
General Match: A Subsequence Matching Method
in Time-Series Databases Based on Generalized Windows

Yang-Sae Moon, Kyu-Young Whang, and Wook-Shin Han
Department of Computer Science and

Advanced Information Technology Research Center (AITrc)
Korea Advanced Institute of Science and Technology (KAIST)

Taejon, Korea

{ysmoon,kywhang,wshan}@mozart.kaist.ac.kr

ABSTRACT
We generalize the method of constructing windows in sub-
sequence matching. By this generalization, we can explain
earlier subsequence matching methods as special cases of a
common framework. Based on the generalization, we pro-
pose a new subsequence matching method, GeneraIMatch.
The earlier work by Faloutsos et al. (called FRM for conve-
nience) causes a lot of false alarms due to lack of point-
filtering effect. Dual Mateh, recently proposed as a dual
approach of FRM, improves performance significantly over
FRM by exploiting point filtering effect. However, it has
the problem of having a smaller allowable window s ize- -
half tha t of FRM--g iven the minimum query length. A
smaller window increases false alarms due to window size
effect. General Match offers advantages of both methods: it
can reduce window size effect by using large windows like
FRM and, at the same time, can exploit point-filtering ef-
fect like Dual Match. General Match divides da ta sequences
into generalized sliding windows (J-sliding windows) and the
query sequence into generalized disjoint windows(J-disjoint
windows). We formally prove that General Match is cor-
rect, i.e., it incurs no false dismissal. We then propose a
method of est imating the optimal value of the sliding factor
J that minimizes the number of page accesses. Experimen-
tal results for real stock da ta show that, for low selectiv-
ities (10-6~10-4) , General Match improves average perfor-
mance by 117% over Dual Match and by 998% over FRM; for
high selectivities (10-3~10-1) , by 45% over Dual Match and
by 64% over FRM. The proposed generalization provides an
excellent theoretical basis for understanding the underlying
mechanisms of subsequence matching.

1. INTRODUCTION
Time-series da ta are of growing importance in many new

database applications such as da ta mining and da ta ware-
housing [14]. A time-series is a sequence of real numbers

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACMSIGMOD '2002 June 4-6, Madison, Wisconsin, USA
Copyright 2002 ACM 1-58113-497-5/02/06 ...$5.00.

representing values at specific points in time. Typical exam-
ples of time-series da ta include stock prices, exchange rates,
biomedical measurements, and weather data. The time-
series da ta stored in a database are called data sequences.
Finding da ta sequences similar to the given query sequence
from the database is called similar sequence matching [1, 8].
Owing to faster computing speed and larger storage devices,
there has been a number of efforts to utilize the large amount
of time-series data. Accordingly, similar sequence matching
has become an impor tant research topic in da ta mining [1,
2, 8, 9, 12, 13].

Various similarity models have been studied in similar se-
quence matching. In this paper, we use the similarity model
based on the Euclidean distance [1, 5, 8, 10]. In this model,
two sequences X = {X[1], ..., X[n]} and Y = {Y[1] , Y[n]}
of the same length n are said to be similar if the Euclidean

n X " distance D (X , Y) (= ~ i E , = , ([~]- Y[i]) 2) is less than or
equal to the user-specified tolerance e [1]. More specifically,
we define that two sequences X and Y are in e-match if
D(X, Y) is less than or equal to e. We define n-dimensional
distance computation as the operation that computes the
distance between two sequences of length n.

Similar sequence matching can be classified into two cat-
egories [8]:

• Whole matching [1]: Given N da ta sequences $1, ..., SN,
a query sequence Q, and the tolerance e, we find those
da ta sequences tha t are in e-match with Q. Here, the
da ta and query sequences must have the same length.

• Subsequence matching[8, 10]: Given N da ta sequences
$1, ..., SN of varying lengths, a query sequence Q, and
the tolerance e, we find all the sequences Si, one or
more subsequences of which are in e-match with Q,
and the offsets in Si of those subsequences.

Thus, subsequence matching is a generalization of whole
matching[5, 6, 8, 18]. In this paper, we focus on subse-
quence matching.

Subsequence matching methods[8, 10] consist of index
building and subsequence matching algorithms. In the index
building algorithm, da ta sequences are divided into windows
of size w, and each window is t ransformed to a point in an
f-dimensional space (f << w, we call it lower-dimensional
transformation). Then, the transformed points are stored
in a multidimensional index. In the subsequence matching
algorithm, a query sequence is t ransformed into windows of
size w, and each window is t ransformed to an f-dimensional

382

point. Then, range queries are constructed using the trans-
formed points and the tolerance e. By evaluating the range
queries using the index, the candidates that are potential ly
in e-match with the query sequence are identified. The re-
sult is subsequently refined by accessing the database and by
selecting only those subsequences that are in e-match with
the query sequence.

Faloutsos et al. [8] have proposed a subsequence matching
method tha t divides da ta sequences into sliding windows
and the query sequence into disjoint windows(we simply
call this solution FRM by taking the authors ' initials). By
dividing da ta sequences into sliding windows, FRM gener-
ates too many points to be stored individually in an index.
Thus, it constructs minimum bounding reetangles(MBRs)
tha t contain hundreds or thousands of points, using a heuris-
tic method, and stores those MBRs into the index. How-
ever, storing MBRs only causes false alarms by not allow-
ing point- to-point comparison (which is called point-filtering
effect [10]) in the index level for checking distances. False
alarms are the candidates that are actually not in e-match
with the query sequence and are the major cause of perfor-
mance degradation [1].

A new subsequence matching method, Dual Match[lO] has
been proposed to solve this problem of FRM. Dual Match is
a dual approach for FRM in constructing windows: it divides
da ta sequences into disjoint windows and a query sequence
into sliding windows. By dividing da ta sequences into dis-
joint windows rather than sliding windows, Dual Match re-
duces the number of points to store dras t ica l ly- - to 1/w of
that for FRM. Thus, Dual Match is able to store individual
points themselves rather than MBRs in the index with much
smaller storage overhead. By storing individual points di-
rectly, Dual Match exploits point-filtering effect, and accord-
ingly, reduces false alarms and improves performance signifi-
cantly. Nevertheless, Dual Match has the problem of having
a smaller allowable window size--approximately half that
of FRM--g iven the minimum query length [10]. A smaller
window increases false alarms. This effect is called window
size effect [10] and will be explained in more detail in Sec-
tion 2. Due to window size effect, performance is slightly
degraded in Dual Match compared with FRM for high selec-
t ivitiesl(i .e. , higher than 10-2).

In this paper, we generalize the method of construct-
ing windows. By this generalization we can explain both
FRM and DualMatch as special cases of a common frame-
work. Based on the generalization, we propose a new sub-
sequence matching method, General Match. General Match
has advantages of both FRM and Dual Match: it can use
large windows like FRM and, at the same time, can ex-
ploit point-filtering effect like Dual Match. We first define
J-sliding windows and J-disjoint windows, which are gener-
alization of sliding windows and disjoint windows. Here, J is
the sliding factor representing the amount of shifting among
consecutive J-sliding windows. General Match divides da ta
sequences into J-sliding windows and the query sequence
into J-disjoint windows. We then formally prove that Gen-
eral Match is correct, i.e., it incurs no false dismissal. False
dismissals are the subsequences that are in e-match with
the query sequence but that are discarded as non-similar
subsequences. Many subsequence matching methods can be
devised by varying the value of J. Thus, we also propose a

T a b l e 1: S u m m a r y o f n o t a t i o n .

Symbols [Definitions

Len(S) length of sequence S
Total_Len sum of lengths of all data sequences

S[k] the k-th entry of sequence S (l<k_~Len(S))
a subsequence of S, including entries from

S[i : j] the i-th one to the j - th (if i > j , then it
means a null sequence of length 0)

S[i:k]S[k+l:j] S[i : j] divided into two subsequences S[i : k]
a n d S [k + l : j]

si the i-th disjoint window of sequence S
(= S[(i -1)*w+ l :i*w],i_> 1)

method of est imating the optimal value of the sliding fac-
tor J that minimizes the number of page accesses. Finally,
we empirically show superiority of General Match over both
Dual Match and FRM.

The rest of this paper is organized as follows. Section
2 describes existing work related to subsequence matching.
Section 3 presents the concept of generalization and pro-
poses General Match. Section 4 presents the results of per-
formance evaluation. Section 5 summarizes and concludes
the paper.

2. RELATED WORK
We first summarize in Table 1 the notat ion to be used

throughout the paper. The symbols in Table 1 are self ex-
planatory and do not need further elaboration. We then
review related work for whole matching and review FRM
and Dual Match as the representative research results for
subsequence matching.

W h o l e M a t c h i n g

A solution for similar sequence matching has first been intro-
duced by Agrawal et al.[1]. The outline of the method is as
follows. First, each da ta sequence of length n is transformed
into the frequency domain by using Discrete Fourier Trans-
form (DFT), and the first f (_< n) features are extracted.
They are regarded as an f-dimensional point, and this point
is indexed using the R*-tree [3]. Only a small number of
features are extracted because storing high-dimensional se-
quences in the R*-tree is difficult due to the high dimension-
ality problem [4, 15]. Here, the function used for dimension-
ality reduction, such as the one extracting f features after
DFT, is called the feature extraction function [8]. Next, a
query sequence is similarly transformed to an f-dimensional
point, and a range query is constructed using the point and
the given tolerance e. Then, the R*-tree is searched to eval-
uate the query, and a candidate set is constructed consisting
of the feature points that are in e-match with the query se-
quence. This method guarantees there be no false dismissal,
but may cause false alarms because it uses only f features
instead of n. Thus, for each candidate sequence obtained,
the actual da ta sequence is accessed from the disk, and the
distance from the query sequence is computed. The candi-
date is discarded if it is a false alarm. This last step, which
eliminates false alarms, is called the post-processing step [1].

1Selectivity = the n u m b e r of subsequences t h a t are in ~ - -ma tch wi th the quer 7 sequence
the n u m b e r of all poss ib le subsequences in the d a t a b a s e

383

S u b s e q u e n c e M a t c h i n g - F R M

Faloutsos et al. [8] have proposed the subsequence matching
method (called F R M for convenience) as a generalization of
whole matching. FRM consists of index building and sub-
sequence matching algorithms.

In the index building algorithm, FRM constructs an R*-
tree using da ta sequences. FRM divides da ta sequences into
sliding windows of size w and transforms each window to
an f-dimensional point. FRM generates almost Total..Len
f-dimensional points corresponding to sliding windows for
da ta sequences, and thus, needs f times more storage space
than is required by original da ta sequences. Moreover, the
search performance may become even poorer than tha t of
sequential scanning due to the excessive height of the R*-
tree [8]. To solve this problem, FRM does not store individ-
ual points directly into the R*-tree, but stores only MBRs
that contain hundreds or thousands of such points.

In the subsequence matching algorithm, FRM divides the
query sequence Q into p (= [Len(Q)/wJ) disjoint windows
of size w. The validity of FRM is based on the following two
Lemmas:

L e m m a 1. [8]: When two sequences S and Q of the same
length are divided into p disjoint windows si and qi (1 < i <
p) respectively, if S and Q are in c-match, then at least one
of the pairs (si , q~) are in e / x/~-match. That is, the following
equation holds:

P

D(S, Q) _< e ~ V D(s,, qi) _< e/x/~ (1)

L e m m a 2.[8]: If two sequences S and Q of the same
length are in c-match, then any pair of subsequences (S[i :
j] , Q[i : j]) are also in e-match. That is, the following equa-
tion holds:

D(S ,Q) < e ~ D(S[i : j] ,V[i: j]) _< e (2)

Using Lemmas 1 and 2, we derive Lemma 3 for the query
sequence Q and a subsequence S[i : j] of da ta sequence S.

L e m m a 3. [8]: Suppose the data sequence S is divided
into sliding windows of size w, and the query sequence Q into
disjoint windows of the same size. If the subsequence S[i : j]
of length Lea(Q) is in c-match with Q, then at least one
disjoint window qk of Q is in e/x/~-match with the sliding
window S[i + (k - 1) * w : i + k * w - 1] included in S[i: j] :
Here, p is [Len(Q)/wJ.

Lemma 3 guarantees tha t the candidate set consisting of
the subsequences S[i : j] such tha t qk and S[i + (k - 1) * w :
i + k * w - 1] are in e/x/-p-match do not contain any false
dismissal.

For subsequence matching, FRM divides the query se-
quence into disjoint windows, transforms each window to an
f-dimensional point, makes a range query using the point
and the tolerance e, and constructs a candidate set by search-
ing the R*-tree. Finally, it performs the post-processing step
to eliminate false alarms.

S u b s e q u e n c e M a t c h i n g - D u a l M a t c h

Dual Match[10], recently proposed as a dual approach of
FRM, also consists of index building and subsequence match-
ing algorithms. Like in FRM, the index building algorithm
constructs a multidimensional index using da ta sequences.

However, it stores individual points directly in the index
while FRM stores only MBRs. It generates approximately
Total_Len/w points by dividing da ta sequences into disjoint
windows, and thus, the storage overhead for the index is
about f / w of tha t for the original da t a sequences. This
is only approximately 1/w of the storage tha t FRM would
take if it stored (approximately Total_Len) individual points
directly in the index. Thus, even if Dual Match stores indi-
vidual points directly in the index, it does not suffer from ex-
cessive storage overhead and performance degradation tha t
are encountered in FRM.

In the subsequence matching algorithm, Dual Match relies
on the following Lemma 4 to guarantee there be no false
dismissals.

L e m m a 4. [10]: Suppose the data sequence S is divided
into disjoint windows of size w, and the query sequence Q
into sliding windows of the same size. If the subsequence
S[i : j] of length Len(Q) is in c-match with Q, then at least
one disjoint window S[i + k : i + k +w - 1] included in S[i : j]
is in e / v ~ - m a t c h with the sliding window Q[k : k + w - 1]
of Q. Here, p' is [(Lea(Q) + 1)/wJ - 1.

Lemma 4 guarantees tha t the candidate set consisting of the
subsequences S[i : j] such tha t S[i + k : i + k + w - 1] and
Q[k : k +w - 1] are in e / x / y - m a t c h do not contain any false
dismissal.

For subsequence matching, Dual Match divides the query
sequence into sliding windows, transforms them into f -d imen-
sional points, and constructs a query MBR containing mul-
tiple points to reduce the number of range queries. Here,
it maintains the points themselves together with the MBR.
This is possible since a query sequence contains only a small
number of sliding windows, say, a few hundreds. Next, it
makes a range query using the MBR and e / x / y , searches
the R ' - t r e e using the range query. Then, it constructs a
candidate set by comparing each point in the query MBR
and each point in the search result and by discarding the
false alarms caused by using the MBR. Finally, it performs
the post-processing step to eliminate false alarms.

According to Lemmas 1 and 2, there is the tendency tha t
smaller windows increase false alarms. This effect is called
window size effect [10]. For example, let the window size of
the method A be twice as large as tha t of the method B.
Then, by Lemmas 1 or 2, a candidate subsequence in the
method A must also be a candidate in the method B. How-
ever, the inverse does not hold. Thus, to reduce false alarms,
we need to use as large windows as possible. As we men-
t ioned in Section 1, however, Dual Match has the problem
of having a smaller allowable window s ize- -approximate ly
half tha t of FRM --g ive n the minimum query length [10].

3. SUBSEQUENCE MATCHING BASED ON
GENERALIZED WINDOWS

In this section we generalize the method of constructing
windows. Based on the generalization, we then propose a
new subsequence matching method, General Match. Sec-
tion 3.1 presents the concept of General Match. Sections 3.2
describes the index building algorithm; Section 3.3 the sub-
sequence matching algorithm. Section 3.4 derives the maxi-
mum allowable window size and the number of points s tored
in the index discussing the relationship between them. Fi-
nally, Section 3.5 proposes a method of est imating the opti-
mal value of the sliding factor J .

384

3.1 T h e C o n c e p t

J - S l i d i n g W i n d o w s

General Match divides da ta sequences into J-s l iding win-
dows defined in the following Definit ion 1.

D e f i n i t i o n 1: A J-sliding window(1 < J < w) si J of size w
of the sequence S is defined as the subsequence of length w
s tar t ing from S[(i - 1) * J + 1] (1 < i < Len(S) -w j + 1) . D

E x a m p l e 1: Figure 1 shows an example of dividing a se-
quence S into 4-sliding windows (i.e., d = 4) of length w =
16. In tui t ively speaking, we const ruct windows by shifting
a subsequence of length 16 by 4 entries, and thus, the s tar t -
ing entries of the 4-sliding windows are S[1], S[5], S[9], ...,
respectively. []

• Sequence S

1
I I $ 5:20] (=$1) ~ 4-sliding windows

I I I

I I si,3:~J (= ,~) I J b<=~) . l . I I I I' I [s.,.s=j<=,~;" J
(=16)

F i g u r e 1: A n e x a m p l e of d iv id ing a sequence S into
4-sl iding windows of size w = 16.

L e m m a 5. : I] the sequence S is divided into J-sliding
windows, the first J-sliding window included in the subse-
quence S[i : j] is the (r l + 1)-th J-sliding window orS.

PROOF: See Appendix A. []

J can be any value in between 1 and w. For convenience,
in Gene ra lMa tch we l imit the value of J to be a divisor

J (s tar t ing offset of w to be able to use Lemma 1. Let s~
= (a - 1) * J + 1) be a J-s l iding window of the sequence S
when we divide S into J-s l iding windows. Then, the window

: by w entries must also be a J- resul t ing from moving sa
sliding window of S, which is the (a +-~)- th J-s l iding window
s~J+~ (s tar t ing offset = (a - 1) * J + 1 + w). From now on,

w we denote 7 as k.

J - D i s j o i n t W i n d o w s

General Match divides the query sequence into J-dis joint
windows defined in the following Definit ion 2.

D e f i n i t i o n 2: A J-disjoint window (1 < J < w) q(i,j): of size
w of the sequence Q is defined as the subsequence of length w
s tar t ing from Q[i+(j-1)*w] (1 _< i _< J, 1 _< j < Len(Q) - i+ l)

w
in Q. []

E x a m p l e 2: Figure 2 shows an example of dividing a se-
quence Q into 4-disjoint windows (i.e., J = 4) of length
w = 16. Intui t ively speaking, we construct windows QIi :
i + w - 1], Q[i + w : i + 2w - 1], ... by dividing Q[i: ien(Q)]
into disjoint windows for every i (1 _< i .< 4). []

The in tu i t ion behind dividing Q[c : Len(Q)] into disjoint
windows for every c in 1 N J when we construct J-s l iding
windows for a query sequence Q is as follows. In Figure 3,
suppose tha t a da ta sequence S is divided into J-s l iding win-
dows, where the first J-s l iding window included in a subse-
quence S[i : j] is s~ J, and the difference between the s tar t ing

g is b. Then, the value of offset of S[i : j] and tha t of sa
b varies from 0 to J - 1 according to the s ta r t ing offset of

S[i : j]. Here, if we are to compare Q with S[i : j] , we mus t
use a window Q[b+ 1 : b+w] (= J q(b+l,1)) to compare it with

J a n d Q [b + l + w : b + 2 w] (= J q(b+l,2)) to compare it with Sa ,
J b y w J cons t ructed by moving sa the J-s l iding window s~+ k

entries. Thus, we need disjoint windows of Q[c : Len(Q)]
for every c in 1 ~ J .

~ ' ~ Q u e r y sequence Q

. ,~) = . QI~:L~(Q)J
. Q U : ~ ¢ Q) J

[I 1 QI3:L~(Q)1

~ " - - " " " " " ~ (= 16)

F i g u r e 2: An example o f d iv id ing a sequence Q into
4-disjoint windows of size w = 16.

Q ° . ° °

F i g u r e 3: A n example of construct ing J-disjoint win-
dows for a que ry sequence according to the starting offset
of a subsequence.

FRM and Dual Match are typical examples of using J-
sliding windows and J-dis joint windows. To divide da ta
sequences, FRM uses sliding windows; Dual Match disjoint
windows. In this case, we can regard sliding windows of
FRM as 1-sliding windows and disjoint windows of Dual Match
as w-sliding windows. To divide the query sequence, FRM
uses disjoint windows; Dual Match sliding windows. Simi-
laxly, we can regard disjoint windows of FRM as 1-disjoint
windows and sliding windows of Dual Match as w-disjoint
windows. As a result, FRM uses the method of dividing da ta
sequences into 1-sliding windows and the query sequence
into 1-disjoint windows; Dual Match uses the method of di-
viding da ta sequences into w-sliding windows and the query
sequence into w-disjoint windows.

C o r r e c t n e s s o f G e n e r a l M a t c h

To explain correctness of General Match, we need the not ion
of included windows for a subsequence. Suppose tha t a se-

J is quence S is divided into J-s l iding windows and tha t sa
the first J-s l iding window included in a subsequence S[i : j].
Then, we define the included windows for S[i:j] as those J -
sliding windows s,+,.kJ (n _> 0) included in S[i : j]. Here,
we note tha t J is equivalent to the window constructed 8aWn*k

J by n * w entries. by moving s ,

E x a m p l e 3: Figure 4 shows an example of included win-
dows for a subsequence S[i : j] . In this figure, a da ta se-
quence S is divided into J-s l iding windows, and the first J -
sliding window included in S[i : j] is s~. Thus, the included
windows for S[i : j] are s~, Hi+k, and J J 8aW2k. Here, Saw k
is equivalent to the window const ructed by moving s~ J by w

J J entries, and s,+2k to the window const ructed by moving s~
by 2w entries []

385

Wh~
included in S[i:j] Included windows of S[i:j]

F i g u r e 4: An example of included windows for a subse -
quence S[i : j].

We now derive Theorem 1, which states the correctness
of General Match.

T h e o r e m 1.: Suppose the data sequence S is divided
into J-sliding windows of size w, and the query sequence Q
into J-disjoint windows of the same size. I f the subsequence
S[i : j] of length Len(Q) is in ¢-match with Q, then at least
one included window s~J+~.k (0 < n < p - 1) for S[i : j] is
in e /v /~-match with the J-disjoint window q(b+l n+l~ of Q.
Here, p is the number of included windows for S[i : j]. That
is, Eq. (3) holds:

p--1

D(S[i : j l , Q) <~ ~ V J J _ D(sa+~.k,q(b+l,n+l)) <_ e/v"-P, (3)

where a is [~] + 1, b is (a - 1)* J - i + 1, and p is

PROOF: See Appendix B. []

In Eq. (3) of Theorem 1, a means that the first J-sliding
window of S[i : j] is s~ J, and b means that the starting offset
of the J-disjoint window g q(b+l,1) of Q that will be compared

with s~ J is b + 1, which is the difference between the starting
J Theorem 1 guarantees offset of S[i : j] and that of Sa.

that the candidate set consisting of the subsequences S[i :
J and J j] such that Sa+n.k q(b+l,~+l) are in ¢/v,~-match (i.e.,

satisfying the necessary condition of Eq. (3)) contain no false
dismissal. 2

3.2 Index Building Algorithm
Figure 5 shows the index building algorithm Build.Index.

The input to the algorithm is a database containing data
sequences; the output an f-dimensional index, which will be
used in subsequence matching. In Step 2.1 of the algorithm,
we divide each data sequence S, whose identifier is S-id,
into J-sliding windows. In Step 2.2.1, we transform the

g of S t o an f-dimensional point c-th J-sliding window sc
f-point. In Step 2.2.2, we construct a record consisting of
the transformed point f-point, the data sequence identifier
S-id, and the window index c of the J-sliding window. Here,
the identifier will be used to find the actual data sequence
that contains the candidate subsequence, and the window
index to find the offset of the subsequence in the sequence.

2We can think of a dual approach of General Match, which
divides data sequences into J-disjoint windows and a query
sequence into J-sliding windows. However, analysis and ex-
periments indicate that the proposed General Match is much
superior in performance to the dual approach. The reason
is that, if two methods store the same number of points in
the index, the maximum window size of General Match is
larger than that of the dual approach, and thus, General-
Match better exploits the window size effect. Thus, we omit
the detailed discussion about the dual approach.

Algorithm Build_Index

Input: Database db that contains data sequences

Output: f-dimensional index that will be used for subsequence matching

Algorithm:
1. Initialize the index.
2. For each data sequence S with identifier S-id in db DO

2.1 Divide S into J-sliding windows.

2.2 For each J-sliding window sic DO

2.2.1 Transform sic to an f-dimensional point f-point.

2.2.2 Construct a record <f-point, S-id, c>.
2.2.3 Insert the record, whose key is f-point, into the index.

F i g u r e 5: The index building algori thm Build. Index.

We subsequently insert the record into the index using the
transformed point as the key in Step 2.2.3.

To exploit the point-filtering effect, the algorithm Build.In-
dex stores the individual points directly in the index like
Dual Match. For a small value of J, it is difficult to use
this algorithm since the number of points stored in the in-
dex becomes too large. FRM is an extreme example of this
case. In contrast, for a large value of J, this algorithm works
well since the number of points stored in the index becomes
small. Dual Match is an extreme example of this case. In
Section 3.4, we will investigate the number of points to be
stored in the index in more detail. From now on, we dis-
tinguish two different variations of FRM: 1) the one that
stores individual points directly (we call it F R M - P O I N T)
and 2) the original method that stores only MBRs (we call
it F R M - M B R) .

3.3 Subsequence Matching Algorithm
Figure 6 shows the subsequence matching algorithm Gen-

eral_Match. The inputs to the algorithm are the time-series
database, index, query sequence Q, and tolerance e. The
output is the set of sequences containing subsequences that
are in c-match with Q and offsets of these subsequences.
The algorithm General_Match consists of three steps: ini-
tialization, index searching, and post-processing.

In the initialization step, we construct MBRs to be used
for searching the index. In Step 1.1, we divide the query se-
quence into J-disjoint windows and transform each window
to an f-dimensional point. In Step 1.2, we construct MBRs
containing multiple points to reduce the number of range
queries. Here, we maintain the points themselves together
with the MBR.

We may use various techniques for constructing MBRs.
Examples are 1) using the heuristics used in FRM for con-
structing MBRs for data sequences [8], 2) using a fixed num-
ber of points in an MBR, and 3) using only one MBR. con-
taining all the points. The detailed discussion, however, is
not a focus of the paper and is left as a further study. In
general, if the query sequence is long, it is more effective to
limit the sizes of the MBRs by using multiple MBRs. To
simplify the problem, however, we use only one MBR.

In the index searching step, we construct the candidate set
by searching the index. In Step 2.1, we make a range query
using each MBR and e/v/X, and then, retrieve the qualifying
points by searching the index. In Step 2.2, we construct the
candidate set by filtering at the index level. That is, we
compute the f-dimensional distance between each point in
the MBR and each point in the search result. We then

386

Algorithm GeneralMatch

Input: (1) Database db that contains data sequences

(2) f-dimensional index that has been created by Algori thm Build Index

(3) Query sequence Q and tolerance e

Output: Data sequences containing subsequences that are in e-match with Q

and offsets of these subsequences

Algorithm:

1. Initialization

1.1 Divide Q into J-disjoint windows and transform each window to an

f-dimensional point.

1.2 Construct MBRs using the transformed points.

2. Index searching: for each MBR DO

2.1 Construct a range query using the MBR and the tolerance c/a lp ;

search the index using the range query.

2.2 Construct the candidate set by filtering at the index level (compute the

distance between each point in the MBR and each point in the search

result; include in the candidate set only those records having the

points that are in c/~fp -match, together with the window index (a,b)

of the matching J-disjoint window qT(,,b)).

3. Post-processing: for each record <f-point, S-id, c> in the candidate set DO

3.1 Read from db the candidate subsequence sub-S of the data sequence S.

This is done using S-id. The offset of sub-S in S is calculated as

(c-1)*J - (b-1)*oo - a + 2. Here, (a,b) is the window index of the J-disjoint

window that has been stored with this record in Step 2.2.

3.2 If sub-S and Q are in t-match, then output S-id and the offset of sub-S.

F i g u r e 6: T h e s u b s e q u e n c e m a t c h i n g a l g o r i t h m G e n -
e r a l _ M a t c h .

include in the candidate set only those records having the
points tha t are in e /v~-match , together with the window
index (a,b) of the matching J-disjoint window J q(a,b)" W e
use the filtering at index level to exploit point-filtering effect
while obtaining the same candidate set as in the case of using
individual points themselves instead of using MBRs [10].

In the post-processing step, we select only similar subse-
quences by discarding false alarms from the candidate set.
In Step 3.1, for each record <f-point, S-id, c> in the candi-
date set, we read the candidate subsequence sub-S from the
database. This is done using S-id and the start ing offset of
sub-S. If the J-sliding window is the c-th one, then we calcu-
late the star t ing offset of sub-S as (c - 1) * J - (b - 1) . w - a + 2 .
Here, (a, b) is the window index of the J-disjoint window that
has been stored with this record in Step 2.2. In Step 3.2, we
remove false alarms keeping only those subsequences that
are in e-match with the query sequence.

3.4 Maximum Size of Window and Number of
Points Stored in Index

Given the minimum size of the query sequence, there is a
maximum window size that can be used in General Match as
in Lemma 6. This is because, to make General Match work
correctly, the number of included windows for a subsequence
must be at least one. This maximum window size determines
the number of points that are to be stored in the index as
in Lemma 7.

L e m m a 6. : If the minimum length of the query sequence
is Min(Q), the maximum window size allowable is [M,,~(~-J+l]

*J .

PROOF: See Appendix C. []

L e m m a 7.: If the data sequence S is divided into J-
sliding windows of size w, the number of points stored in the

index is L + 1.
l a

PROOF: See Appendix D. []

Lemmas 6 and 7 indicate that the maximum window size
and the number of points stored in the index vary according
to the value of J. Since the number of disk I /Os occur-
ring in subsequence matching is significantly affected by the
window size and the number of points stored, we need to
find an optimal value of J to minimize the disk I /O 's . Ta-
ble 2 shows the maximum window sizes and the numbers
of points stored in the index for various values of J when
Min(Q) is 512 and Lea(S) is 1000000. The value of J is in
1 ~ [(Min(Q) + 1)/2J (=256), the maximum window size
of Dual Match [10] , and J is in 1 ,-~ w. As shown in the ta-
ble, for a larger value of J, the maximum window size and
the number of points become smaller. For a larger value
of J, disk I /Os for accessing da ta sequences (i.e., the num-
ber of da ta page accesses) increase since a smaller window
increases false alarms. In contrast, for a larger value of J ,
disk I /Os for accessing the index (i.e., the number of index
page accesses) become smaller because the number of points
becomes smaller. In Section 3.5, we propose a method of es-
t imating the optimal value of J that minimizes disk I /Os.

T a b l e 2: T h e m a x i m u m s ize o f t h e w i n d o w a n d t h e n u m -
ber o f p o i n t s s t o r e d in t h e i n d e x w h e n Min(Q) is 512 and
Len(S) is 1000000.

J [w [Number of points Comments
1 512
2 510
3 510

:

128 384
171 342
256 256

999489 FRM-POINT (J : l)
499746
333164

7810
5375
3906 Dual Match(J=w)

3.5 Estimating the Optimal Value of J
The number of page accesses (= da ta page accesses + in-

dex page accesses) varies according to the query sequence
Q and tolerance e tha t are given by the user. Therefore,
we assume a usage pat tern [16] consisting of (Q, c) pairs axe
given in advance and obtain the optimal value of J for those
(Q, e) pairs given. To do this, we first obtain the average
number of page accesses for each value of J, and then, de-
termine the optimal value of J minimizing the average num-
ber of page accesses. Table 3 summarizes the notation. To
obtain np~g~(Q, j), we first est imate both nipage(Q, e,j) and
ndpage (Q, ~,j) for each value j of J .

nipage(Q, e , j) : t h e n u m b e r o f i n d e x p a g e a c c e s s e s

We estimate n,p,ge(Q,~,j) as follows. 3 We evaluate one
range query for each (Q, c) finding npu (Q, e, j) points out

3Faloutsos and Kamel [7] have est imated the number of in-
dex page accesses for the R*-tree by using the concept of
iractal dimension. In this paper, however, we do not use
their est imation method. The reasons axe 1) it is not clear
that the set of f-dimensional points stored in the index
for subsequence matching is a fractal, and 2) they assume

387

T a b l e 3: Nota t ion for e s t i m a t i n g t h e average n u m b e r of
p a g e accesses .

Symbols
Q

npo~ (Q, j)

nipage (Q, ~, j)

nd~a~(Q,e,j)

sizei(j)

sized
fint

f leaf
nipts (j)

n~t, (Q, ~, j)

n~ub~ (Len(Q))

n~a~d(Q,e,j)

g(j)

Definitions
Set of the (Q, e) pairs given
Average number of page accesses for all
(Q, e) pairs in Q when J = j
Number of index page accesses for (Q, e)
when J = j
Number of data page accesses for (Q, e)
when J = j
Size of the index to be built in pages
when J = j
Size of the time-series database in pages
Average fan-out of internal pages of
the index
Average fan-out of leaf pages of the index
Number of points to be stored in the index
when J = j
Number of points retrieved by evaluating
the range query (Q, e) when J = j
Number of all possible subsequences of
Len(Q) in the database
Number of candidate subsequences retrieved
for (Q,e) when J = j
Height of the index to be built when J = j

(H(j) = 1 + |logf,~, nipts(J)]
-777:]- I , i

of a total of nlpt~(j) points as the result. Thus, evaluation

of the range query (Q, e) requires approximately - j -

of total index pages obtaining Eq. (4).

npt~(Q,e,j) (4)
nipag~(Q,e,j) ,~ sizei(j) X nlpt~(j)

We now estimate sizei(j) as in Eq. (5) using nlpt~ (j), fiat,

r_~.~d.~2] represents the estimated and fte~I. In Eq. (5), / fleaf |

number of leaf pages and [f~:j~x'f~'~]n~ ,,(3) (1 _< h <_ H(j) - 1)

that of internal pages.

Fn'""(J)l [n'""(J)]

[] + / . - ~ " ~) - 1
| Jleaf .llnt

H(J)-' r nip,,(j)] = ~ /Y,~ 7 ~ , | (5)
h = O

By substi tuting size~(j) with Eq. (5), we obtain Eq. (6) from
Eq. (4).

nip~e(Q,e, j)~ (H ~ - i F niptj(j)) npt~(Q,e,j)

ndpage(Q, c,j): t h e n u m b e r o f d a t a p a g e a c c e s s e s

We estimate ndp~,9~(Q,e,j) as follows. We need to access
data pages to retrieve candidate subsequences from the dat-
abase. In subsequence matching, adjacent subsequences are

square-like MBRs of the same size at each level, but real
MBRs that contain actual f-dimensional points show vari-
ous shapes of rectangles.

similar and tend to be stored in the same data page. Thus,
many candidate subsequences are accessed together in a
clustered fashion [10]. Hence, we can estimate ndpage (Q, e, j)
as in Eq. (7).

n~,~d(Q,e,j)
ndp~g~(Q,e,j) ~ sized × n,,b,(Len(Q)) (7)

n p as e (Q , j): t h e a v e r a g e n u m b e r o f p a g e a c c e s s e s

We obtain npag~ (Q, j) as in Eq. (8) by adding n,p~g~ (Q, e, j)
in Eq. (6) and ndpage (Q, e, j) in Eq. (7) and by averaging
over all the queries.

np~9~(Q, j) = average
for (Q,~)6Q

average
for (Q,e)eQ

[(n,paa~ (Q, e, j) + ndpag~ (Q, e, j))]

)
\ h=0 | ftea[× flh, t / /

np,, (Q, ~, j) ×

+s i ze s × (8)

In Eq. (8), we have two categories of parameters: 1) the
first ones that do not require access to the database in ob-
taining their values for each (Q, e) and j , and 2) the second
ones that require access to the database for each (Q, e) and
j. The parameters in the first category are sized, flnt, f~4,
nipt,(j), and n~b~(Len(Q)). Those in the second category
are nrt~ (Q, e, j) and ncand (Q, e, j) . The values of npt, (Q, e, j)
and nca,d (Q, e, j) vary according to the values of various fac-
tors such as query sequences, tolerances, and sizes of the
windows. Thus, we obtain the values of all npt,(Q,e,j)'s
and nc~nd (Q, e, j) ' s by one database scan. Having obtained
all the values of the parameters, we calculate np~ge (Q, j) for
each j in 1 ~ L(Min(Q) + 1)/2J, and then, determine the
optimal value of J minimizing np~9~ (Q, j) .

4. P E R F O R M A N C E EVALUATION
In this section, we present the results of performance eval-

uation comparing FRM-POINT, FRM-MBR, Dual Match,
and General Match. We describe the experimental data and
environment in Section 4.1 and present the results of the
experiments in Section 4.2.

4.1 Experimental Data and Environment
We have performed experiments using three different data

sets. A data set consists of a long data sequence and has
the same effect as the one consisting of multiple data se-
quences [8]. The first data set, a real stock data set 4 used in
FRM [8] and Dual Match [10], consists of 329112 entries. We
call this data set STOCK-DATA. The second data set, used
in Dual Match, contains pseudo periodic synthetic time-series
data 5 consisting of one million entries. We call this data
set PERIODIC-1M(M means one million entries). The last

4This data set can be obtained from ftp://ftp.santafe.edu-
/pub/Time-Ser ies /da ta / .
SThis data set is one of those that are currently
under construction with support from the Na-
tional Science Foundation and can be obtained from
http: / /kdd. ics .uci .edu/dat abases/synthetic/synthetic.html.

388

da ta set, also used in FRM and Dual Match, contains ran-
dom walk da ta consisting of one million entries: the first
entry is set to 1.5, and subsequent entries are obtained by
adding a random value in the range (-0.001,0.001) to the
previous one. We call this da ta set WALK-1M. We also
generate WALK-iOM consisting of ten million entries by re-
peating WALK-1M ten times and WALK-lOOM by repeat-
ing WALK-1M 100 times.

We conduct all the experiments on a SUN Ultra 60 work-
stat ion with 512 Mbytes of main memory. To avoid the
buffering effect of the UNIX file system and to guarantee
actual disk I /Os, we use raw disks for da ta and index files.
The page size for da ta and indexes is set to be 4096 bytes.
As the multidimensional index, we use the R*-tree for all
the methods. The storage utilization of the R*-tree for esti-
mat ing the optimal value of J is set to be a s tandard value
of 69% [17]. We use Discrete Fourier Transform [11] as the
feature extraction function and use six features. 6

We use the number of candidates, the number of page ac-
cesses, and the wall clock time as the performance measures.
We generate query sequences from the da ta sequence by tak-
ing subsequences of length Lea(Q) start ing from random
offsets as has been done in FRM [8] and DualMatch [10].
We use 512.-,1024 as the lengths of query sequences and
generate ten different query sequences for each length. We
perform experiments for two ranges of selectivities: Low-
Range(lO-6,..~lO -4) and High-Range(lO-a,,~lO-1). We ob-
tain the desired selectivity by controlling the tolerance e
and uniformly distr ibute query sequences over various se-
lectivities in the given range. Since the optimal value of J
for General Match varies according to the da ta set and the
range of selectivity, we est imate it for each da ta set and
range of selectivity. Accordingly, each experiment uses its
own optimal value of J.

4.2 Results of the Experiments
S T O C K - D A T A

We first perform an experiment that evaluates the accuracy
of the method for estimating the optimal value of J proposed
in Section 4.6. To do this, we est imate the optimal value of
J (we call it the estimated J) by using the proposed method
and compare it with the true optimal value of J (we call it
the real J) obtained by building an index for each value of
J and executing the subsequence matching algorithm. As
the usage pattern[16], we use 3% of query sequences that
are randomly selected among those in Low-Range. Since we
limit the value of J (or k : w/J) to be a divisor of w, multi-
ple values of J have the same value of k. For the same value
of k, we consider the largest J (the largest w) because, as
the value of J becomes larger, the number of points stored
in the index becomes smaller, and the window size becomes
larger for the same value of k. Figure 7 (a) shows the es-
t imated and real numbers of average page accesses to do
subsequence matching for each value of J in Low-Range.
As shown in the figure, the est imated J is 85, and the real
J is 57. Figure 7 (a) shows that the est imated and the real
numbers differ slightly but are very similar in trends. Fig-
ure 7 (b) shows the numbers of page accesses in Low-Range
when J is 85 (the est imated J) , 57 (the real J) , 1 (the value
for FRM-POINT) , and 256 (the value for Dual Mateh) for

6We have used the real part of the fourth complex number
instead of the imaginary par t of the first one, which is 0.

various selectivity ranges. As shown in the figure, the num-
ber of pages accesses is much less when using the es t imated
J or the real J compared with those when using the values
for FRM-POINT or Dual Match. In addition, when we use
the est imated J or the real J , there is only a lit t le differ-
ence (less than 1.58% on the average) in the number of page
accesses. This result indicates that estimation of the opt imal
value obtained by the proposed method is reasonable.

Figure 8 shows the results of the experiment in Low-Range
for STOCK-DATA. Here, we use the est imated J of 85 (w
= 425). In the figure, we note that FRM-POINT, Gen-
eralMatch, and DualMatch outperform FRM-MBR in all
three measures. This difference is due to lack of the point-
filtering effect in FRM-MBR. Having the largest window
and exploiting the point-filtering effect, FRM-POINT shows
the least number of candidates in Figure 8 (a). Due to the
searching overhead for the index, however, it has higher
values for the number of page accesses and for the wall
clock t ime compared with General Match. General Match
also shows a performance bet ter than that of Dua lMatch
since its window size is larger. In summary in Low-Range,
General Match reduces the wall clock time averaged over
the entire range of selectivities by 117% compared with
Dual Match and 998% compared with FRM-MBR, reduces
the number of candidates by 101% compared with Dual Match
and 19200% compared with FRM-MBR, and reduces the
number of page accesses by 47% compared with Dual Match
and 395% compared with FRM-MBR.

Figure 9 shows the results of the experiment in High-
Range for STOCK-DATA. Since the optimal value of J can
vary according to the ranges of selectivities, we separately
estimate the optimal value in High-Range. Here, we ob-
tain the est imated J of 57 (w = 456). (The real J is 64.)
As shown in the figure, having the largest window, FRM-
POINT has the least number of candidates; but, it signifi-
cantly degrades the other two measures compared with the
other three methods. This degradation of FRM-POINT is
due to the searching overhead for the index. For very high
selectivities (> 10-2), Dual Match shows a minor degrada-
tion (less than 9.6%) in comparison with FRM-MBR since
the window size effect becomes more eminent than the point-
filtering effect in higher selectivities [10]. In contrast, Gen-
eraIMatch outperforms FRM-MBR even in very high se-
lectivities since it not only exploits the point-filtering effect
but also uses a relatively larger window (89% (= 456 j that of
FRM). In summary in High-Range, General Match reduces
the wall clock t ime averaged over the entire range of selec-
tivities by 45% compared with DualMatch and 64% com-
pared with FRM-MBR, reduces the number of candidates by
46% compared with Dual Match and 100% compared with
FRM-MBR, and reduces the number of page accesses by
17% compared with Dual Match and 17% compared with
FRM-MBR.

P E R I O D I C - 1 M

Figure 10 shows the results of the experiment in Low-Range
for PERIODIC-1M. Here, we obtain the est imated J of
57 (w = 456). (The real J is 85.) The results in Fig-
ure 10 show tendencies similar to those in Figure 8 for
all three measures. However, the differences between Gen-
era lMatch and FRM-MBR and between DualMatch and
FRM-MBR are much larger than in Figure 8. PERIODIC-
1M has the characteristic that the changes among adjacent

389

1 4 7 10 13 16 19 22 25 30 36 46 64 102 256 J ..
16 512 127 72 50 38 31 26 22 19 13 10 7 4 1 k(

(a) Comparison of the estimated and the real numbers
of average page accesses as J varies in Low-Range.

F i g u r e 7:

Selectivity (x 10 ~)

(b) Comparison of the numbers of page accesses by using 85
(estimated J), 57(real J), I(FRM-POINT), and 256(DualMatch).

Compar ison of the es t imated J and the real J in Low-Range for STOCK-DATA.

]
[] F R M - P O I N T @ F R M - M B R X D u a l M a t c h A G e n e r a l M a t c h]

[

3.5-4 4 - 8 8-16 16-32 32-64 64-128 3.5-4 4 -8 8-16 16-32 32-64 64-12-8 | 3.5~4 4 - 8 8-16 16-32 32-64

Selectivity (x 10 -6) Selectivity l× 10 -6) [Selectivity (x 10 -s)

(a) The number of candidates. (b) The number of page accesses. (c) The wall clock time.

F i g u r e 8: P e r f o r m a n c e c o m p a r i s o n s in Low-Range for STOCK-DATA when d = 85.

64-128

entries are relatively large. Therefore, adjacent windows in
PERIODIC-1M tend to have distances among them larger
than in STOCK-DATA. Thus, in FRM-MBR, which stores
MBRs of multiple adjacent windows, many windows in the
same MBR may be far apart from one another. Since these
windows are included in the candidate set together, many
false alarms are generated. In contrast, Genernal Match and
Dual Match do not have this problem because they store in-
dividual points rather than MBRs. For this reason, Gen-
eral Match or Dual Match shows larger improvement in PE-
RIODIC-1M than in STOCK-DATA[10]. For very low se-
lectivities (_< 7.5 x 10-6), the number of page accesses for
General Match is larger than that for Dual Match. This
is because we estimate the optimal value of J that min-
imizes the average number of page accesses in the whole
Low-Range (1.0 x 10 -8 ~ 1.0 x 10 -4) rather than minimiz-
ing for a specific selectivity.

In High-Range for PERIODIC-1M, General Match again
outperforms Dual Match and FRM-MBR since it has advan-
tages of both FRM-MBR and Dual Match. We omit the de-
tailed results of this experiment because of space limitation
of the paper.

W A L K - 1 M / 1 0 M / 1 0 0 M

Figure 11 shows the results of the experiment in Low-Range
for WALK-1M/WALK-10M/WALK-100M. 7 Here, we use

~We have not tested FRM-POINT since the index size be-
comes larger than 200Gbytes, which is too large a size to
build. If it were tested, the curve would be between FRM-
MBR and Dual Match in Low-Range, and much higher than
FRM-MBR in High-Range.

the estimated J of 57 (w = 456). (The real J is 27.) In this
experiment we obtain the value of each measure by averaging
over all the selectivities in Low-Range for illustrative pur-
poses. As shown in this figure, General Match improves per-
formance over Dual Match as well as over FRM-MBR. More-
over, the performance differences among the three meth-
ods stay relatively constant regardless of database sizes. In
summary, we conclude that General Match outperforms the
other methods even for very large databases.

The results in High-Range show tendencies similar to those
in Low-Range. We omit the detailed results of this experi-
ment because of space limitation of the paper.

5. CONCLUSIONS
In this paper, we have generalized the method of con-

structing windows in subsequence matching. Based on the
generalization, we have proposed a new subsequence match-
ing method, General Match. From the point of view of this
generalization, the previous subsequence matching meth-
ods, FRM [8] and Dual Match [10], can be considered special
cases of a common framework. By using GeneralMatch,
we can construct windows in such a way as to achieve op-
timal performance. GeneralMatch divides data sequences
into generalized sliding windows (J-sliding windows) and the
query sequence into generalized disjoint windows (J-disjoint
windows). General Match outperforms both FRM and Dual-
Match. This is because it has advantages of both FRM
and Dual Match: it can use large windows like FRM and,
at the same time, can exploit the point-filtering effect like
Dual Match.

390

[] FRM- P O I N T @ FRM-MBR X Dual Match ,~ General Match

,~ 10 4

~o ~

I0 ~ 1-2 2-4 4~8 8-16 16-32 32-64 64-128
Selectivity (x 10 -~)

(a) The number of candidates. (b) The number of page accesses. (c) The wall clock time.

F i g u r e 9: P e r f o r m a n c e c o m p a r i s o n s in H i g h - R a n g e for S T O C K - D A T A w h e n J = 57.

FRM- P O I N T --.41,.-..,- FRM-MBR X Dual Match A General Match 1

(a) The number of candidates. (b) The number of page accesses. (c) The wall clock time.

F i g u r e 10: P e r f o r m a n c e c o m p a r i s o n s in L o w - R a n g e for P E R I O D I C - 1 M w h e n J = 57.

. . -4--- FRM-MBR X Dual Match ,~ General Match }

........... ~'~ii <% ~!i!~ ~ii~i ~ i~

WALK-1M WALK-10M WALK-100M
of entries

(a) The number of candidates.

WALK-'IM WALK-IOM WALK-IOUM
of entries

(b) The number of page accesses.

10 6

I ~ i~i~, ~ ~ ~:~ ,. ~ ~ , I
102| !ii~iiiiiiii! ii~:i~iii ~iiiiiiiiiiiiiiiii !~ ' - " :~ !!iil il iiiiiiii |

WALK-IM WALK-10M WALK-100M
of entries

(c) The wall clock time.

F i g u r e 11: P e r f o r m a n c e c o m p a r i s o n s in L o w - R a n g e for W A L K - 1 M / 1 0 M / 1 0 0 M w h e n J = 57.

391

We have formally proven the correctness of General Match
in Theorem 1. That is, Theorem 1 guarantees that Gen-
eral Match perform subsequence matching without false dis-
missals. We have also proven that, given the minimum
length of the query sequences, there is a maximum bound of
the window size to guarantee correctness of General Match.
We have derived the maximum window size in Lemma 6.
Finally, we have proposed a method of estimating the opti-
mal value of the sliding factor J that minimizes the number
of page accesses.

We have performed extensive experiments for General-
Match using various data sets and selectivity ranges. Exper-
imental results show that, regardless of data sets, selectiv-
ity ranges, and database sizes, General Match significantly
reduces the number of candidates, the number of page ac-
cesses, and the wall clock time compared with Dual Match
as well as compared with FRM. Experimental results for
real stock data show that, for low selectivities (10-6~10-4),
General Match improves performance (the wall clock time)
averaged over the entire range of selectivities by 117% over
Dual Match and by 998% over FRM; for high selectivities
(10-3~10-1) , by 45% over DualMatch and by 64% over
FRM.

Overall, these results indicate that GeneralMatch is a
new subsequence matching method significantly more effi-
cient than existing methods in supporting various database
applications. These results also provide an excellent theo-
retical basis for understanding the underlying mechanisms
in subsequence matching and for formally analyzing the per-
formance.

6. A C K N O W L E D G E M E N T S

This work was supported by the Korea Science and Engi-
neering Foundation (KOSEF) through the Advanced Infor-
mation Technology Research Center (AITrc).

7. R E F E R E N C E S
[1] R. Agrawal, C. Faloutsos, and A. Swami. Efficient

similarity search in sequence databases. In Proc. the
~th Int'l Conf. on Foundations of Data Organization
and Algorithms, pages 69-84, 1993.

[2] R. Agrawal, K.-I. Lin, H. S. Sawhney, and K. Shim.
Fast similarity search in the presence of noise, scaling,
and translation in time-series databases. In Proc. the
21st Int'l Conf. on Very Large Data Bases, pages
490-501, 1995.

[3] N. Beckmann, H.-P. Kriegel, R. Schneider, and
B. Seeger. The r*-tree: An efficient and robust access
method for points and rectangles. In Proc. Int'l Conf.
on Management of Data, pages 322-331, 1990.

[4] S. Berchtold, C. Bohm, and H.-P. Kriegel. The
pyramid-technique: Towards breaking the curse of
dimensionality. In Proc. Int'l Conf. on Management of
Data, pages 142-153, 1998.

[5] K.-P. Chan and A. W.-C. Fu. Efficient time series
matching by wavelets. In Proc. the 15th Int'l Conf. on
Data Engineering, pages 126-133, 1999.

[6] K. W. Chu and M. H. Wong. Fast time-series
searching with scaling and shifting. In Proc. the 15th
A CM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, pages 237-248, 1999.

[7] C. Faloutsos and I. Kamel. Beyond uniformity and
independence: Analysis of r-trees using the concept of
fractal dimension. In Proc. the 13th ACM
SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems, pages 4-13, 1994.

[8] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos.
Fast subsequence matching in time-series databases.
In Proc. Int'l Conf. on Management of Data, pages
419-429, 1994.

[9] H. V. Jagadish, A. O. Mendelzon, and T. Milo.
Similarity-based queries. In Proc. the 14th A CM
SIGA CT-SIGMOD-SIGART Symposium on Principles
of Database Systems, pages 36-45, 1995.

[10] Y.-S. Moon, K.-Y. Whang, and W.-K. Loh.
Duality-based subsequence matching in time-series
databases. In Proe. the 17th Int'l Conf. on Data
Engineering, pages 263-272, 2001.

[11] A. V. Oppenheim and R. W. Schafer. Digital Signal
Processing. Prentice-Hall, 1975.

[12] S. Park, W. W. Chu, J. Yoon, and C. Hsu. Efficient
searches for similar subsequences of different lengths
in sequence databases. In Proc. the 16th Int'l Conf. on
Data Engineering, pages 23-32, 2000.

[13] D. P~afiei. On similarity-based queries for time series
data. In Proe. the 15th Int'l Conf. on Data
Engineering, pages 410-417, 1999.

[14] D. Rafiei and A. Mendelzon. Similarity-based queries
for time series data. In Proc. Int'l Conf. on
Management of Data, pages 13-25, 1997.

[15] R. Weber, H.-J. Schek, and S. Blott. A quantitative
analysis and performance study for similarity-seaxch
methods in high-dimensional spaces. In Proc. the 24th
Int'l Conf. on Very Large Data Bases, pages 194-205,
1998.

[16] K. Whang, G. Wiederhold, and D. Sagalowicz.
Separability-an approach to physical database design.
IEEE Trans. on Computers, c-33(3):209-222, 1984.

[17] A. C.-C. Yao. On random 2-3 trees. Acta Informatica,
9:159-170, 1978.

[18] B.-K. Yi, H. V. Jagadish, and C. Faloutsos. Efficient
retrieval of similar time sequences under time warping.
In Proc. the 14th Int'l Conf. on Data Engineering,
pages 201-208, 1998.

A p p e n d i x A

PROOF OF LEMMA 5: Let the first J-sliding window included
J the a-th J-sliding window in the subsequence S[i : j] be s~,

of S. Then, the following Eq. (9) holds because the first
entry of 8~ is S [(a - - 1) * J + 1].

i - 1
(a - 1) . J + l > _ i ~ a>_ ~ + 1 (9)

In Eq. (9), since a is an integer, Eq. (10) holds.

J is the first J-sliding window included in S[i : j], Since sa
a = [~ 1 + 1 must be satisfied. []

392

Appendix B
PROOF OF THEOREM 1: In Figure 12, suppose the subse-
quence S[i : j] is in e-match with the query sequence Q, and

J (s tart ing the first J-s l iding window included in S[i : j] is Sa
offset ---- (a - - 1) * J + 1). Then, S[i : j] can be repre-
sented as S[i : (a - 1)* J] S [(a - 1)* J + 1 : j]. Suppose
S [(a - 1) . J + 1 : j] is divided into p disjoint windows. Then,
S[i : j] mus t include J J J where k = ~ 8 a , 8 a + k , • , ,, 8 a + (p - - 1) . k ~ "

Note tha t we l imit the value of J to be a divisor of w. It
also includes (possibly null) subsequences Sh (at the head)
and s, (at the tail). Thus, S[i : j] can also be represented as

J J Sh S~Sa+k • • • S~a+(p_l).k S*. Then, Q can be represented as
J 3 J qh q(b+l,1) q(b+l,2) ' ' " q(b+l,p) q~, where Len(qh) = Len(sh)

and Len(q~) = Lea(s t) .

Appendix D
PROOF OF LEMMA 7: Suppose the da ta sequence S is di-
vided into n J-s l id ing windows. Then, the last J-s l iding

J window of S i s s . (= S [(n - 1) * J + l : (n - 1) * J + w]) .
Thus, (n - 1)* J + w _< L e n (S) ¢:~ n _<~ Len(S)--wj + 1 .

[_~.L(~_-.__J + l is also satisfied since a is an inte- Next, n <_

J is the last window of S, it must be tha t get. Here, since sn

i (Subsequence Sl i:j] >
I Sh $1 s~.~l~,k s,

.

q l~ ~,~
Query sequence Q J ~

J

£en(Q) - b

F i g u r e 12: A subsequence S[i : j] in e -match w i th the
que ry sequence Q.

Finally, we obta in Eq. (11) by using Lemmas 1 and 2.

D(S[i : j], Q) _<

D(sJ a J J " ' ' Sa+(p-1).k,q(b+ld) "'" q(b+l,p))_< e

p--1

V a J D(sa+. . k , e/V/~ (11) q(b+l,,+l)) _<
nmO

J is the first window of S[i : j] , a is [L ~] + 1 Here, since Sa
by Lemma 5; b is (a - 1) * J - i - 1 since b (= Len(sh)) =

Len (S[i : (a - 1) * J]) ; p is [~ - ~ - ~ J since Q [b + l : Lea(Q)]

is divided into [L~(Q) -bJ disjoint windows. []

Appendix C
PROOF OF LEMMA 6: By Theorem 1, a subsequence tha t is
in e-match with the query sequence must include at least one
J-dis joint window. In other words, p _> 1. Then, we obta in
the relat ionship between the length of the query sequence
and the size of the window as follows:

p = L (L e n (Q) - b)/wJ >>_ 1

¢:::=> (Lea(Q) - b)/w _> 1 (holds since 1 is an integer)

¢::=> Len(Q) > w + b

Since Min(Q) is the m i n i m u m length of the query sequence,
w <_ Min(Q) - b must be satisfied. Since b can be as large as
J - 1, w <_ M i n (Q) - J + 1 must also be satisfied. Finally,
since the value of J is l imited to be a divisor of w, the

m a x i m u m window size allowable is /Min(Q~)-J+l | * J. [] k a J

393

