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Index Interpolation: A Subsequence Matching Algorithm
Supporting Moving Average Transform of Arbitrary
Order in Time-Series Databases*

Woong-Kee LOH', Sang-Wook KIM!', and Kyu-Young WHANG', Nonmembers

SUMMARY In this paper we propose a subsequence match-
ing algorithm that supports moving average transform of arbi-
trary order in time-series databases. Moving average transform
reduces the effect of noise and has been used in many areas such
as econometrics since it is useful in finding the overall trends.
The proposed algorithm exterds the existing subsequence match-
ing algorithm proposed by Faloutsos et al. (SUB94 in short). If
we applied the algorithm without any extension, we would have
to generate an index for each moving average order and would
have serious storage and CPU time overhead. In this paper we
tackle the problem using the notion of index interp.lation. In-
dez interpolation is defined as a searching method that uses one
or more indexes generated for a few selected cases and performs
searching for all the cases satisfying some criteria. The proposed
algorithm, which is based on index interpolation, can use only
one index for a pre-selected moving average order k and per-
forms subsequence matching for arbitrary order m (< k). We
prove that the proposed algorithm causes no false dismissal. The
proposed algorithm can also use more than one index to improve
search performance. The algorithm works better with smaller
selectivities. For selectivities less than 1072, the degradation
of search performance compared with the fully-indexed case—
which is equivalent to SUB94—is no more than 33.0% when one
index is used, and 17.2% when two indexes are used. Since the
queries with smaller selectivities are much more frequent in gen-
eral database applications, the proposed algoriuuim is suitable for
practical situations.

key words: index inlerpolation, subsequence matching, moving
average transform, time-series databases

1. Introduction

Time-series data are the sequences of real numbers sam-
pled at a fixed time interval. Finding similar time-series
data is one of the most challenging problems in the
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new database research areas such as data mining and
data warehousing [2], (3]. Examples of such a problem
are finding stock items with similar trends in prices,
finding periods with similar temperature patterns, and
finding products with similar sales trends (8], [17]. The
time-series data stored in a database are called data se-
quences and finding data sequences similar to a given
query sequence from the database is called similar se-
quence matching [1]-[3], [8], [17].

Similar sequence matching algorithms are classi-
fied into whole matching or subsequence matching [8].
Whole matching finds data sequences that are simi-
lar to a query sequence, where the lengths of data se-
quences and the query sequence are all identical. Subse-
quence matching finds subsequences, contained in data
sequences, that are similar to a query sequence of arbi-
trary length. In general, subsequence matching is ap-
plicable to a wider range of applications than whole
matching.

Existing similar sequence matching algorithms
map a data sequence of length n to a point in an n-
dimensional space. Most of the algorithms define simi-
larity between two data sequences using the Euclidean
distance between the two corresponding points [1], [7]-
[9],[17],[20], although some algorithms use different
similarity measures [2]. The algorithms use multidi-
mensional index structures such as the R-tree[11], R*-
tree [18], and R*-tree [4] to efficiently store and retrieve
the n-dimensional points. Since the search performance
degrades exponentially as the dimensionality of the in-
dex structures increases [5], [19], most of the existing al-
gorithms reduce the dimensionality by mapping the n-
dimensional points into the f-dimensional ones (f < n).
The Discrete Fourier Transform (DFT)[16], Discrete
Cosine Transform (DCT) [16], and Haar Wavelet Trans-
form [10] are used as the mapping functions for dimen-
sionality reduction [1], [7]-[9], [17].

Existing algorithms can also be classified according
to the types of pre-processing transform, which is per-
formed before any comparison between data and query
sequences. The algorithms proposed by Agrawal et al.
[1] and Faloutsos et al. [8] perform no pre-processing
transform and the algorithms proposed by Agrawal
et al. [2], Goldin and Kanellakis [9], Rafiei and Mendel-
zon [17], and Yi et al. [20] perform scaling, shifting, nor-
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malization, moving average. and time warping trans-
forms. The purpose of the pre-processing transform is
to give flexibility in the definition of sequence similarity
to satisfy specific application needs.

In this paper we propose a subsequence match-
ing algorithm that efficiently supports moving average
transform [6], [12], [17] of arbitrary order. The moving
average transform converts a given data sequence into
a new sequence consisting of the averages of k consec-
utive values in the data sequence, where k is called the
moving average order or simply the order. The moving
average transform is very useful for finding the trend
of the time-series data by reducing the effect of noise
inside. and has been used in varions applications [6].
Since the users want to control the degree of the noise
reduction depending on the characteristics of data se-
quences to be analyzed, the proper moving average or-
der varies depending on the applications [12]. For ex-
ample, the moving average orders of 6. 25, 75, and 150
are frequently used to find the trend of stock prices,
where the smaller ones are used for shorter term anal-
ysis and the larger ones for longer term analysis. Thus.
efficient support of arbitrary orders is necessary.

The simplest method for supporting moving aver-
age transform of arbitrary order is just to apply the
existing subsequence matching algorithm proposed by
Faloutsos et al. [8] without any extension. We simply
call this algorithm SUB94 in this paper. Because this
method would require one index per moving average
order, however, it causes serious overhead in storage
space and insertion or deletion of data sequences. We
tackle the problem using the notion of index interpola-
tion defined as follows:

Definition 1: JIndex interpolation is a  searching
method that uses one or more indexes for a few selected
cases and performs scarching for all the cases satisfying
some criteria. O

The proposed algorithm requires only one index for
a selected moving average order k and performs subse-
quence matching for arbitrary order m (< k). It can
also use more than one index to improve search perfor-
mance: the more indexes, the better the search perfor-
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mance. We prove that the proposed algorithm does not
cause false dismissal. With experiments, we show that
the search performance with only one index does not
degrade significantly compared with that with indexes
for every moving average order, and that the search
performance improves as we use more indexes. We call
the case with the indexes for the selected moving av-
crage orders as selectively-indezed case and the one for
all the orders as fully-indexed case.

This paper is organized as follows: First, we for-
mally define the problem of subsequence matching
that supports moving average transform in Sect. 2. In
Sect. 3, we briefly introduce the existing subsequence
matching algorithm [8] and the problems in applying it
to support moving average transform of arbitrary or-
der. In Sect.4, we present the proposed algorithm. In
Sect. 5, we evaluate the performance of the proposed
algorithm by extensive experiments. Finally, we sum-
marize and conclude the paper in Sect. 6.

2. Problem Definition

In this section we formally define the moving average
transform and the problem of subsequence matching
that supports moving average transform of arbitrary
order. Table 1 summarizes the notation used in this
paper.

Definition 2: Given a sequence X = (z;) (0<i < n)
and a moving average order k (1 < k < n), the k-

moving average transformed sequence X(” = (2(k);)
(0<j<n—k+1)is defined as follows [6], [12]:

1 1 J+k=1
(k) = -’:(JIJ + Tjtk=1) = Ti
imj
where n is the length of data sequence X. O

Figure 1 shows an example of original and moving
average transformed sequences. The length of the se-
quence X before transformation is 32; and the lengths
of the 4- and 8-moving average transformed sequences,
XHJ and Xw,. are 29 (= 32—4+1) and 25 (= 32—8+1),

Table 1  Summary of notation.
Notation Definition
§=(s,—) a data sequence, S = (sq,. ...-s,y-,)((l<i<:N)
X = (x1) a subsequence contained in the data sequence §. N = (.ru.. crZTn-1) (0<i<n<N)
X () the k-moving average transformed result of the sequence N
T = (t;) the query sequence. T = (tg,....ly—1) (0<i<n)
‘f‘“.) the k-moving average transformed result of the query sequence T
d(X.T) the Buclidean distance between two sequences N and T (Len(X) = Len{?')) d(X {E(:‘ -t )2}”2
Z=X+ds | a sequence obtained by shifting the sequence N by d,. Z = (zi) = (xi + dJ)
€ search range (tolerance)
w the length of (sliding) windows
wy the length of the k-moving average transformed windows
dy the shifting distance




78

1150000 | " ) ' " ' "]

Original X ==
4-Moving Average nce —=— \

1100000 - 8-Moving Average Sequence -=-- J

1050000

100000.0 |

950000 f

0 5 10 15 20 25 3o

Fig.1 An example of original and moving average transformed
sequences.

respectively. We can see that the effect of noise de-
creases as the moving average order increases.

The problem of subsequence matching that sup-
ports moving average transform of arbitrary order is
defined as follows: Given a query sequence T and a
moving average order K, the search is performed using
the k-moving average transformed sequence T4y of T.
For the k-moving average transformed sequence Sy of
each data sequence S stored in a database, if S(;y con-
tains a subsequence Xy, that is similar to and has the

same length as ‘f(;,.)._ S and the offset of _f(;.) in §(k) are
returned.

3. Related Work

In Sect. 3.1, we briefly explain SUB94 (8] on which the
proposed algorithm is based. In Sect. 3.2, we introduce
a whole matching algorithm supporting moving average
transform [17], which we call MOV97 in this paper, and
describe its problems.

3.1 The SUB94 Algorithm

We first explain the properties of DFT to be used
in the SUB94 algorithm [8]. First, for any two se-
quences X and T, the Euclidean distance between X
and T is identical to that between their DFT trans-
formed results F(X) and F(T), i.e.. it holds that

d (XT) =d (F(f),F(T)) (Parseval’s Theorem [1],

(7). 18], [17]). Second, most of the energytof F(X), the
DFT transformed result of X , 1s contained in a few of
the first coefficients of F(X), i.e., [|F(X)||2 ~ || F'(X)]|2.
where F(X) is a sequence consisting of a few of the first
coefficients of F(X).

The multidimensional index structures are used
to efficiently store and find points whose dimension-
ality is greater than one. Since the search performance
using the multidimensional index structures degrades
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Fig.3 Partitioning query sequence into p windows.

exponentially as the dimensionality increases [5],[19],
the SUB94 algorithm stores in the index the coeffi-
cients of F(X) instead of those of X. Since it holds

that d (f'f’) > d(ﬁ'{i‘)ﬁ'(f)) [8]. every sequence
pair X and T that satisfies d (f ’f) <e ;Illso satisfies
d (1:"()?) I:"(ff")) < ¢. Thus, the use of the index storing

F(X) instead of X does not cause false dismissal.

The SUB94 algorithin performs subsequence
matching in two phases. In the indexing phase, from
each data sequence of length N, sliding windows x;
(0 <i < N —w) of length w (< N) arc extracted as
shown in Fig.2. Next, for each window Y, we store
(:;D,-U. S -.ff)a(f—x)) in the f-dimensional index structure,
where the values ¢;g. ..., ¢;(y—1) are chosen from the
DFT result of the values xio, ..., Xiw-1) constituting
X:i so that the chosen values contain most of the en-
crgy of Y;. In the search phase, given a search range e,
the query sequence T of length n (< N) is partitioned
into p windows 7; (0 < j < p) of length w as shown in
Fig. 3. The search algorithm then retrieves every win-
dow Y; satisfying Eq. (1) below for every window 7; in
the query sequence using the index generated in the in-
dexing phase. When accessing the index, the algorithm
uses the f (< w) coeflicients obtained from each win-
dow 7 through DFT in the samc way as in the indexing
phase.

5 e €

d(Xi. 7j) < 75 (1)
The candidate set consists of the subsequences that
contain the resulting windows. The subsequences in
the candidate set are read from disk; only those whose
Euclidean distance from the query sequence is within
the € range are returned as the final result. Faloutsos
et al. [8] proved that SUB94 does not cause false dis-
missal, i.e., it does not miss a part of the final result.

3.2 The MOV97 Algorithm

The MOV97 algorithm by Rafiei and Mendelzon [17]

'The energy E(X) of a sequence X is defined as E(X)
= || X|I? = =22,
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is a similar sequence matching algorithm that employs
the convolution definition [16] to support moving aver-
age transform of arbitrary order using only one index.
MOV9I7 uses the definition of moving average transform
that is different from the traditional one [6].[12] pre-
sented in Sect. 2. Based on Definition 2, when we per-
form moving average transform of order k on a sequence
of length n (> k), we cannot compute k-moving average
values for the last (k — 1) values of the sequence. But
MOV97 performs the transform using the first (A — 1)
values in a circular manner. This new definition enables
MOVO7 to use convolution to perform moving average
transform.

MOVY7 is a whole matching algorithm where the
lengths of data sequences and the query sequence are
all identical. Rafiei and Mendelzon [17] do not mention
any extension of their algorithm for subsequence match-
ing. When we try to combine MOV9T with SUB94
[8] to support subsequence matching, we encounter a
problem due to the non-traditional definition of mov-
ing average transform used in MOV97. That is, it does
not even make sense to apply MOV97 to subsequence
matching. It is because, when performing k-moving
average transform on a sequence X using the defini-
tion of MOV9T7. the result obtained by transforming the
whole sequence X is quite different from that obtained
by separately transforming each window Y; extracted
from the sequence X. When the whole sequence X of
length n (> k) is k-moving average transformed, the
front (k — 1) values of the sequence X is used for com-
puting the last (k — 1) moving average values. On the
other hand, when each window Y; is k-moving aver-
age transformed separately. the front (k — 1) values of
the each window Y; rather than those of the whole se-
quence X are used. In addition, the transformed results
get different according to the window length w.

4. The Proposed Method

In this section we propose new indexing and search al-
gorithms for subsequence matching supporting moving
average transform of arbitrary order. In Sect.d4.1 we
explain the basic ideas for solving the problem. In
Sect.4.2 we present the detailed indexing and search
algorithms.

4.1 Basic Ideas

_In this paper we solve the problem by extending SUB94.
For applying SUB94 without any extension to the prob-
lem, we must generate an index for each moving average
corder for the following reason. SUB94, not taking pre-
processing transforms into account, performs indexing
and searching in the unit of sliding windows Y of fixed
Jlength w extracted from a data sequence S. Accord-
ing to Definition 2, when performing k-moving average
transform on a sliding window Y; to get a transformed
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window Y(; of length w, we need (k— 1) values follow-
ing the sliding window x; in the original data sequence
S. For example, in Fig. 1, to get the 4-moving average
transformed sequence X, (4) of the sequence X, we need

three more values that follow X. However, each sliding
window Y; is treated as an independent unit and has no
information on other sliding windows even though they
are extracted from the same data sequence. That is, the
sliding window y; cannot be k-moving average trans-
formed to be compared with the query window 7); of
length w. Thus, the only way to apply SUB94 is to
perform indexing and searching on the sliding windows
X(k)i extracted from the moving average transformed

sequence §( x)- To support moving average transform
of arbitrary order, however, this method must generate
one index for each moving average order. This results
in serious overhead in storage space and insertion or
deletion of data sequences.

We approach the problem by dividing it into two
cases: the plain search case and the index interpola-
tion search case. In the plain search case, we solve the
problem of subsequence matching only for the moving
average order for which an index is generated; in the
index interpolation search case, we solve it for an arbi-
trary moving average order. In the index interpolation
search case, we generate only one index for a moving
average order k and perform searching for an arbitrary
moving average order m (< k). We also explain the case
of using the indexes for more than one moving average
order for improving search performance.

The plain search case is a simple application of
SUBY4. In the indexing phase, we first generate the k-
moving average transformed sequence Sy of the data

sequence S for a given order k. The length of .S-"{k) is
N — k41, where N is the length of S. Next, we extract
sliding windows Y(x); of the predetermined length wy

out of 5-"“,., as shown in Fig. 2, and store f (< wy) co-
efficients obtained through DFT for each X(x); in an f-
dimensional index structure. In the search phase, given
the query sequence T and a search range ¢, we first gen-
erate the k-moving average transformed sequence T{;).
The length of f(l'»') isn—k+1, where n (> k) is the
length of T. Next, we partition T"(k) into p disjoint win-
dows T(;;(0 < j < p) of length wy. as shown in Fig. 3.
We use each window 7{); to retrieve the candidate set
consisting of subsequences that contain windows Y(x);
satisfying the following equation:

At Fud € -5

A (X(kyis Tikys) < T
For each subsequence in the candidate set, we read the
subsequence from the disk and check the distance from
the query sequence is within € to include it in the final
result.

We now explain the index interpolation search
case. In the indexing phase, only one index is generated
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for a pre-selected moving average order k, where k is
estimated to be the maximum. moving average order ex-
pected in the queries. Additional information is stored
in the index to handle the queries with moving average
orders m < k for which no index is generated. We call
the index generated for the moving average order k the
k-index. We explain how to generate the k-index in
detail in Sect.4.2.

In the search phase, given a query sequence T,
a moving average order 7n, and a search range €, the
searching should be performed using the m-moving av-
erage transformed sequence Ti,,). That is, as in the
plain search case, we construct the candidate set con-
sisting of subsequences that contain windows Y(,,); sat-
isfying Eq. (2):

d (X(myir Tmyj) < % (2)
When the given moving average order m is equal to the
order k of the k-index, the searching is performed using
the k-index in the same way as in the plain search case.
For searching when m is less than k, we first introduce
Theorem 1 and Corollary 1.

Theorem 1: For sequences X = (x;) and T = (t;)
(0 <1i < n) of length n,

d (,\’(,,,,, T-'iml) zd (fm-'fu-))

ifl<m<k<n-1(n2>3)and the values in either
sequence are all greater than the corresponding values
in the other one, i.e., the following condition is satisfied:

Yi,z; 2 t; V Vi, x; <t (0 S ‘H.)
Proof: Refer to [14]. O

Corollary 1: For windows X; = (xi) and 7; = (71)
(0 €1 < w) of length w, the following relationship
holds:

= d (X(kyir Thyj) < “ﬁ (3)
ifl<m<k<w-1(w>3)and the values in either
window are all greater than the corresponding values
in the other one, i.c., the following condition is satis-
fied (called the condition of non-overlapping windows
in this paper):

d (X(m)is Tom)j) <

)
=

Vi xai 2t VVLxa <1 (0<1<n) (4)
O

If the order m given at query time is not equal to
the order k of the k-index, we retrieve the candidate
set satisfying Eq. (5) instead of Eq. (2) using Corollary
1.

d (X(wyis Tkyj) < (5)

€
VP

Here, the condition of non-overlapping windows in Eq.
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(4) must be satisfied. The case when the condition is
not satisfied is dealt with later in this section. Corollary
1 has other conditions: w > 3 and 1 < k < w - 1.
However, the application scope of the proposed method
is not limited by the condition. since we can always set
k and w to satisfy the condition.

In Definition 3. we define the notion of matching
windows to perform the subsequence matching for ar-
bitrary order:

Definition 3: The window X(x); is called the match-
ing window of X(m)i. where X(x); and X(,); are k- and
m-moving average transformed windows of Y. respec-
tively. O

Matching windows are used when the order m given at
query time is not equal to the order k of the A-index.
That is, the matching window 7i;); instead of the win-
dow 7{,,); is used for searching, and the matching win-
dow Y(x); instead of the window X{,,); is returned as
the search result.

Given a window Y. we can easily find the
matching window Y(z);, and wvice versa, using the fol-
lowing two properties. (1) Offset Property: The offset
of the window Y; in the subsequence X and the off-
sets of window Y(,,); and its matching window Y(x);
in the m- and k-moving average transformed sequences
X(m) and X3 are all the same. (2) Length Property:
According to Definition 2, the difference between the
lengths of window Y,,,); and its matching window Xz);
is easily computed using Eq. (6) below:

Wy, —wi =k —m (G)

where wy, and wy are the lengths of X, and Y(x);-
respectively. Figure 4 shows the relationship of offsets
and lengths of the window Y, m-moving average trans-
formed window X(,,);. and its matching window X();-
The length w of \; is w =wp + k- 1.

We can show by Corollary 1 that the search using
Eq. (5) and the A-index does not cause false dismissal.
For the windows X(,,); that satisfy the antecedent in
Eq. (3). the matching windows Yiy); satisfy the con-
sequent. That is, the set of pairs (X(x)i. T(x);) that
satisfy the consequent is a superset of the set of pairs
(f(,,,,,. T(m);) that satisfy the antecedent. Thus, the
search using the consequent of Eq. (3) does not cause
false dismissal. We present the search algorithm using
the matching windows in detail in Sect. 4.2.

. X
¥ < > e
- - L X(-lu ‘_,‘I
X! < >
! = /
ik L Zux
X'l] } T -

Fig.4 Relationships among the window Y;, m-moving average
transformed window Y(,,,);, and matching window Y(z);.
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4.1.1 Window Shifting

When the condition of non-overlapping windows in Eq.
(4) does not hold, we solve the problem by window
shifting defined in Definition 4:

Definition 4: For a window ¥ = (x;) (0 < i < n)
of length n, the window shifting is the operation that
adds a constant d; to every component value x; of the
window ¥. The shifted window is denoted by ¥ + ds.
The value d, is called the shifting distance. O

We shift up or down either X; or 7; to make the con-
dition in Eq. (4) satisfied and compute a new search
range according to the shifting distance. We compute
the shifting distance d; using the minimum and maxi-
mum values of the windows ¥; and 7;. First, we define
the difference values dy and dy for the windows ¥; and
7; as follows:

d; = min(xX;) — max(7;),
dy = min(7;) — max(X;) (7)

where min(w) and max(w) are the minimum and max-
imum among the values constituting the window w. If
dy 2 0 or d; 2 0, i.e., the values in either window are
all greater than the values in the other one, the condi-
tion of non-overlapping windows in Eq. (4) is satisfied,
and thus, we perform the ordinary iﬁ-range search. If

dy < 0 and dy < 0, we must shift up or down either ¥;
or 7 to satisfy the condition.

Let the window ’; be the one to be shifted. As ¥;
is shifted away from the query window 7j, the search
range must increase to contain X;. This causes the
false alarm to increase. Thus, we need to minimize
the search range. The shifting distance d, is computed
as

- |di| if |dy| < |de]
ds —{ —|d2] otherwise (8)

Once the shifting distance d, is determined, a new
search range €' is computed in such a way as to min-
imize false alarm while preventing false dismissal. We
compute the search range ¢ as

e=ﬁ+|d3|-\/ﬁn‘; 9)

where wyy, is the length of the m-moving average trans-
formed windows X(m); and 7(;,);. Then, we construct
the candidate set as those windows X(x); satisfying

€

/P

Theorem 2 shows that the search using the new search
range ¢ causes no false dismissal.

+ lds - V. (10)

d (Tkyjs Xryi + ds) <
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Theorem 2: The windows 7{(,,); and X(m); are the m-
moving average transformed results of the windows 7;
and X;, respectively, and the windows T(x); and X(k):
are their matching windows. The window X(x); + ds is
obtained by shifting the window X(x); by d,. Then, the
following relationship holds:

g
d ‘Fm ',)? m)i < —
(Fms» Xm) 7%
- €
= d (T, Xkyi +ds) € — + |ds| - Vo (11)
VP
where the shifting distance d, is computed using Eq.
(8), and wyy, is the length of the windows 7(;,); and

X‘.(m)i'
Proof: Refer to [14]. O

4.1.2 Using Multiple k-Indexes

The proposed algorithm can also use the k-indexes
for more than one moving average order k to improve
search performance. The more k-indexes are used, the
better search performance is achieved. When the mov-
ing average m given at query time does not exist among
the ‘orders k of the k-indexes, i.e., there exists no k-
index generated for the given order m, we choose one
of the orders k using the following equation:

£ = min{klk > m}

We call the k-index for the chosen order & the k-indez.
When the condition of non-overlapping windows in Eq.
(4) is satisfied, we construct the candidate set using
k-index and the following equation:

€
d fn i;‘F j S =
(oo Tosrs) <
When the condition is not satisfied, we use the following
equation instead:

5 - €

d (Tiwyj» X(nyi +da) < 7 + |ds| - Vm
Here, wy, = w, + K —m according to Eq. (6), where w,
is the length of the matching window X(x):.

The proposed algorithm works well for the follow-
ing reason. The execution time of the similar sequence
matching algorithms such as the proposed one is domi-
nated by accessing from the disk the data sequences in
the candidate set obtained using the indexes [7]. Thus,
the essential job to enhance the search performance is
to keep the candidate set as small as possible.

We now show that the candidate set does not in-
crease much for the proposed algorithm compared with
the SUB94 algorithm [8]. The proposed algorithm has
two differences from the SUB94 algorithm. First, when:
the condition of non-overlapping windows in :Eq: (4):
is satisfied, the proposed algorithm can perform range
search even when the given moving average order mis
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not equal to the order k of the k-indexes. Second, when
the condition is not satisfied, the proposed algorithm
performs search by shifting the query windows. For
the first case, the size of the candidate set increases as
the given order m gets farther from k, i.e., as |k — m)|
gets larger. However, we can keep the value |k — m)|
within some boundary by using more k-indexes. For
the second case, when the condition of non-overlapping
windows in Eq. (4) is not satisfied, it means that the
window Y; is close enough to the window 7, and thus,
Xi is probably to be added to the candidate set. In
contrast, the window Y; that is not likely to be added
to the candidate set, i.e., that is not close enough to 7;,
satisfies the condition. Thus, even though we use the
new search range €' (> ¢€) for the windows that violate
the condition of non-overlapping windows, the size of
the candidate set does not increase much,

We show the results of performance evaluation
through a series of experiments in Sect. 5.

4.2 Indexing and Searching Algorithms

In this subsection we explain detailed algorithms for
generating the k-index and for searching using the k-
index. The k-index is generated in almost the same
way as in the plain search case discussed in Sect.4.1,
except that the minimum and maximum values are
added to the information for each window. That is, for
each sliding window X(x); of length wy extracted from
k-moving average transformed data sequence S|y, we
store f (< wy) coefficients obtained through DFT plus
min(y;) and max(y;) values in an (f + 2)-dimensional
index structure.

The search algorithim using the k-index is pre-
sented in Fig.5. For brevity, in the figure, we use the
notation of windows 7{x) and X instead of their DFT
transformed results F(7()) and F(Y;)). We explain
only the case that the moving average order k of the
k-index is not equal to the order m given at query time.
First, the m-moving average transformed sequence 'f(,,,)

of the query sequence T are divided into p windows
T(m); (0 < j < p) as shown in Fig. 3. The length of the
windows Tim); is wm = wy + (kK — m) according to Eq.
(6), where wy, is the length of sliding windows stored
in the k-index. For the matching window 7{y); of each
window 7{,,);, the window search function in Fig.5 is
called. The function uses the matching window 7y);
instead of the query window 7(,,); as an input, and
performs range search to find the set containing all the
windows X(,,); that satisfy Eq. (2) using the k-index.
The function operates on any kind of multidimensional
index structure. The window searching is initiated by
calling RangeSearch(Root, 7(x;, €/\/P), where Root is
the root node of the k-index. The candidate set is the
union of all the windows X(x); returned by the function
for each matching window 7x);.
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Function RangeSearch(Node N, Window 7(,,, Range )
returns a set of windows

// Passed parameters

Node N; // current node to be processed
Window 7y); // query window
Range ¢; // search range

// Local variables
Set 53 // set of windows (initially empty)

(1) if N is a directory node then

(2) for each directory entry E in N do
(3) Calculate d; and da;

(4) ifdy > 0 or d2 > 0 then

(5} il" ) (‘?(k]. J'I.fg) S € thﬂl‘l

S = S U RangeScarch(E, 7y, €);

(6) else //dy <0andd; <0
(7) Calculate dy and €';
(8) Mg = Mg + dg;
// shift Mg by d, along every axis
(9) if d (74, M};) < ¢ then
S = S5 U RangeSearch(E, Ty, €);
(10) endif
(11) end for
(12) else // N is a data node
(13) for each window Y, in N dp
(14) Calculate dy and da;
(15) ifdy, 2 0ords > 0 then
(16) ifd (‘F{k), flk)) < ¢ then Add f(m in S;
(17) else //dy <0anddz <0
(18) Calculate dy and ¢';
{]9)‘ f{'k} = f{k) + ds:
(20) ifd (m,.f;“) < ¢ then Add Y in S;
(21) endif

(22) end for
(23) endif
(24) return S;

Fig.5 Subsequence matching algorithm supporting moving
average transform.

We now explain in detail each line of the Range-
Search() in Fig.5. The lines (2)-(11) are for process-
ing the directory nodes, and the lines (13)-(22) are for
the data nodes. In lines (3) and (14), d; and ds are
computed using Eq. (7). When in line (3), we need
min(E) and max(E) values for the directory entry E
instead of min(x;) and max(y;) in Eq. (7). The min(E)
and max(£) are recursively defined as the minimum of
min(SE;) and the maximum of max(SE;), respectively,
where SE; are the subentries of the entry £. The lines
(4)-(5) and (15) (16) perform ordinary e-range search
ifdy > 0o0rds > 0. In line (5), Mg is the mini-
mum bounding rectangle (MBR) for the entry E. and
d (7(x), Mg) is the minimal Euclidean distance between
(k) and Mg. The lines (7)-(9) and (18)-(20) are for
processing the case where dy < 0 and dy < 0. The win-
dow shifting distance dy and the new search range €
is computed by Eqgs.(8) and (9). In line (8), the MBR
M}, for the entry E is obtained by shifting the MBR
Mg by d along every axis. That is, for MBR Mg that
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spans a range (s;, fi| for each axis 7 (0 <i < f), MBR
M, spans a range [s;+ds, fi +d;]. In lines (8) and (19),
Mp and )‘("E k) can be easily obtained using the distribu-

tivity property of DFT [10]: F(X +b) = F(X) +bF(1),
where T is a sequence consisting of only 1's. In line
(9), d (Fxy. Mp) is the minimal Buclidean distance be-
tween the query window 7{;) and the MBR AJfj;. If the
MBR M} overlaps with the ¢ range. the function is
called recursively for the entry E. In line (20), if the
shifted result of the window Y4 is contained in the ¢
range from the query window 7;). the window Yz is
added in the set S. In line (24). the final result set §
of windows is returned.

5. Performance Evaluation

In this section we present the experimental results for
performance evaluation of the proposed subsequence
matching algorithm. We show that the performance for
selectively-indexed case is comparable to that for fully-
indexed case, and that the search performance gets bet-
ter when more than one k-index is used. The search al-
gorithm performed for the fully-indexed case is the one
for the plain search case discussed in Sect. 4.1, which is
a simple application of SUB94. We present the environ-
ment for experiments in Sect. 5.1 and the experimental
results and analyses in Sect. 5.2.

5.1 Enviromment for Experiments

The time-series database used in the experiments con-

sists of 620 data sequences of Korean stock items of

length 1024 dated from November 1, 1994 to May 30,
1998. To generate the query sequences T, we have
randomly chosen 128 out of 620 data sequences, and
from them randomly extracted subsequences Q = (g;)
(0 < i < 256) of length 256 as in the reference [8].
We then have generated the query sequences T = (t;)
(0 £ i < 256) by perturbing each ¢; as in the refer-
ence [1] as follows:

ti=¢qi+ 2, = € (—50 50)

where z; is an arbitrary value in the range (—50, 50).
and 50 is 5% of the average of |¢qi+1 — q;] (0 < i < 255)
for all . We set search ranges ¢ so that the final search
result using € should satisfy the selectivity defined be-
low. We use the selectivity values 0.0001. 0.001, 0.01,
and 0.1.

Selectivity =
# of subsequences in the final result
# of all the possible subsequences in the database

We have generated, for selectively-indexed case, the k-
indexes for moving average orders k = 64 and 128, and,
for fully-indexed case, ordinary indexes for the orders
m=8 (:=1,2,...,16) and m = 1, k+1. We have gen-

erated the k-indexes by adding only the minimum and
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maximun information for each window stored in the
ordinary indexes, as explained in Sect. 4.2, Thus, the k-
index is ( f +2)-dimensional, while the ordinary index is
f-dimensional. For the indexing, we use the coefficients
of the first three frequencies obtained through DFT as
in the reference[8]. The coefficients are all complex
numbers, and we get two real numbers from the real and
the imaginary parts of each coeflicient. But, when the
input. data to DFT consists of only real numbers, the
imaginary part of the first coefficient, which contains
the largest energy, is always zero [15], [16]. Thus, we set
the index dimensionality as f = 5. We set the length
wy. of the sliding windows stored in the A-index as wy
= 64, and the length w,, of the sliding windows stored
in the ordinary indexes for a moving average order m
as wy, = wi + (k —m) using Eq. (6). We have used the
R*-tree [4] as the multidimensional index structure to
store sliding windows. Subtrails have been generated to
contain multiple sliding windows as in the reference (8]
and stored in the index structure. The hardware plat-
form for the experiment is a PC equipped with an Intel
Celeron 400 MHz CPU, 128MB RAM, and a 2.0GB
Hard Disk. The software platform is Microsoft Korean
Windows NT Workstation 4.0 Operating System (OS).

5.2  Experimental Results and Analyses

We have performmed three experiments: The first and
second experiments compare the numbers of subse-
quences in the candidate set and the elapsed times
for algorithm execution between the selectively-indexed
and fully-indexed cases. The third one compares the
clapsed times for algorithm execution between the pro-
posed and sequential scan algorithms.

The purpose of the first experiment is to show the
amount of false alarm in the proposed algorithm com-
pared with the algorithm by Faloutsos et al. [8]. Fig-
ure 6(a) shows the result using one k-index (k = 128);
Fig. 6(b) that using two k-indexes (k = 64, 128). The
horizontal axis represents the order m given at query
time; the vertical axis the ratio of the number of sub-
sequences for the selectively-indexed case, #Sietective-
divided by that for the fully-indexed case, #Sp.u. Each
value has been averaged for 128 queries.

In Fig.6, the ratio increases as m gets farther
from k. 1t is because the difference between the dis-
tances between the m-moving average transformed se-
quences and between the k-inoving average transformed
sequences increases as shown in Theorem 1. The ratio
also increases a little bit as m gets closer to k. It is
due to the new search range ¢ = ~j~§ + €snife result-
ing from the shifting of window X(x)i, where eqipp =
|ds| - \/w,,. Since the distance between the m-moving
average transformed windows 7{,,); and X(,,); decreases
as m increases according to Theorem 1, the effect of
€shife Within € is exaggerated as m gets closer to k, and
the false alarm due to €., increases.
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(a) Using one k-index (b) Using two k-indexes
(k = 128) (k = 64, 128)
Fig.6 Ratio of the numbers of subsequences in the candidate
sets (#Ssetective/#Sfull)-

If we use more k-indexes as in Fig. 6(b). we syn-
chronize m with k again at the point a new k-index is
created (say m = 64), and we can suppress overall in-
crease of the ratios. As shown in Fig. 6, for cases that
m < 64, we get better search performance using two
k-indexes.

The second experiment compares the elapsed times
for the algorithm execution for the selectively-indexed
and fully-indexed cases. In many cases, the execution
time of database programs is dominated by disk access
time rather than CPU time. However, the disk access
time varies depending on buffering and caching services
by the OS. To measure the execution time consistently
in this experiment, we make all the disk access routines
bypass the buffering and caching services by the OS.

It is adequate to bypass the buffering and caching
services of the OS for the following reasons. (1) Buffer-
ing and caching services help a query processor use the
disk pages accessed by the previous queries at low costs,
and therefore, their effects on search performance are
highly dependent on the order of the queries. Thus,
even though the same set of queries are processed, the
search performance varies according to the order of the
queries. (2) The proposed algorithm is executed only
when user requests, and meanwhile other processes such
as daemons may take memory buffer pages. Moreover,
the proposed algorithm uses different k-indexes accord-
ing to the moving average order m given at query time.
Thus, the hit ratio for the proposed algorithm to find
the required disk pages from the memory buffer is fairly
low.

Figure 7(a) shows the result using one k-index (k
= 128); Fig.7(b) using two k-indexes (k = 64, 128).
The vertical axis represents the ratio of the execution
time for the selectively-indexed case, t .100tive. divided
by that for the fully-indexed case, tg. Each value
has been averaged for 128 queries. We can see that
the trend is similar to that in Fig.6. As in the first
experiment, for cases that m < 64 where a new k-index
is created in Fig. 7(b), we get better search performance
than in Fig. 7(a).

Finally, the third experiment compares the elapsed
times for the proposed algorithm and the sequential
scan algorithm. As in the second experiment, we make
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(a) Using one k-index (b) Using two k-indexes
(k = 128) (k = 64, 128)

Fig.7 Ratio of the execution time for the selectively-indexed
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(a) Using one k-index (b) Using two k-indexes
(k = 128) (k = 64, 128)
Fig.8 Ratio of the execution time of the proposed al-

gorithm divided by that of the sequential scan algorithm
(tsetective /tscan )

all the disk access routines bypass the buffering and
caching services. The sequential scan algorithm ac-
cesses all the data sequences directly from the disk and
returns those that are within the given e distance from
the query sequence. In most cases, since the cost to
access disks is very high, the sequential scan algorithm
requires more execution time than the algorithms that
access only the data sequences in the candidate set ob-
tained using the indexes.

Figure 8(a) shows the result using one k-index (k
= 128); and Fig. 8(b) using two k-indexes (k = 64, 128).
The vertical axis represents the ratio of the execution
time of the proposed algorithm, t..ective, divided by
that of the sequential scan algorithm, #,.,,. Each value
has been averaged for 128 queries.

Figure 9 shows the absolute execution time of the
proposed algorithm, SUB94 algorithm, and the sequen-
tial scan algorithm for selectivities 0.1, 0.01, 0.001, and
0.0001 when two k-indexes are used. The vertical axis
represents the execution time in seconds. Each value
has been averaged for 128 queries. In Fig. 9, the ex-
ecution time decreases as the order m increases. It is
because, as m increases, the length of the m-moving av-
erage transformed query sequence decreases as shown in
Fig. 1, and so does the time to compute the Euclidean
distance between the query sequence and the candidate
subsequence.

We see that the proposed algorithm outperforms
the sequential scan by up to 3.3 (= 1 / 0.30) times using
two k-indexes, and that the search performance is more
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Fig.9 Absolute execution time of the proposed algorithmn,
SUB94 algorithm, and the sequential scan algorithm when two
k-indexes are used.

improved as the selectivity of the query gets smaller. In
general, the queries with smaller selectivities are much
more frequent than those with larger ones in databasc
applications. This makes the proposed algorithm more
useful in practical situations.

6. Conclusions

In this paper we have proposed a subsequence match-
ing algorithim that supports moving average transform
of arbitrary order that extends the existing subsequence
matching algorithm (SUB94) proposed by Faloutsos
et al. [8]. The simplest method to use SUB94 without
any extension is to store and process the sliding win-
dows extracted from the moving average transformed
data sequences for every moving average order. In this
case, however, we must generate one index for each
moving average order, and will encounter serious over-
head in storage space and data sequence insertion or
deletion. We solve the problem using the notion of in-
dex interpolation. The proposed algorithm uses only
one k-index for a pre-selected moving average order k
and performs the subsequence matching for arbitrary
order m (< k). The proposed algorithm can also use
more than one k-index to improve search performance.
We have proved that the proposed algorithm causes no
false dismissal. We have shown by experiments that the
search performance with only one A-index is compara-
ble to that with the indexes for all the moving average
orders, and that we get better search performance by
using more k-indexes. We also have shown that the pro-
posed algorithm outperforms the sequential scan algo-
rithm significantly. The proposed algorithm has better
search performance for queries with smaller selectivi-
tics and proves to be suitable for practical situations.
The proposed algorithm can be used in various appli-
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cations of moving average transform. Typical ones in-
clude analysis of stock price trends, estimation of prod-
uct sales, and weather forecasting through temperature
data analysis.
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