5. The dynamic buffer allocation algorithm.

Authorized licensed use limited to: Korea University. Downloaded on July 27,2024 at 12:17:16 UTC from IEEE Xplore. Restrictions apply.

request. Procedure Admission_Control controls the admission

of the newly arriving user requests. Step 1 in Procedure

Dynamic_Buffer_Allocation removes the completed user

requests from RequestList. Procedure Admission_Control,

which is called in Step 2, checks whether Assumption 1 is

satisfied for all user requests in service when the number

of user requests in service became (nþ 1) after admitting a

newly arriving user request. Since the user requests in

service are Rið1 � i � nÞ in RequestList, the procedure

checks whether Assumption 1 (i.e.,

ðnþ 1Þ � ni þ kiÞ

is satisfied for all Ri (i.e., ðnþ 1Þ � minni¼1ðni þ kiÞ).
Step 3 in Procedure Dynamic_Buffer_Allocation retrieves a

user request Rc, which is to be serviced next, from

RequestList. Step 4 computes the values nc and kc. In this

step, nc is set to the number n of user requests being

serviced at current time, and kc is set to the sum of the

maximum number klog of additional requests arriving

during the recent Tlog and � provided that it satisfies

Assumption 2. Step 5 determines the buffer size based on nc

and kc and allocates the buffer to Rc.

To satisfy Assumption 2, kc must be less than or equal to

every ki þ �ð1 � i � nÞ. Accordingly, kc must be less than or

equal to minni¼1ðki þ �Þ. For the future arrival rate, we use

klog þ � because, as shown in Assumption 2, we assume that

the future arrival rate may increase in comparison with the

recent arrival rate, so that the number of future actual

additional requests may increase by � compared with the

number of recent actual additional requests. We present an

experimental result for the value of Tlog in Section 5.

3.3 Determining the Buffer Size

The dynamic buffer allocation scheme determines the buffer

size BSkðnÞ based on the assumption that nþ k buffers,

whose sizes are BSkþ�ðnþ kÞ, will be operating within the

usage period of the buffer to be allocated. Thus, the buffer

size BSkðnÞ is represented as a recurrence equation

including BSkþ�ðnþ kÞ. The boundary condition of this

recurrence equation occurs when the system is in the fully

loaded state. In this case, the system services N buffers

whose sizes are BS0ðNÞ within the usage period of the

buffer to be allocated because n ¼ N and k ¼ 0. Thus, the

buffer size allocated by the dynamic buffer allocation

scheme is equal to the buffer size that would be allocated

by the static buffer allocation scheme. Theorem 1 provides

the buffer size allocated by the dynamic buffer allocation

scheme.

Theorem 1. The buffer size for supporting n user requests in

service and k estimated additional requests, using the dynamic

buffer allocation scheme, is BSkðnÞ shown in (6):7

BSkðnÞ ¼
DL� CR�

CR
TR

ÿ �e� Qeÿ1

i¼1

nþ i� kþ ðiÿ1Þ�i��
2

� �
� N2�TR

TRÿN�CRþ
�
Peÿ2

i¼0

CR
TR

ÿ �i� Qiþ1

j¼1

nþ j� kþ ðjÿ1Þ�j��
2

� �()
þ

CR
TR

ÿ �eÿ1�N �
Qeÿ1

j¼1

nþ j� kþ ðjÿ1Þ�j��
2

� �#
; n < n

DL� N�CR�TR
TRÿN� ; n ¼ N;

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:
ð6Þ

where e ¼
�
2ÿkþ

ffi
k2þ��ð2�ðNÿnÞÿkÞþ�2

4

p
�

� �
.

Proof. Refer to the Appendix. tu

In Theorem 1, the formula when n < N represents the
buffer size allocated by the dynamic buffer allocation scheme
in a partially loaded state; the formula when n ¼ N
represents the buffer size in the fully loaded state. The
buffer size for each buffer scheduling method can be
obtained by replacing DL in (6) with each buffer scheduling
method’s disk latency as discussed in Section 2.2. The result
is shown in Table 2.

Calculating the equations in Table 2 may need consider-
able CPU time because it needs to be done whenever the
server allocates a buffer to a user request. We can solve this
problem by precomputing the equations for all-possible
values of n and k, and storing the computed values. When
the server actually allocates the buffer to a user request, the
server uses a stored value. In this case, since the maximum
values of n and k are N , the complexity of memory space
requirement is OðN2Þ. Since N is small, however, the
memory space overhead is negligible.

4 ANALYSIS OF MEMORY REQUIREMENTS IN THE

DYNAMIC BUFFER ALLOCATION SCHEME

This section analyzes the minimum memory requirement of

the dynamic buffer allocation scheme for each buffer

scheduling method.

In BubbleUp, the Round-Robin method services each

buffer periodically at equal time intervals. Every user

request consumes the video data at the same consumption

rate. Thus, each buffer’s memory requirement forms a

periodic function [8]. The minimum memory requirement is

obtained when this periodic function reaches the maximum

value. Theorem 2 states this property.

Theorem 2. The minimum memory space required to support n

user requests in service and k additional requests under the

Round-Robin method, in the dynamic buffer allocation scheme,

is MemRR
minðk; nÞ:

MemRR
minðk; nÞ ¼ n�BSRRk ðnÞ ÿBSRRk ðnÞ

� n� ðnÿ 1Þ
2� ðkþ nÞ þ n� CR�DL

RR:

LEE ET AL.: DYNAMIC BUFFER ALLOCATION IN VIDEO-ON-DEMAND SYSTEMS 1541

7. A preliminary version of this theorem, under a simpler model
(without considering � and inertia assumptions), has appeared in [13].

Authorized licensed use limited to: Korea University. Downloaded on July 27,2024 at 12:17:16 UTC from IEEE Xplore. Restrictions apply.

Proof. Refer to the Appendix. tu

In the Sweep* method, the time that requires the

maximum amount of memory occurs when the ðnÿ 1Þth
buffer out of n buffers is allocated [8]. Thus, the minimum

memory requirement of the Sweep* method is the amount

of memory required at this time. Theorem 3 states this

property.

Theorem 3. The minimum memory space required to support n
user requests in service and k additional requests under the
Sweep* method, in the dynamic buffer allocation scheme, is
MemSweep

min ðk; nÞ:

MemSweep
min ðk; nÞ ¼

ðnÿ1Þ�BSSweep
k

ðnÞþ n�T
kþn ÿ

ðnÿ2Þ�BSSweep
k

ðnÞ
TR

� �
�CR�n; n>1

BSSweep
k

ð1Þþ
BS

Sweep
k

ð1Þ
TR þ DLSweep

� �
�CR; n¼1:

8><>:
Proof. Refer to the Appendix. tu

Since the GSS* method services each group with Bubble-
Up, it services each group periodically at equal time intervals
[8]. Therefore, each group’s memory requirement forms a
periodic function [8]. The minimum memory requirement of
the GSS* method is when this periodic function has reached
the maximum value. Theorem 4 shows the minimum
memory requirements when g < n. When g � n, the mini-
mum memory requirements are identical to those stated in
Theorem 3 because, in this case, the GSS* method services
each buffer in the same way as the Sweep* method.

Theorem 4. The minimum memory space required to support n
user requests in service and k additional requests under the

GSS* method, in the dynamic buffer allocation scheme, is
MemGSS

min ðk; n; gÞ, where g is the number of buffers in a group,
G is the number of groups dnge, and g0 is nÿ bngc � g:

MemGSS
min ðk; n; gÞ ¼

ðGÿ1Þ� g�BSGSS
k
ðnÞÿ n�T

kþn þ
ðgÿ2Þ�BSGSS

k
ðnÞ

TR ÿ
�n

g�T�ðGþ2Þ
2�ðkþnÞ

�
�CR�g

o
þðgÿ1Þ�BSGSS

k
ðnÞþ

T�g
kþn ÿ

ðgÿ2Þ�BSGSS
k

ðnÞ
TR

� �
�CR�g; G¼ng

ðGÿ2Þ� g�BSGSS
k
ðnÞÿ n�T

kþn þ
ðgÿ2Þ�BSGSS

k
ðnÞ

TR ÿ
�n

g�T�ðGþ1Þ
2�ðkþnÞ

�
�CR�g

o
þBSGSS

k
ðnÞ�ðgþg0ÿ1ÞþCR�

T�g
kþn ÿ

ðgÿ2Þ�BSGSS
k

ðnÞ
TR

� �
�g ÿ

ðgÿ2Þ�g0�BSGSS
k

ðnÞ
TR

n o
; G > n

g; 1 � g0 < g:

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:
Proof. Refer to the Appendix. tu

5 PERFORMANCE EVALUATION

In this section, we evaluate the performance of the dynamic
buffer allocation scheme and compare it with the static
scheme. Through analysis and simulation, we evaluate for
each buffer allocation scheme initial latency and the number
of concurrent user requests that can be supported.
Section 5.1 describes the environment for performance
evaluation. Section 5.2 evaluates initial latency. Section 5.3
evaluates the number of concurrent user requests that the
system can support.

5.1 The Environment for Performance Evaluation

We evaluate the performance for a VOD system using a
Seagate Barracuda 9LP disk [8], [14] having the specifica-
tions described in Table 3. We assume that a video is

1542 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 15, NO. 6, NOVEMBER/DECEMBER 2003

TABLE 2
The Buffer Size Allocated by the Dynamic Buffer Allocation Scheme for Each Buffer Scheduling Method

Authorized licensed use limited to: Korea University. Downloaded on July 27,2024 at 12:17:16 UTC from IEEE Xplore. Restrictions apply.

120 minutes long, encoded via MPEG-1 with an average
transfer rate of 1.5Mbps. Following the model proposed in
the references [8], [12], we assume that the disk seek time
function ðxÞ for a disk head scanning x cylinders is as in
(7). The values of �1, �2, �1, and �2 are in Table 3. The
parameter �1 is the disk arm’s fixed overhead including the
speedup, slowdown, and settle phases. The parameter �1 is
the remaining portion of the minimum seek time (i.e., �1þ
�1 is the minimum seek time). We then select �2 and �2 so
that the function is continuous at x ¼ 400 [8]:

ðxÞ ¼ �1þ ð�1�
ffiffiffi
x
p
Þ; x < 400

�2þ ð�2� xÞ; x � 400:

�
ð7Þ

In the simulation, we assume that user requests arrive in
a Poisson Process. In addition, we assume that the arrival
rate � of user requests changes every 30 minutes, and this
change follows the Zipf distribution whose peak time
occurs after nine hours of system service [15]. We use this
distribution to simulate an arrival pattern in which most
user requests arrive within a specific range of time. The Zipf
distribution has � as a parameter, with � being a number
between 0 and 1. Setting � ¼ 0 corresponds to a highly
skewed distribution; setting � ¼ 1 corresponds to a uniform
distribution [15]. We do the simulation in cases where � is
0.0, 0.5, and 1.0. In order to simulate the video viewing
pattern of user requests, we assume that the video viewing
time of user requests follows a uniform distribution
between 0 and 120 minutes [4].

Fig. 6 shows the number of the system’s concurrent user
requests for the Zipf distribution with varying values of �.
Fig. 6 shows that, when � is 0.0 or 0.5, the arrival rate is high
between seven and 13 hours; when � is 1.0, the arrival rate is
uniform. In VOD systems, if the number of user requests in
service is equal to N , a newly arriving user request is
rejected by the system’s admission control. Thus, when � is
0.0 or 0.5, many user requests arriving between seven and
13 hours are rejected.

We evaluate the performance with respect to the three
representative buffer scheduling methods: the Round-Robin,
Sweep*, and GSS* methods. As discussed in Section 2.2.3, the
GSS* method determines the number of buffers in a group in
such a way that memory requirement is minimized [6]. Since
the memory requirements of the dynamic buffer allocation
scheme and the static one are minimized when a group
consists of eight buffers,8 we use eight buffers for a group.

In the dynamic buffer allocation scheme, we must
determine Tlog and � to measure the number of estimated
additional requests. Figs. 7a and 8a show the average
number of estimated additional requests according to Tlog
and �. The average number of estimated additional
requests is obtained by averaging over the different buffer
allocation times. In these figures, the average number of
estimated additional requests increases as Tlog and �
increase, as it is determined by � and klog in minfklog þ
�;minni¼1ðki þ �Þg of Fig. 5, where klog is the maximum
number of actual additional requests per service period that
occurs during Tlog.

Figs. 7b and 8b show the successful estimation probability
of each buffer scheduling method according toTlog and�. The
probability also increases asTlog and�do because the number
of estimated additional requests increases as Tlog and �
increase. However, we note that when Tlog and � are larger
than certain values (Tlog ¼ 40 minutes in the Round-Robin
method, Tlog ¼ 20 minutes in the Sweep* and GSS* method,
and� ¼ 1), the successful estimation probability is larger than
99 percent in each scheduling method, which is practically
acceptable.

In the dynamic buffer allocation scheme, memory
requirements increase as the number of estimated addi-
tional requests increases, and initial latency increases as the
successful estimation probability decreases. Thus, we need
to keep the number of estimated additional requests as
small as possible provided that the successful estimation
probability does not degrade significantly. For this paper,
we use one as the value of �, 40 minutes as the value of Tlog
in the Round-Robin method, and 20 minutes as the value of
Tlog in the Sweep* and GSS* method.

Fig. 9 shows an example of the buffer size allocated by
each buffer allocation scheme for each buffer scheduling
method. The static buffer allocation scheme determines the
buffer size using (5), and the dynamic one using (6),9 the
buffer sizes of the static buffer allocation scheme are
constants since the scheme determines the buffer size
assuming the fully loaded state of the system. However,
the buffer sizes of the dynamic one vary according to the
number of user requests in service.

5.2 Initial Latency

We evaluate first the worst initial latency through analysis,
and then evaluate the average initial latency through
simulation.

LEE ET AL.: DYNAMIC BUFFER ALLOCATION IN VIDEO-ON-DEMAND SYSTEMS 1543

TABLE 3
The Specification of the Seagate Barracuda 9LP Disk

Fig. 6. The number of concurrent user requests that the system must

service when the arrival rate � follows the Zipf distribution with �.

8. These reults are derived from Theorem 4 of this paper for the dynamic
buffer allocation scheme and from [Theorem 3 , 5] for the static one.

9. For the dynamic buffer allocation scheme, we use as the value of k in
(6) the maximum (i.e., the worst case) integer value of the average of
estimated additional requests measured in Fig. 7a. It is four in the Round-
Robin method when Tlog is 40 minutes and three in the Sweep* and
GSS* methods when Tlog is 20 minutes.

Authorized licensed use limited to: Korea University. Downloaded on July 27,2024 at 12:17:16 UTC from IEEE Xplore. Restrictions apply.

Fig. 10 shows the worst initial latency of each buffer

allocation scheme for each buffer scheduling method. We

obtain this figure by applying the buffer size of each buffer

allocation scheme to (2), (3), and (4), which express the

worst initial latencies of each buffer scheduling method. As

shown in Fig. 10, as the number of user requests in service

decreases, we have a shorter initial latency in the dynamic

buffer allocation scheme compared with the static scheme.

This is because the dynamic one allocates smaller buffers if

there are fewer number of user requests in service.

Fig. 11 shows the average initial latency10 obtained

through simulation. To avoid excessive noise, we run

simulation five times with a different random seed value

for the arrival time of the user request. In Fig. 11, except for

noise, the trend of the graph is similar to that of the analytic

result in Fig. 10. As shown in Fig. 11, the initial latency of

the dynamic buffer allocation scheme is, in most cases,

smaller than that of the static scheme regardless of the

1544 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 15, NO. 6, NOVEMBER/DECEMBER 2003

Fig. 8. (a) The average number of estimated additional requests and (b) the successful estimation probability of each buffer scheduling method

according to � when Tlog is 40 minutes in the Round-Robin method and 20 minutes in the Sweep* and GSS* method.

Fig. 7. (a) The average number of estimated additional requests and (b) the successful estimation probability of each buffer scheduling method

according to Tlog when � is one.

10. The average initial latency includes the effect of deferred service by
admission control.

Authorized licensed use limited to: Korea University. Downloaded on July 27,2024 at 12:17:16 UTC from IEEE Xplore. Restrictions apply.

buffer scheduling methods and the number of user requests
in service. The numbers in Fig. 11 are smaller in the absolute
scale than those in Fig. 10 because the former shows the
average values and the latter shows the worst ones. Fig. 11
shows some noise because initial latency is affected by the
arrival time of an individual user request. On the other
hand, Fig. 10 shows steady trends because it assumes the
worst case.

Table 4 shows the average reduction ratio of the

average initial latency for the dynamic buffer allocation

scheme over the static one according to different buffer

scheduling methods and arrival rate patterns (i.e., the Zipf

parameter �). The average reduction ratio is obtained from

Fig. 11 by averaging the reduction ratios over different

numbers of user requests in service. Table 4 shows that the

dynamic buffer allocation scheme reduces the average

initial latency to 1
11:59 � 1

10:97 of that for the static one in the

Round-Robin method, 1
19:65 � 1

19:50 in the Sweep* method,

and 1
29:38 � 1

27:97 in the GSS* method on the average.

5.3 The Number of Concurrent User Requests

In VOD systems, to service a greater number of user
requests concurrently with the same amount of memory, we
must reduce memory requirements. Fig. 12 shows the
minimum memory requirement of each buffer scheduling
method obtained using Theorems 2, 3, and 4. As shown in
Fig. 12, the dynamic buffer allocation scheme reduces
memory requirements significantly when the number of
user requests in service is small. Most VOD systems use
multiple disks due to voluminous amounts of video data.
When using multiple disks, disk load imbalance occurs

because of differing popularity of videos [15]. Many user
requests could be biased into a specific disk causing disk
load imbalance. In this environment, the dynamic buffer
allocation scheme is able to reduce memory usage for disks
that service fewer user requests and utilize the saved
memory for disks that service greater user requests. Thus,
the dynamic buffer allocation scheme can service more
concurrent user requests than the static buffer allocation
scheme given the same amount of memory.

Fig. 13 shows the analytical result of the number of
concurrent user requests that can be serviced by the
VOD system having 10 Seagate Barracuda 9LP disks for
the Round-Robin method according to different sizes of
main memory available. Results for other buffer schedul-
ing methods are similar. These results are obtained by
using Theorems 2, 3, and 4 under the assumption that the
number of user requests arriving to each disk follows a
Zifp distribution with � of 0.0, 0.5, and 1.0, respectively.
According to Wolf et al. [15], the popularity of video data
follows the Zipf distribution with � ¼ 0:271.

Fig. 13 shows that the dynamic buffer allocation scheme
services more user requests concurrently than the static one
regardless of the distributions of disk load. This is because
the dynamic buffer allocation scheme uses memory more
effectively than the static scheme. In a system with
11 Gbytes of memory, both buffer allocation schemes
service the same number of concurrent user requests. This
is because, by having sufficient memory, the number of
concurrent user requests is determined only by the
limitation of the disk’s performance.

Fig. 14 shows the number of concurrent user requests
observed in simulation for the Round-Robin method. We

LEE ET AL.: DYNAMIC BUFFER ALLOCATION IN VIDEO-ON-DEMAND SYSTEMS 1545

Fig. 9. The buffer size versus the number of user requests in service in the static and dynamic buffer allocation schemes. (a) Round-Robin method,

(b) Sweep* method, and (c) GSS* method.

Fig. 10. The worst initial latency of the static and dynamic buffer allocation schemes obtained through analysis. (a) Round-Robin method, (b) Sweep*

method, and (c) GSS* method.

Authorized licensed use limited to: Korea University. Downloaded on July 27,2024 at 12:17:16 UTC from IEEE Xplore. Restrictions apply.

use the same set of disks, as in Fig. 13. Fig. 14 shows results

largely identical to those in Fig. 13.
Table 5 shows the average improvement in the number of

concurrent user requests for the dynamic buffer allocation
scheme over the static one according to different distribu-
tions of disk load (i.e., the Zipf parameter �). The average
improvement ratio is obtained from Fig. 14 by averaging the
improvement ratios over different amounts of system
memory. Table 5 shows that the dynamic scheme increases
the number of concurrent user requests by 2:36 � 3:25 times
compared with that of the static one on the average.

6 CONCLUSIONS

We have proposed a dynamic buffer allocation scheme, a

novel approach for the buffer allocation, that reduces initial

latency and memory requirement in VOD systems. The

existing static buffer allocation scheme determines the buffer
size assuming the fully loaded system state. Thus, the static
scheme allocates an unnecessarily large buffer when the
system is not in the fully loaded state. In contrast, the
dynamic buffer allocation scheme allocates the minimum
buffer size in a partially loaded state, as well as in the fully
loaded state. Smaller buffers result in smaller initial latency
and memory requirements. Smaller memory requirements,
in turn, result in servicing more concurrent users.

The inherent difficulty in determining the buffer size in
the dynamic buffer allocation scheme is that the size of the
buffer currently being allocated depends on the number of
and the sizes of the buffers to be allocated in the next service
period. To solve this difficulty, we have proposed the
predict-and-enforce strategy, where we predict the number
of and the sizes of future buffers based on inertia
assumptions and enforce these assumptions at runtime.
Any violation of these assumptions is resolved by deferring
service to the violating new user request until the
assumptions are satisfied.

The dynamic buffer allocation scheme can be used with
any buffer scheduling methods because it is independent of
them. To demonstrate this applicability, we have applied
the dynamic buffer allocation scheme to the three repre-
sentative buffer scheduling methods: the Round-Robin
(BubbleUp), Sweep*, and GSS* methods.

We have also derived detailed equations for the buffer
sizes to be allocated by our dynamic buffer allocation

1546 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 15, NO. 6, NOVEMBER/DECEMBER 2003

Fig. 11. The average initial latency of the static and dynamic buffer allocation schemes obtained through simulation. (a) Round Robin method,

(b) Sweep* method, and (c) GSS* Method.

TABLE 4
The Average Reduction Ratio of the Initial Latency for the

Dynamic Buffer Allocation Scheme over the Static One

Authorized licensed use limited to: Korea University. Downloaded on July 27,2024 at 12:17:16 UTC from IEEE Xplore. Restrictions apply.

scheme. The buffer size is represented as a recurrence

equation because of its dependency on the sizes of the

buffers to be allocated in the future. We have solved this

equation in Theorem 1 and derived the buffer size for each

scheduling method in Table 2. The results in Table 2 can be

precomputed at the system initialization time.
Through analysis and simulations, we have validated

that our dynamic buffer allocation scheme significantly

outperforms the static scheme both in initial latency and in

the number of concurrent user requests that can be

supported. Our simulation results show that the dynamic

buffer allocation scheme reduces initial latency (averaged

over the number of user requests in service from one to the

maximum capacity) to 1
29:4 � 1

11:0 of that for the static one

and, by reducing the memory requirement, increases the

number of concurrent user requests to 2:36 � 3:25 times that

of the static one when averaged over the amount of system

memory available. These results demonstrate that the

dynamic buffer allocation scheme significantly improves

the performance and capacity of VOD systems.

APPENDIX

Proof of Theorem 1. Since a VOD system must provide data

to a user request during the usage period T of each

buffer, as shown in (8), the buffer size BSkðnÞ is greater

LEE ET AL.: DYNAMIC BUFFER ALLOCATION IN VIDEO-ON-DEMAND SYSTEMS 1547

Fig. 12. The minimum memory requirements of the static and dynamic buffer allocation schemes obtained through analysis. (a) Round-robin method,

(b) Sweep* method, and (c) GSS* method.

Fig. 13. The number of concurrent user requests that can be serviced by the Round-Robin method obtained through analysis using Zifp distributions

of disk loads. (a) � ¼ 0:0, (b) � ¼ 0:5, and (c) � ¼ 1:0.

TABLE 5
The Average Improvement Ratio of the Number of Concurrent

User Requests for the Dynamic Buffer Allocation Scheme
over the Static One

Fig. 14. The number of concurrent user requests serviced by the Round-Robin method obtained through simulation. (a) � ¼ 0:0, (b) � ¼ 0:5, and
(c) � ¼ 1:0.

Authorized licensed use limited to: Korea University. Downloaded on July 27,2024 at 12:17:16 UTC from IEEE Xplore. Restrictions apply.

than or equal to T � CR, which is the amount of data

that a user request consumes during T . In addition, as

described in Section 3.1, since the dynamic buffer

allocation scheme must be able to service nþ k buffers

whose sizes are BSkþ�ðnþ kÞ within the usage period T

of the buffer to be allocated, it must satisfy (9). In (9),
BSkþ�ðnþkÞ

TR þDL is the time that the server takes to service

one buffer whose size is BSkþ�ðnþ kÞ. Equations (8) and

(9) are expanded into (10), a recurrence inequality:

BSkðnÞ � T � CR; ð8Þ

T � ðnþ kÞ � BSkþ�ðnþ kÞ
TR

þDL
� �

; ð9Þ

BSkðnÞ � ðnþ kÞ �
BSkþ�ðnþ kÞ

TR
þDL

� �
� CR: ð10Þ

Since VOD systems can concurrently service a

maximum of N user requests, the number of user

requests that must be serviced within a usage period is

less than or equal to N . Therefore, BSkðNÞ is the buffer

size allocated by the dynamic buffer allocation scheme

in the fully loaded state and becomes (11), which is

identical to BSðNÞ of (5) derived in Section 2.3. We can

obtain the buffer size BSkðnÞ allocated by the dynamic

buffer allocation scheme in a partially loaded state by

expanding (10). Equation (10) is expanded into (12). In

(12), nþ e� kþ ðeÿ1Þ�e��
2 is greater than or equal to N .

Since the number of concurrent user requests is less

than or equal to N , however, nþ e� kþ ðeÿ1Þ�e��
2 is

replaced by N . Thus, (12) becomes (13). By replacing

BSkðNÞ with (11), (13) becomes (14):

BSkðNÞ ¼ DL�
N � CR� TR
TRÿN � CR ; ð11Þ

BSkðnÞ � ðnþ kÞ �
BSkþ�ðnþ kÞ

TR
þDL

� �
� CR; n < N

¼ CR
TR�ðnþkÞ�BSkþ�ðnþkÞþðnþkÞ�DL�CR

� CR
TR�ðnþkÞ� CR

TR�ðnþ2�kþ�Þ�f
BSkþ2��ðnþ2�kþ�Þþðnþ2�kþ�Þ�DL�CRgþ

ðnþkÞ�DL�CR

¼ CR
TRð Þ

2�ðnþkÞ�ðnþ2�kþ�Þ�BSkþ2��ðnþ2�

kþ�ÞþðnþkÞ�DL�CR� CR
TR�ðnþ2�kþ�Þþ1ð Þ

�

..

.

� CR
TRð Þ

e�
Qe
i¼1

nþi�k þ ðiÿ1Þ�i��
2ð Þ

�BSk nþe�kþðeÿ1Þ�e��
2ð Þ þ DL�CR�Peÿ1

i¼0

CR
TRð Þ

i�
Qiþ1

j¼1

nþj�k þ ðjÿ1Þ�j��
2ð Þ

� �
;

ð12Þ

where e ¼
�
2ÿkþ

ffi
k2þ��ð2�ðNÿnÞÿkÞ þ �2

4

p
�

� �

¼ CR

TR

� �e
�
Yeÿ1

i¼1

nþ i� kþ ðiÿ 1Þ � i� �
2

� �
�N �BSkðNÞ þDL�

CR�
Peÿ2

i¼0

CR
TRð Þ

i�
Qiþ1

j¼1

nþj�k þ ðjÿ1Þ�j��
2ð Þ

� �
þ

�
CR

TR

� �eÿ1

�N �
Yeÿ1

j¼1

nþ j� kþ ðjÿ 1Þ � j� �
2

� �#
ð13Þ

BSkðnÞ ¼
DL� CR�

CR
TR

ÿ �e� Qeÿ1

i¼1

nþ i� kþ ðiÿ1Þ�i��
2

� �
� N2�TR

TRÿN�CRþ
�
Peÿ2

i¼0

CR
TR

ÿ �i� Qiþ1

j¼1

nþ j� kþ ðjÿ1Þ�j��
2

� �()
þ

CR
TR

ÿ �eÿ1�N �
Qeÿ1

j¼1

nþ j� kþ ðjÿ1Þ�j��
2

� �#
; n < N

DL� N�CR�TR
TRÿN�CR ; n ¼ N;

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:
ð14Þ

where e ¼
�
2ÿkþ

ffi
k2þ��ð2�ðNÿnÞÿkÞþ�2

4

p
�

� �
. tu

Proof of Theorem 2. The memory requirement in the

Round-Robin method is the sum of each buffer’s

memory requirement. Suppose the number of user

requests in service is n, and that of additional

requests k. We first derive RRR
i ðt; k; nÞ, which is the

amount of memory that the i serviced buffer Bi requires

at time t.

Since the Round-Robin method services buffers with

BubbleUp, a server allocates memory to each buffer

periodically with an equal time interval T
kþn . User requests

take data from buffers at a specific rate of CR and release

the memory. Let �i be the time when the buffer Bi is

serviced last. Then, RRR
i ðt; k; nÞ is the amount of memory

that corresponds to ðBSRRk ðnÞ ÿ CR� ðtÿ �iÞÞ, where

BSRRk ðnÞ is the amount of memory allocated by the server

at �i, and CR� ðtÿ �iÞ is the amount of memory released

by a user request at the rate ofCR during tÿ �i. Since disk

latency occurs whenever the server services a buffer, the

buffer requires additional memory, whose size is

CR�DLRR, in order to keep the data that a user request

consumes during disk latency [8]. Consequently,

RRR
i ðt; k; nÞ is represented as (15):

RRR
i ðt; k; nÞ ¼ BSRRk ðnÞ ÿ CR� ðtÿ �iÞ þ CR�DLRR;

ð15Þ

where 1 � i � n, and i is an integer.

The Round-Robin method’s minimum memory re-
quirement MemRR

minðk; nÞ is the maximum value of the

system memory requirement, as shown in (16). The

maximum value is obtained when time t is a multiple of
T
kþn [8]. This is because the server allocates memory to

buffers at only these times, and the amounts of memory

1548 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 15, NO. 6, NOVEMBER/DECEMBER 2003

Authorized licensed use limited to: Korea University. Downloaded on July 27,2024 at 12:17:16 UTC from IEEE Xplore. Restrictions apply.

allocated to all buffers are identical.11 Replacing t in (16)
with ðnÿ1Þ�T

kþn , a multiple value of T
kþn , and �i in (15) with

ðiÿ1Þ�T
kþn , we get (17):

MemRR
minðk; nÞ ¼Maxt

Xn
i¼1

RRR
i ðt; k; nÞ ð16Þ

¼ n�BSRRk ðnÞ ÿBSRRk ðnÞ �
n� ðnÿ 1Þ
2� ðkþ nÞ

þ n� CR�DLRR:
ð17Þ

tu
Proof of Theorem 3. To derive the minimum memory

requirement of the Sweep* method, we use Theorem 2 in

reference [5], which states that the minimum memory

requirement is ðnÿ 1Þ �BSðnÞ þ T ÿ ðnÿ2Þ�BSðnÞ
TR

� �
�

CR� n when the server services n user requests. Since

T in this theorem is the service time for n user requests,

and T in the dynamic buffer allocation scheme is the

service time for kþ n user requests, T of this theorem

under the dynamic buffer allocation scheme must be n�T
kþn .

The buffer size BSðnÞmust be BSSweepk ðnÞ in the dynamic

buffer allocation scheme. Thus, when the number of user

requests in service is n and the number of additional

requests is k, the minimum memory requirement of the

Sweep* method applied to the dynamic buffer allocation

scheme becomes (18):

ðnÿ 1Þ �BSSweepk ðnÞ þ n� T
kþ n ÿ

ðnÿ 2Þ �BSSweepk ðnÞ
TR

 !
� CR� n:

ð18Þ

Equation (18) is the minimum memory requirement for

n > 1. When n ¼ 1, the minimum memory requirement

of this method is the same as the memory requirement at

the time the buffer is serviced. This is because there is

only one buffer in the system. At this time, the amount of

memory allocated by the server is BSSweepk ð1Þ, and the

amount of memory that the user request uses while the

server is servicing the buffer is

BSSweepk ð1Þ
TR

þDLSweep
 !

� CR:

Thus, in this case, the minimum memory requirement is

the sum of these two values, as shown in (19):

BSSweepk ð1Þ þ BSSweepk ð1Þ
TR

þDLSweep
 !

� CR: ð19Þ

In conclusion, the minimum memory requirement in
the Sweep* method is MemSweep

min ðk; nÞ in (20):

MemSweep
min ðk; nÞ ¼

ðnÿ 1Þ �BSSweepk ðnÞþ
T�n
kþn ÿ

ðnÿ2Þ�BSSweep
k

ðnÞ
TR

� �
� CR� n; n > 1

BSSweepk ð1Þ þ BSSweep
k

ð1Þ
TR þDLSweep

� �
� CR; n ¼ 1:

8>>>><>>>>:
ð20Þ

tu
Proof of Theorem 4. Since the GSS* method services each

group using BubbleUp, each group’s memory require-

ment forms a periodical function. The sum of these

functions is the memory requirement of the system.

In order to reduce initial latency, the GSS* method

constructs the current service group with as many

buffers as possible so that a newly arrived request is

serviced immediately with the next group [8]. Thus, in
the GSS* method that constructs a group with the

maximum of g buffers, the groups constructed between

the first and the bn=gcth have g buffers, and the last

constructed group has g0ð¼ nÿ bn=gc � gÞ buffers. Since

the GSS* method is identical to the Round-Robin method

when g ¼ 1, we consider only the case of g > 1. Since the

GSS* method services buffers in each group using the

Sweep* method, each group’s maximum memory re-
quirement can be derived from Theorem 3. The number

of buffers in each group is g or g0, and the service time of

these buffers is g�T
kþn or g0�T

kþn . Thus, by applying these

equations to Theorem 3, we obtain the maximum

memory requirement of the ith group, RGSS
i;maxðk; nÞ, in

(21) when the system supports n user requests with

k additional requests. In the equation, G is the number of

groups, i.e., dnge:

RGSS
i;maxðk; nÞ ¼
ðgÿ 1Þ �BSGSSk ðnÞþ
T�g
kþn ÿ

ðgÿ2Þ�BSGSS
k
ðnÞ

TR

� �
� CR� g; i � bngc

ðg0 ÿ 1Þ �BSGSSk ðnÞþ
T�g0
kþn ÿ

ðg0ÿ2Þ�BSGSS
k
ðnÞ

TR

� �
� CR� g0; i ¼ dnge; 1 < g0 < g

BSGSSk ðnÞ þ T
kþn� CR; i ¼ dnge; g0 ¼ 1;

8>>>>>>>>><>>>>>>>>>:
ð21Þ

where 1 � i � G.

Since the GSS* method services each group with

BubbleUp, a server allocates memory to each group

periodically at equal time intervals T�g
kþn . User requests

consume data from buffers at a specific rate of CR and

release the memory. Let �i be the time when the ith

group was serviced last. Then, as in (22), RGSS
i ðt; k; nÞ, the

amount of memory required by the ith group at time t, is

the amount of memory allocated by the server at �i,

(g�BSGSSk ðnÞ or g0 �BSGSSk ðnÞ), minus the amount of

memory released by a user request at the rate of CR

during tÿ �i, (g� CR� ðtÿ �iÞ, or g0 � CR� ðtÿ �iÞ):

LEE ET AL.: DYNAMIC BUFFER ALLOCATION IN VIDEO-ON-DEMAND SYSTEMS 1549

11. In the dynamic buffer allocation scheme, the amount of memory
allocated to individual buffers within a service period can be different. It
occurs when n is changed within a service period by having a newly arrived
user request or by having a user request completed. In this case, the system
memory requirement is smaller than the memory requirement in the steady
state that is a state after n increases or before n decreases. We consider only
the steady state having no change in n.

Authorized licensed use limited to: Korea University. Downloaded on July 27,2024 at 12:17:16 UTC from IEEE Xplore. Restrictions apply.

RGSS
i ðt; k; nÞ ¼
g�BSGSSk ðnÞ ÿ g� CR� ðtÿ �iÞ; i � bngc
g0 �BSGSSk ðnÞ ÿ g0 � CR� ðtÿ �iÞ; i ¼ bngc; 1 � g0 < g;

(
ð22Þ

where 1 � i � G.

The GSS* method’s minimum memory requirement

is the maximum value of the system memory require-

ment, as shown in Theorem 2. The maximum value is

obtained when the group having g buffers requires the

maximum amount of memory. This time is when the

server allocates memory to the ðgÿ 1Þth group after it

serviced the ðgÿ 2Þnd group [8]. Thus, the time is
ðgÿ2Þ�BSGSS

k
ðnÞ

TR after the server begins to service the

buffers in a group. Equation (23) is the system memory

requirement when the first group having g buffers

requires the maximum amount of memory. Replacing t

in (23) with n�T
kþn þ

ðgÿ2Þ�BSGSS
k
ðnÞ

TR , which is the time when

the first group requires the maximum amount of

memory after all the buffers in the group are serviced

once, and replacing �ið2 � i � Gÿ 1Þ in (22) with i�g�T
kþn

and �G with n�T
kþn , we get (24). Equation (24) is the

minimum memory requirement MemGSS
min ðk; n; gÞ in the

GSS* method when g < n. When g � n, the minimum

memory requirement is identical to that in Theorem 3

because the GSS* method is identical to the Sweep*

method in this case:

MemGSS
min ðk; n; gÞ ¼PG

i¼2 R
GSS
i ðt; k; nÞ þRGSS

1;maxðk; nÞ; G > 1
ð23Þ

¼

ðGÿ1Þ� g�BSGSS
k
ðnÞÿ n�T

kþn þ
ðgÿ2Þ�BSGSS

k
ðnÞ

TR ÿ
�n

g�T�ðGþ2Þ
2�ðkþnÞ

�
�CR�g

o
þ ðgÿ1Þ�BSGSS

k
ðnÞþ

T�g
kþn ÿ

ðgÿ2Þ�BSGSS
k

ðnÞ
TR

� �
�CR�g; G ¼ n

g

ðGÿ2Þ� g�BSGSS
k
ðnÞÿ n�T

kþn þ
ðgÿ2Þ�BSGSS

k
ðnÞ

TR ÿ
�n

g�T�ðGþ1Þ
2�ðkþnÞ

�
�CR�g

o
þBSGSS

k
ðnÞ�ðgþg0ÿ1ÞþCR�

T�g
kþn ÿ

ðgÿ2Þ�BSGSS
k

ðnÞ
TR

� �
�g ÿ

ðgÿ2Þ�g0�BSGSS
k

ðnÞ
TR ;

n
G>n

g;1�g0<g:

8>>>>>>>>>>>>><>>>>>>>>>>>>>:
ð24Þ

tu

ACKNOWLEDGMENTS

This work was supported by the Korea Science and

Engineering Foundation (KOSEF) through the Advanced

Information Technology Research Center (AITrc). An earlier

version [16] of this paper has been presented at the

International Conference on Management of Data (ACM

SIGMOD) held in Santa Barbara in May 21-24, 2001. The

paper has been significantly extended by adding formal

analysis (theorems and proofs) of memory requirements in

the dynamic buffer allocation scheme. This work was

performed while Sang-Ho Lee, Yang-Sae Moon, and

Wook-Shin Han were with the AITrc at KAIST.

REFERENCES

[1] E. Chang and H. Garcia-Molina, “Bubbleup: Low Latency Fast-
Scan for Media Servers,” Proc. Fifth ACM Int’l Conf. Multimedia,
pp. 87-98, 1997.

[2] S. Berson, S. Ghandeharizadeh, R. Muntz, and X. Ju, “Staggered
Striping in Multimedia Information Systems,” Proc. Int’l Conf.
Management of Data, ACM SIGMOD, pp. 79-90, 1994.

[3] J.K. Dey-Sircar, J.D. Salehi, J.F. Kurose, and D. Towsley, “Provid-
ing Vcr Capabilities in Large-Scale Video Servers,” Proc. Second
ACM Int’l Conf. Multimedia, pp. 25-32, 1994.

[4] A. Dan, D. Sitaram, and P. Shahabuddin, “Scheduling Policies for
an On-Demand Video Server with Batching,” Proc. Second ACM
Int’l Conf. Multimedia, pp. 15-23, 1994.

[5] E. Chang and H. Garcia-Molina, “Effective Memory Use in a
Media Server,” Proc. 23rd Int’l Conf. Very Large Data Bases, pp. 496-
505, 1997.

[6] P.S. Yu, M.-S. Chen, and D.D. Kandlur, “Grouped Sweeping
Scheduling for Data-Based Multimedia Storage Management,”
ACM Multimedia Systems J., vol. 1, no. 1, pp. 99-109, 1993.

[7] L. Goluchik, J.C.S. Lui, and R.R. Muntz, “Adaptive Piggybacking:
A Novel Techniques for Data Sharing in Video-on-Demand
Storage Servers,” ACM Multimedia Systems J., vol. 4, no. 3,
pp. 140-155, 1996.

[8] E. Chang and H. Garcia-Molina, “Accounting for Memory Use,
Cost, Throughput, and Latency in the Design of a Media Server,”
Technical Report SIDL-WP-1998-0096, Stanford Univ., available
from http://www-db.stanford.edu/pub/papers/jvld98.ps, 1998.

[9] T.-P.J. To and B. Hamidzadeh, “Dynamic Real-Time Scheduling
Strategies for Interactive Continuous Media Servers,” ACM
Multimedia Systems J., vol. 7, no. 2, pp. 91-106, 1999.

[10] E. Chang and H. Garcia-Molina, “Cost-Based Media Server
Design,” Proc. Eighth Int’l Workshop Research Issues in Data Eng.,
pp. 76-83, 1998.

[11] D.J. Makaroff and R.T. Ng, “Schemes for Implementing Buffer
Sharing in Continuous-Media Systems,” Information Systems,
vol. 20, no. 6, pp. 445-465, 1995.

[12] C. Ruemmler and J. Wikes, “An Introduction to Disk Drive
Modeling,” Computer, vol. 27, no. 3, pp. 17-28, 1994.

[13] S.-H. Lee, K.-Y. Whang, Y.-S. Moon, and I.-Y. Song, “Dybase: A
Buffer Allocation Scheme for Reducing Average Initial Latency in
Video-on-Demand Systems,” Information Sciences, vol. 137, nos. 1-
4, pp. 17-31, 2001.

[14] Seagate Barracuda 9LP Family Product Specification, Seagate, Inc.,
available from http://www.seagate.com, 1998.

[15] J.L. Wolf, P.S. Yu, and H. Shachnai, “Disk Load Balancing for
Video-on-Demand Systems,” ACM Multimedia Systems J., vol. 5,
no. 6, pp. 358-370, 1997.

[16] S. Lee, K. Whang, Y. Moon, and I. Song, “Dynamic Buffer
Allocation in Video-on-Demand Systems,” Proc. 2001 ACM
SIGMOD Int’l Conf. Management of Data, pp. 345-354, 2001.

Sang-Ho Lee received the BS degree in
computer science from Kyungbook University
in 1992 and received the MS and PhD degrees
in computer science from Korea Advanced
Institute of Science and Technology (KAIST) in
1995 and 2002, respectively. From 2001 to
2003, he was a senior research engineer at LG
Electronics Institute of Technology. He is cur-
rently a full-time lecturer at Korea Polytechnic
University. His research interests include stream

management, hypermedia, embedded DBMS, XML, and multimedia
database. He is a member of the IEEE and the ACM.

1550 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 15, NO. 6, NOVEMBER/DECEMBER 2003

Authorized licensed use limited to: Korea University. Downloaded on July 27,2024 at 12:17:16 UTC from IEEE Xplore. Restrictions apply.

Kyu-Young Whang graduated (Summa Cum
Laude) from Seoul National University in 1973
and received the MS degrees from the Korea
Advanced Institute of Science and Technology
(KAIST) in 1975 and Stanford University in 1982.
He received the PhD degree from Stanford
University in 1984. From 1983 to 1991, he was
a research staff member at the IBM T. J. Watson
Research Center, Yorktown Heights, New York.
In 1990, he joined KAIST, where he currently is

a full professor in the Department of Computer Science and the director
of the Advanced Information Technology Research Center (AITrc). His
research interests encompass data mining/data warehouses, database
systems/storage systems, object-oriented databases, multimedia data-
bases, geographic information systems (GIS), and XML databases. He
is an author of more than 80 papers in refereed international journals
and conference proceedings. Dr. Whang served as an IEEE Distin-
guished Visitor from 1989 to 1990, received the Best Paper Award from
the Sixth IEEE International Conference on Data Engineering (ICDE) in
1990, served the ICDE five times as a program cochair and vice chair
from 1989 to 1995, and served on the program committees of more than
80 international conferences including VLDB and ACM SIGMOD. He
was the program chair (Asia and Pacific Rim) for COOPIS ’98 and the
program chair (Asia, Pacific, and Australia) for VLDB 2000. He was the
general chair for PADKDD 2003 and is serving as the general chair for
DASFAA 2004. He twice received the External Honor Recognition from
IBM. He was an associate editor of the IEEE Data Engineering Bulletin
from 1990 to 1993 and an editor of Distributed and Parallel Databases
Journal from 1991 to 1995. He is a chief editor of the VLDB Journal and
is on the editorial boards of the IEEE Transactions on Knowledge and
Data Engineering and International Journal of Geographical Information
Science. He is currently a trustee of the VLDB Endowment and a
steering committee member of the DASFAA Conference. He served the
IEEE Computer Society Asia/Pacific Activities Group as the Korean
representative from 1993 to 1997. Dr. Whang is a senior member of the
IEEE, a member of the ACM, and a member of IFIP WG 2.6.

Yang-Sae Moon received the BS (1991), MS
(1993), and PhD (2001) degrees in computer
science from Korea Advanced Institute of
Science and Technology (KAIST). From 1991
to 2002, he was a research engineer at Hyundai
Syscomm, Inc., where he participated in devel-
oping 2G and 3G mobile communication sys-
tems. Now, he is a technical director at the R&D
Center of InfraValley, Inc. His research interests
include data mining, knowledge discovery, sto-

rage systems, access methods, mobile/wireless comunication systems,
telecommunication systems, and network comunication systems. He is
a member of the IEEE and the ACM.

Wook-Shin Han received the BS degree in
computer engineering from Kyungpook Na-
tional University in 1994, and the MS and
PhD degrees in computer science from Korea
Advanced Institute of Science and Technol-
ogy (KAIST), in 1996 and 2001, respectively.
He is currently a full-time lecturer at Kyung-
pook National University. Previously, he was
a research professor at KAIST. His research
interests include object-oriented/object-rela-

tional databases, XML databases, and information retrieval. He is
a member of the IEEE and the ACM.

Il-Yeol Song received the MS and PhD degrees
in computer science from Louisiana State Uni-
versity in 1984 and 1988, respectively. He is a
professor in the College of Information Science
and Technology at Drexel University, Philadel-
phia, Pennsylvania. His research focuses on
practical application of modeling and design
theory to real-world problems. His current
research areas include database modeling and
design, design and performance optimization of

data warehouses and OLAP, database systems for Web-based
systems, and object-oriented analysis and design with UML. He has
published more than 80 refereed technical articles in various journals
and international conferences. Dr. Song has won three teaching awards
from Drexel University: Exemplary Teaching Award in 1992, Teaching
Excellence Award in 2000, and the Lindback Distinguished Teaching
Award in 2001. He received a Research Scholar Award from Drexel
University in 1992. He has also won nine Sigma Xi research awards
from the annual Drexel Sigma Xi Scientific Research Competitions. He
served as a program cochair of CIKM ’99, DOLAP ’98, and DOLAP ’99.
He is an associate editor for the Journal of Database Management. He is
a member of ACM, IEEE Computer Society, KSEA, KOCSEA, and
Sigma Xi.

. For more information on this or any computing topic, please visit
our Digital Library at http://computer.org/publications/dlib.

LEE ET AL.: DYNAMIC BUFFER ALLOCATION IN VIDEO-ON-DEMAND SYSTEMS 1551

Authorized licensed use limited to: Korea University. Downloaded on July 27,2024 at 12:17:16 UTC from IEEE Xplore. Restrictions apply.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

