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ABSTRACT 
We generalize the method of constructing windows in sub- 
sequence matching. By this generalization, we can explain 
earlier subsequence matching methods as special cases of a 
common framework. Based on the generalization, we pro- 
pose a new subsequence matching method, GeneraIMatch. 
The earlier work by Faloutsos et al. (called FRM for conve- 
nience) causes a lot of false alarms due to lack of point- 
filtering effect. Dual Mateh, recently proposed as a dual 
approach of FRM, improves performance significantly over 
FRM by exploiting point filtering effect. However, it has 
the problem of having a smaller allowable window s ize- -  
half tha t  of FRM--g iven  the minimum query length. A 
smaller window increases false alarms due to window size 
effect. General Match offers advantages of both  methods: it 
can reduce window size effect by using large windows like 
FRM and, at the same time, can exploit point-filtering ef- 
fect like Dual Match. General Match divides da ta  sequences 
into generalized sliding windows (J-sliding windows) and the 
query sequence into generalized disjoint windows(J-disjoint 
windows). We formally prove that  General Match is cor- 
rect, i.e., it incurs no false dismissal. We then propose a 
method of est imating the optimal value of the sliding factor 
J that  minimizes the number of page accesses. Experimen- 
tal  results for real stock da ta  show that,  for low selectiv- 
ities (10-6~10-4) ,  General Match improves average perfor- 
mance by 117% over Dual Match and by 998% over FRM; for 
high selectivities (10-3~10-1) ,  by 45% over Dual Match and 
by 64% over FRM. The proposed generalization provides an 
excellent theoretical  basis for understanding the underlying 
mechanisms of subsequence matching. 

1. INTRODUCTION 
Time-series da ta  are of growing importance in many new 

database  applications such as da ta  mining and da ta  ware- 
housing [14]. A time-series is a sequence of real numbers 
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representing values at specific points in time. Typical  exam- 
ples of time-series da ta  include stock prices, exchange rates, 
biomedical measurements,  and weather data. The time- 
series da ta  stored in a database  are called data sequences. 
Finding da ta  sequences similar to the given query sequence 
from the database is called similar sequence matching [1, 8]. 
Owing to faster computing speed and larger storage devices, 
there has been a number of efforts to utilize the large amount  
of time-series data.  Accordingly, similar sequence matching 
has become an impor tant  research topic in da ta  mining [1, 
2, 8, 9, 12, 13]. 

Various similarity models have been studied in similar se- 
quence matching. In this paper,  we use the similarity model 
based on the Euclidean distance [1, 5, 8, 10]. In this model, 
two sequences X = {X[1], ..., X[n]} and Y = {Y[1] .... , Y[n]} 
of the same length n are said to be similar if the Euclidean 

n X "  distance D ( X , Y ) ( =  ~ i E , = , (  [~]-  Y[i]) 2) is less than or 
equal to the user-specified tolerance e [1]. More specifically, 
we define that  two sequences X and Y are in e-match if 
D(X,  Y)  is less than or equal to e. We define n-dimensional 
distance computation as the operation that  computes the 
distance between two sequences of length n. 

Similar sequence matching can be classified into two cat- 
egories [8]: 

• Whole matching [1]: Given N da ta  sequences $1, ..., SN, 
a query sequence Q, and the tolerance e, we find those 
da ta  sequences tha t  are in e-match with Q. Here, the 
da ta  and query sequences must  have the same length. 

• Subsequence matching[8, 10]: Given N da ta  sequences 
$1, ..., SN of varying lengths, a query sequence Q, and 
the tolerance e, we find all the sequences Si, one or 
more subsequences of which are in e-match with Q, 
and the offsets in Si of those subsequences. 

Thus, subsequence matching is a generalization of whole 
matching[5, 6, 8, 18]. In this paper,  we focus on subse- 
quence matching. 

Subsequence matching methods[8,  10] consist of index 
building and subsequence matching algorithms. In the index 
building algorithm, da ta  sequences are divided into windows 
of size w, and each window is t ransformed to a point in an 
f-dimensional  space ( f  << w, we call it lower-dimensional 
transformation). Then, the transformed points are stored 
in a multidimensional index. In the subsequence matching 
algorithm, a query sequence is t ransformed into windows of 
size w, and each window is t ransformed to an f-dimensional  
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point. Then, range queries are constructed using the trans- 
formed points and the tolerance e. By evaluating the range 
queries using the index, the candidates that  are potential ly 
in e-match with the query sequence are identified. The re- 
sult is subsequently refined by accessing the database and by 
selecting only those subsequences that  are in e-match with 
the query sequence. 

Faloutsos et al. [8] have proposed a subsequence matching 
method tha t  divides da ta  sequences into sliding windows 
and the query sequence into disjoint windows(we simply 
call this solution FRM by taking the authors '  initials). By 
dividing da ta  sequences into sliding windows, FRM gener- 
ates too many points to be stored individually in an index. 
Thus, it constructs minimum bounding reetangles(MBRs) 
tha t  contain hundreds or thousands of points, using a heuris- 
tic method,  and stores those MBRs into the index. How- 
ever, storing MBRs only causes false alarms by not allow- 
ing point- to-point  comparison (which is called point-filtering 
effect [10]) in the index level for checking distances. False 
alarms are the candidates that  are actually not in e-match 
with the query sequence and are the major cause of perfor- 
mance degradation [1]. 

A new subsequence matching method,  Dual Match[lO] has 
been proposed to solve this problem of FRM. Dual Match is 
a dual approach for FRM in constructing windows: it divides 
da ta  sequences into disjoint windows and a query sequence 
into sliding windows. By dividing da ta  sequences into dis- 
joint  windows rather than sliding windows, Dual Match re- 
duces the number of points to store dras t ica l ly- - to  1/w of 
that  for FRM. Thus, Dual Match is able to store individual 
points themselves rather  than MBRs in the index with much 
smaller storage overhead. By storing individual points di- 
rectly, Dual Match exploits point-filtering effect, and accord- 
ingly, reduces false alarms and improves performance signifi- 
cantly. Nevertheless, Dual Match has the problem of having 
a smaller allowable window size--approximately  half that  
of FRM--g iven  the minimum query length [10]. A smaller 
window increases false alarms. This effect is called window 
size effect [10] and will be explained in more detail in Sec- 
tion 2. Due to window size effect, performance is slightly 
degraded in Dual Match compared with FRM for high selec- 
t ivitiesl(i .e. ,  higher than 10-2). 

In this paper, we generalize the method of construct- 
ing windows. By this generalization we can explain both 
FRM and DualMatch as special cases of a common frame- 
work. Based on the generalization, we propose a new sub- 
sequence matching method, General Match. General Match 
has advantages of both FRM and Dual Match: it can use 
large windows like FRM and, at  the same time, can ex- 
ploit point-filtering effect like Dual Match. We first define 
J-sliding windows and J-disjoint windows, which are gener- 
alization of sliding windows and disjoint windows. Here, J is 
the sliding factor representing the amount of shifting among 
consecutive J-sliding windows. General Match divides da ta  
sequences into J-sliding windows and the query sequence 
into J-disjoint  windows. We then formally prove that  Gen- 
eral Match is correct, i.e., it incurs no false dismissal. False 
dismissals are the subsequences that  are in e-match with 
the query sequence but  that  are discarded as non-similar 
subsequences. Many subsequence matching methods can be 
devised by varying the value of J.  Thus, we also propose a 

T a b l e  1: S u m m a r y  o f  n o t a t i o n .  

Symbols [ Definitions 

Len(S) length of sequence S 
Total_Len sum of lengths of all data sequences 

S[k] the k-th entry of sequence S (l<k_~Len(S)) 
a subsequence of S, including entries from 

S[i : j] the i-th one to the j - th (if i > j ,  then it 
means a null sequence of length 0) 

S[i:k]S[k+l:j] S[i : j] divided into two subsequences S[i : k] 
a n d S [ k + l : j ]  

si the i-th disjoint window of sequence S 
(= S[ ( i -1 )*w+ l :i*w],i_> 1) 

method of est imating the optimal value of the sliding fac- 
tor J that  minimizes the number of page accesses. Finally, 
we empirically show superiority of General Match over both 
Dual Match and FRM. 

The rest of this paper  is organized as follows. Section 
2 describes existing work related to subsequence matching. 
Section 3 presents the concept of generalization and pro- 
poses General Match. Section 4 presents the results of per- 
formance evaluation. Section 5 summarizes and concludes 
the paper. 

2. RELATED WORK 
We first summarize in Table 1 the notat ion to be used 

throughout  the paper.  The symbols in Table 1 are self ex- 
planatory and do not need further elaboration. We then 
review related work for whole matching and review FRM 
and Dual Match as the representative research results for 
subsequence matching. 

W h o l e  M a t c h i n g  

A solution for similar sequence matching has first been intro- 
duced by Agrawal et al.[1]. The outline of the method is as 
follows. First,  each da ta  sequence of length n is transformed 
into the frequency domain by using Discrete Fourier Trans- 
form (DFT),  and the first f (_< n) features are extracted. 
They are regarded as an f-dimensional  point, and this point 
is indexed using the R*-tree [3]. Only a small number of 
features are extracted because storing high-dimensional se- 
quences in the R*-tree is difficult due to the high dimension- 
ality problem [4, 15]. Here, the function used for dimension- 
ality reduction, such as the one extracting f features after 
DFT,  is called the feature extraction function [8]. Next, a 
query sequence is similarly transformed to an f-dimensional 
point, and a range query is constructed using the point and 
the given tolerance e. Then, the R*-tree is searched to eval- 
uate the query, and a candidate set is constructed consisting 
of the feature points that  are in e-match with the query se- 
quence. This method guarantees there be no false dismissal, 
but  may cause false alarms because it uses only f features 
instead of n. Thus, for each candidate sequence obtained, 
the actual da ta  sequence is accessed from the disk, and the 
distance from the query sequence is computed. The candi- 
date is discarded if it is a false alarm. This last step, which 
eliminates false alarms, is called the post-processing step [1]. 

1Selectivity = the  n u m b e r  of subsequences  t h a t  are  in ~ - -ma tch  wi th  the  quer  7 sequence 
the  n u m b e r  of all  poss ib le  subsequences  in the  d a t a b a s e  
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S u b s e q u e n c e  M a t c h i n g  - F R M  

Faloutsos et al. [8] have proposed the subsequence matching 
method (called F R M  for convenience) as a generalization of 
whole matching. FRM consists of index building and sub- 
sequence matching algorithms. 

In the index building algorithm, FRM constructs an R*- 
tree using da ta  sequences. FRM divides da ta  sequences into 
sliding windows of size w and transforms each window to 
an f-dimensional  point. FRM generates almost Total..Len 
f-dimensional  points corresponding to sliding windows for 
da ta  sequences, and thus, needs f times more storage space 
than is required by original da ta  sequences. Moreover, the 
search performance may become even poorer than tha t  of 
sequential scanning due to the excessive height of the R*- 
tree [8]. To solve this problem, FRM does not store individ- 
ual points directly into the R*-tree, but  stores only MBRs 
that  contain hundreds or thousands of such points. 

In the subsequence matching algorithm, FRM divides the 
query sequence Q into p ( =  [Len(Q)/wJ) disjoint windows 
of size w. The validity of FRM is based on the following two 
Lemmas: 

L e m m a  1. [8]: When two sequences S and Q of the same 
length are divided into p disjoint windows si and qi (1 < i < 
p) respectively, if S and Q are in c-match, then at least one 
of the pairs ( si , q~ ) are in e / x/~-match. That is, the following 
equation holds: 

P 

D(S, Q) _< e ~ V D(s,,  qi) _< e/x/~ (1) 

L e m m a  2.[8]: If  two sequences S and Q of the same 
length are in c-match, then any pair of subsequences (S[i : 
j] ,  Q[i : j])  are also in e-match. That is, the following equa- 
tion holds: 

D(S ,Q)  < e ~ D(S[i :  j ] ,V[i:  j])  _< e (2) 

Using Lemmas 1 and 2, we derive Lemma 3 for the query 
sequence Q and a subsequence S[i : j] of da ta  sequence S. 

L e m m a  3. [8]: Suppose the data sequence S is divided 
into sliding windows of size w, and the query sequence Q into 
disjoint windows of the same size. If  the subsequence S[i : j] 
of length Lea(Q) is in c-match with Q, then at least one 
disjoint window qk of Q is in e/x/~-match with the sliding 
window S[i + (k - 1) * w : i + k * w - 1] included in S[i: j] :  
Here, p is [Len(Q)/wJ.  

Lemma 3 guarantees tha t  the candidate set consisting of 
the subsequences S[i : j] such tha t  qk and S[i + (k - 1) * w : 
i + k * w - 1] are in e/x/-p-match do not contain any false 
dismissal. 

For subsequence matching, FRM divides the query se- 
quence into disjoint windows, transforms each window to an 
f-dimensional  point, makes a range query using the point 
and the tolerance e, and constructs a candidate set by search- 
ing the R*-tree. Finally, it performs the post-processing step 
to eliminate false alarms. 

S u b s e q u e n c e  M a t c h i n g  - D u a l  M a t c h  

Dual Match[10], recently proposed as a dual approach of 
FRM, also consists of index building and subsequence match- 
ing algorithms. Like in FRM, the index building algorithm 
constructs a multidimensional index using da ta  sequences. 

However, it stores individual points directly in the index 
while FRM stores only MBRs. It generates approximately  
Total_Len/w points by dividing da ta  sequences into disjoint 
windows, and thus, the storage overhead for the index is 
about f / w  of tha t  for the original da t a  sequences. This 
is only approximately 1/w of the storage tha t  FRM would 
take if it stored (approximately Total_Len) individual points 
directly in the index. Thus, even if Dual Match stores indi- 
vidual points directly in the index, it does not suffer from ex- 
cessive storage overhead and performance degradation tha t  
are encountered in FRM. 

In the subsequence matching algorithm, Dual Match relies 
on the following Lemma 4 to guarantee there be no false 
dismissals. 

L e m m a  4. [10]: Suppose the data sequence S is divided 
into disjoint windows of size w, and the query sequence Q 
into sliding windows of the same size. If  the subsequence 
S[i : j] of length Len(Q) is in c-match with Q, then at least 
one disjoint window S[i + k : i + k +w - 1] included in S[i : j] 
is in e / v ~ - m a t c h  with the sliding window Q[k : k + w - 1] 
of Q. Here, p' is [(Lea(Q) + 1)/wJ - 1. 

Lemma 4 guarantees tha t  the candidate set consisting of the 
subsequences S[i : j] such tha t  S[i + k : i + k + w - 1] and 
Q[k : k +w - 1] are in e / x / y - m a t c h  do not contain any false 
dismissal. 

For subsequence matching, Dual Match divides the query 
sequence into sliding windows, transforms them into f -d imen-  
sional points, and constructs a query MBR containing mul- 
tiple points to reduce the number of range queries. Here, 
it maintains the points themselves together with the MBR. 
This is possible since a query sequence contains only a small 
number of sliding windows, say, a few hundreds. Next, it  
makes a range query using the MBR and e / x / y ,  searches 
the R ' - t r e e  using the range query. Then, it  constructs a 
candidate set by comparing each point in the query MBR 
and each point in the search result and by discarding the 
false alarms caused by using the MBR. Finally, it performs 
the post-processing step to eliminate false alarms. 

According to Lemmas 1 and 2, there is the tendency tha t  
smaller windows increase false alarms. This effect is called 
window size effect [10]. For example, let the window size of 
the method A be twice as large as tha t  of the method B. 
Then, by Lemmas 1 or 2, a candidate subsequence in the 
method A must also be a candidate in the method B. How- 
ever, the inverse does not hold. Thus, to reduce false alarms, 
we need to use as large windows as possible. As we men- 
t ioned in Section 1, however, Dual Match has the problem 
of having a smaller allowable window s ize- -approximate ly  
half tha t  of FRM --g ive n  the minimum query length [10]. 

3. SUBSEQUENCE MATCHING BASED ON 
GENERALIZED WINDOWS 

In this section we generalize the method of constructing 
windows. Based on the generalization, we then propose a 
new subsequence matching method,  General Match. Sec- 
tion 3.1 presents the concept of General Match. Sections 3.2 
describes the index building algorithm; Section 3.3 the sub- 
sequence matching algorithm. Section 3.4 derives the maxi- 
mum allowable window size and the number of points s tored 
in the index discussing the relationship between them. Fi- 
nally, Section 3.5 proposes a method of est imating the opti- 
mal value of the sliding factor J .  
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3.1 T h e  C o n c e p t  

J - S l i d i n g  W i n d o w s  

General  Match divides da ta  sequences into J-s l iding win- 
dows defined in the following Definit ion 1. 

D e f i n i t i o n  1: A J-sliding window(1 < J < w) si J of size w 
of the sequence S is defined as the subsequence of length w 
s tar t ing  from S[(i - 1) * J + 1] (1 < i < Len(S ) -w  j + 1 ) .  D 

E x a m p l e  1: Figure 1 shows an example of dividing a se- 
quence S into 4-sliding windows (i.e., d = 4) of length w = 
16. In tui t ively  speaking, we const ruct  windows by shifting 
a subsequence of length 16 by 4 entries, and  thus,  the s tar t -  
ing entries of the 4-sliding windows are S[1], S[5], S[9], ..., 
respectively. [] 

• Sequence S 

1 
I I $ 5:20] (=$1)  ~ 4-sliding windows 

I I  I 

I I si,3:~J (= ,~ ) I J b<=~) . l .  I I I I' I [ s.,.s=j<=,~;" J 
(=16) 

F i g u r e  1: A n  e x a m p l e  of d iv id ing  a sequence  S into 
4-sl iding windows  of  size w = 16. 

L e m m a  5. : I] the sequence S is divided into J-sliding 
windows, the first J-sliding window included in the subse- 
quence S[i : j] is the (r l + 1)-th J-sliding window orS.  

PROOF: See Appendix  A. [] 

J can be any value in between 1 and  w. For convenience, 
in Gene ra lMa tch  we l imit  the value of J to be a divisor 

J (s tar t ing offset of w to be able to use Lemma 1. Let s~ 
= (a - 1) * J + 1) be a J-s l iding window of the sequence S 
when we divide S into J-s l iding windows. Then,  the window 

: by w entries must  also be a J-  resul t ing from moving sa 
sliding window of S, which is the (a +-~)- th  J-s l iding window 
s~J+~ (s tar t ing offset = (a - 1) * J + 1 + w). From now on, 

w we denote  7 as k. 

J - D i s j o i n t  W i n d o w s  

General  Match divides the query sequence into J-dis joint  
windows defined in the following Definit ion 2. 

D e f i n i t i o n  2: A J-disjoint window (1 < J < w) q(i,j): of size 
w of the sequence Q is defined as the subsequence of length w 
s tar t ing  from Q[i+(j-1)*w] (1 _< i _< J, 1 _< j < Len(Q) - i+ l  ) 

w 
in Q. [] 

E x a m p l e  2: Figure 2 shows an example of dividing a se- 
quence Q into 4-disjoint windows (i.e., J = 4) of length 
w = 16. Intui t ively  speaking, we construct  windows QIi : 
i + w  - 1], Q[i + w :  i + 2w - 1], ... by dividing Q[i: ien(Q)] 
into disjoint windows for every i (1 _< i .< 4). [] 

The in tu i t ion  behind  dividing Q[c : Len(Q)] into disjoint 
windows for every c in 1 N J when we construct  J-s l iding 
windows for a query sequence Q is as follows. In  Figure 3, 
suppose tha t  a da ta  sequence S is divided into J-s l iding win- 
dows, where the first J-s l iding window included in a subse- 
quence S[i : j]  is s~ J, and  the difference between the s tar t ing  

g is b. Then,  the value of offset of S[i : j]  and  tha t  of sa 
b varies from 0 to J -  1 according to the s ta r t ing  offset of 

S[i : j]. Here, if we are to compare Q with S[i : j] ,  we mus t  
use a window Q[b+ 1 : b+w] (=  J q(b+l,1)) to compare it with 

J a n d Q [ b + l + w : b + 2 w ] ( =  J q(b+l,2)) to compare it with Sa , 
J b y w  J cons t ructed  by moving sa the J-s l iding window s~+ k 

entries. Thus,  we need disjoint windows of Q[c : Len(Q)] 
for every c in 1 ~ J .  

~ ' ~  Q u e r y  sequence  Q 

. ,~ ) = . . . . . . . . . . . . . . . . . . . . .  QI~:L~(Q)J 
. . . . . .  Q U : ~ ¢ Q ) J  

[ I 1 . . . . . . . . .  QI3:L~(Q)1 

~ " - - " " " " " ~  (= 16) 

F i g u r e  2: An  example  o f  d iv id ing  a sequence Q into 
4-disjoint windows  of  size w = 16. 

Q ° . ° ° 

F i g u r e  3: A n  example  of  construct ing J-disjoint win-  
dows for a que ry  sequence according to the starting offset 
of a subsequence.  

FRM and Dual  Match are typical  examples of using J-  
sliding windows and  J-dis joint  windows. To divide da ta  
sequences, FRM uses sliding windows; Dual  Match disjoint 
windows. In this case, we can regard sliding windows of 
FRM as 1-sliding windows and  disjoint windows of Dual  Match 
as w-sliding windows. To divide the query sequence, FRM 
uses disjoint windows; Dual  Match sliding windows. Simi- 
laxly, we can regard disjoint windows of FRM as 1-disjoint 
windows and  sliding windows of Dual  Match as w-disjoint 
windows. As a result,  FRM uses the method  of dividing da ta  
sequences into 1-sliding windows and  the query sequence 
into 1-disjoint windows; Dual  Match uses the method  of di- 
viding da ta  sequences into w-sliding windows and  the query 
sequence into w-disjoint windows. 

C o r r e c t n e s s  o f  G e n e r a l  M a t c h  

To explain correctness of General  Match, we need the not ion  
of included windows for a subsequence.  Suppose tha t  a se- 

J is quence S is divided into J-s l iding windows and tha t  sa 
the first J-s l iding window included in a subsequence S[i : j]. 
Then,  we define the included windows for S[i:j] as those J -  
sliding windows s,+,.kJ (n _> 0) included in S[i : j]. Here, 
we note  tha t  J is equivalent  to the window constructed 8aWn*k 

J by n * w entries. by moving s ,  

E x a m p l e  3: Figure 4 shows an example of included win- 
dows for a subsequence S[i : j] .  In this figure, a da ta  se- 
quence S is divided into J-s l iding windows, and  the first J -  
sliding window included in S[i : j]  is s~. Thus,  the included 
windows for S[i : j] are s~, Hi+k, and  J J 8aW2k. Here, Saw k 
is equivalent  to the window const ructed by moving s~ J by w 

J J entries, and  s,+2k to the window const ructed by moving s~ 
by 2w entries [] 
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Wh~ 
included in S[i:j] Included windows of S[i:j] 

F i g u r e  4: An  example  of included windows for a subse -  
quence S[i : j]. 

We now derive Theorem 1, which states the correctness 
of General Match. 

T h e o r e m  1.: Suppose the data sequence S is divided 
into J-sliding windows of size w, and the query sequence Q 
into J-disjoint  windows of the same size. I f  the subsequence 
S[i : j] of length Len(Q)  is in ¢-match with Q, then at least 
one included window s~J+~.k (0 < n < p - 1) for S[i : j] is 
in e /v /~-match with the J-disjoint  window q(b+l n+l~ of Q. 
Here, p is the number of included windows for S[i : j]. That 
is, Eq. (3) holds: 

p--1 

D(S[ i :  j l , Q )  <~ ~ V J J _ D(sa+~.k,q(b+l,n+l)) <_ e/v"-P, (3) 

where a is [ ~ ]  + 1, b is (a - 1)* J - i +  1, and p is 

PROOF: See Appendix B. [] 

In Eq. (3) of Theorem 1, a means that the first J-sliding 
window of S[i : j] is s~ J, and b means that the starting offset 
of the J-disjoint window g q(b+l,1) of Q that will be compared 

with s~ J is b +  1, which is the difference between the starting 
J Theorem 1 guarantees offset of S[i : j] and that of Sa. 

that the candidate set consisting of the subsequences S[i : 
J and J j] such that Sa+n.k q(b+l,~+l) are in ¢/v,~-match (i.e., 

satisfying the necessary condition of Eq. (3)) contain no false 
dismissal. 2 

3.2 Index Building Algorithm 
Figure 5 shows the index building algorithm Build.Index. 

The input to the algorithm is a database containing data 
sequences; the output  an f-dimensional index, which will be 
used in subsequence matching. In Step 2.1 of the algorithm, 
we divide each data sequence S, whose identifier is S-id, 
into J-sliding windows. In Step 2.2.1, we transform the 

g of  S t o  an f-dimensional point c-th J-sliding window sc 
f-point. In Step 2.2.2, we construct a record consisting of 
the transformed point f-point, the data sequence identifier 
S-id, and the window index c of the J-sliding window. Here, 
the identifier will be used to find the actual data sequence 
that contains the candidate subsequence, and the window 
index to find the offset of the subsequence in the sequence. 

2We can think of a dual approach of General Match, which 
divides data sequences into J-disjoint windows and a query 
sequence into J-sliding windows. However, analysis and ex- 
periments indicate that the proposed General Match is much 
superior in performance to the dual approach. The reason 
is that, if two methods store the same number of points in 
the index, the maximum window size of General Match is 
larger than that  of the dual approach, and thus, General- 
Match better exploits the window size effect. Thus, we omit 
the detailed discussion about the dual approach. 

Algorithm Build_Index 

Input: Database db that contains data sequences 

Output: f-dimensional index that will be used for subsequence matching 

Algorithm: 
1. Initialize the index. 
2. For each data sequence S with identifier S-id in db DO 

2.1 Divide S into J-sliding windows. 

2.2 For each J-sliding window sic DO 

2.2.1 Transform sic to an f-dimensional point f-point. 

2.2.2 Construct a record <f-point, S-id, c>. 
2.2.3 Insert the record, whose key is f-point, into the index. 

F i g u r e  5: The index building algori thm Build. Index.  

We subsequently insert the record into the index using the 
transformed point as the key in Step 2.2.3. 

To exploit the point-filtering effect, the algorithm Build.In- 
dex stores the individual points directly in the index like 
Dual Match. For a small value of J,  it is difficult to use 
this algorithm since the number of points stored in the in- 
dex becomes too large. FRM is an extreme example of this 
case. In contrast, for a large value of J,  this algorithm works 
well since the number of points stored in the index becomes 
small. Dual Match is an extreme example of this case. In 
Section 3.4, we will investigate the number of points to be 
stored in the index in more detail. From now on, we dis- 
tinguish two different variations of FRM: 1) the one that 
stores individual points directly (we call it F R M - P O I N T )  
and 2) the original method that stores only MBRs (we call 
it F R M - M B R ) .  

3.3 Subsequence Matching Algorithm 
Figure 6 shows the subsequence matching algorithm Gen- 

eral_Match. The inputs to the algorithm are the time-series 
database, index, query sequence Q, and tolerance e. The 
output is the set of sequences containing subsequences that 
are in c-match with Q and offsets of these subsequences. 
The algorithm General_Match consists of three steps: ini- 
tialization, index searching, and post-processing. 

In the initialization step, we construct MBRs to be used 
for searching the index. In Step 1.1, we divide the query se- 
quence into J-disjoint windows and transform each window 
to an f-dimensional point. In Step 1.2, we construct MBRs 
containing multiple points to reduce the number of range 
queries. Here, we maintain the points themselves together 
with the MBR. 

We may use various techniques for constructing MBRs. 
Examples are 1) using the heuristics used in FRM for con- 
structing MBRs for data sequences [8], 2) using a fixed num- 
ber of points in an MBR, and 3) using only one MBR. con- 
taining all the points. The detailed discussion, however, is 
not a focus of the paper and is left as a further study. In 
general, if the query sequence is long, it is more effective to 
limit the sizes of the MBRs by using multiple MBRs. To 
simplify the problem, however, we use only one MBR. 

In the index searching step, we construct the candidate set 
by searching the index. In Step 2.1, we make a range query 
using each MBR and e/v/X, and then, retrieve the qualifying 
points by searching the index. In Step 2.2, we construct the 
candidate set by filtering at the index level. That  is, we 
compute the f-dimensional distance between each point in 
the MBR and each point in the search result. We then 
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Algorithm GeneralMatch 

Input: (1) Database db that contains data sequences 

(2) f-dimensional index that has been created by Algori thm Build Index 

(3) Query sequence Q and tolerance e 

Output: Data sequences containing subsequences that are in e-match with Q 

and offsets of these subsequences 

Algorithm: 

1. Initialization 

1.1 Divide Q into J-disjoint windows  and transform each window to an 

f-dimensional point. 

1.2 Construct MBRs using the transformed points. 

2. Index searching: for each MBR DO 

2.1 Construct a range query using the MBR and the tolerance c/a lp  ; 

search the index using the range query. 

2.2 Construct the candidate set by filtering at the index level (compute the 

distance between each point  in the MBR and each point in the search 

result; include in the candidate set only those records having the 

points that are in c/~fp -match, together with the window index (a,b) 

of the matching J-disjoint window qT(,,b)). 

3. Post-processing: for each record <f-point, S-id, c> in the candidate set DO 

3.1 Read from db the candidate subsequence sub-S of the data sequence S. 

This is done using S-id. The offset of sub-S in S is calculated as 

(c-1)*J - (b-1)*oo - a + 2. Here, (a,b) is the window index of the J-disjoint 

window that has been stored with this record in Step 2.2. 

3.2 If sub-S and Q are in t-match, then output  S-id and the offset of sub-S. 

F i g u r e  6: T h e  s u b s e q u e n c e  m a t c h i n g  a l g o r i t h m  G e n -  
e r a l _ M a t c h .  

include in the candidate set only those records having the 
points tha t  are in e /v~-match ,  together with the window 
index (a,b) of the matching J-disjoint  window J q(a,b)" W e  
use the filtering at index level to exploit point-filtering effect 
while obtaining the same candidate set as in the case of using 
individual points themselves instead of using MBRs [10]. 

In the post-processing step, we select only similar subse- 
quences by discarding false alarms from the candidate set. 
In Step 3.1, for each record <f-point, S-id, c> in the candi- 
date  set, we read the candidate subsequence sub-S from the 
database.  This is done using S-id and the start ing offset of 
sub-S. If the J-sliding window is the c-th one, then we calcu- 
late the star t ing offset of sub-S as ( c - 1 ) * J - ( b - 1 ) . w - a + 2 .  
Here, (a, b) is the window index of the J-disjoint  window that  
has been stored with this record in Step 2.2. In Step 3.2, we 
remove false alarms keeping only those subsequences that  
are in e-match with the query sequence. 

3.4 Maximum Size of Window and Number of 
Points Stored in Index 

Given the minimum size of the query sequence, there is a 
maximum window size that  can be used in General Match as 
in Lemma 6. This is because, to make General Match work 
correctly, the number of included windows for a subsequence 
must be at least one. This maximum window size determines 
the number of points that  are to be stored in the index as 
in Lemma 7. 

L e m m a  6. : If the minimum length of the query sequence 
is Min(Q), the maximum window size allowable is [ M,,~(~-J+l ] 

*J .  

PROOF: See Appendix  C. [] 

L e m m a  7.: If  the data sequence S is divided into J- 
sliding windows of size w, the number of points stored in the 

index is L + 1. 
l a 

PROOF: See Appendix D. [] 

Lemmas 6 and 7 indicate that  the maximum window size 
and the number of points stored in the index vary according 
to the value of J.  Since the number of disk I /Os  occur- 
ring in subsequence matching is significantly affected by the 
window size and the number of points stored, we need to 
find an optimal value of J to minimize the disk I /O 's .  Ta- 
ble 2 shows the maximum window sizes and the numbers 
of points stored in the index for various values of J when 
Min(Q) is 512 and Lea(S) is 1000000. The value of J is in 
1 ~ [(Min(Q) + 1)/2J (=256), the maximum window size 
of Dual Match [10] , and J is in 1 ,-~ w. As shown in the ta- 
ble, for a larger value of J,  the maximum window size and 
the number of points become smaller. For a larger value 
of J,  disk I /Os  for accessing da ta  sequences (i.e., the num- 
ber of da ta  page accesses) increase since a smaller window 
increases false alarms. In contrast,  for a larger value of J ,  
disk I /Os  for accessing the index (i.e., the number of index 
page accesses) become smaller because the number of points 
becomes smaller. In Section 3.5, we propose a method of es- 
t imating the optimal value of J that  minimizes disk I /Os.  

T a b l e  2: T h e  m a x i m u m  s ize  o f  t h e  w i n d o w  a n d  t h e  n u m -  
ber  o f  p o i n t s  s t o r e d  in t h e  i n d e x  w h e n  Min(Q) is 512  and  
Len(S) is 1000000. 

J [ w [ Number of points Comments 
1 512 
2 510 
3 510 

: 

128 384 
171 342 
256 256 

999489 FRM-POINT ( J : l )  
499746 
333164 

7810 
5375 
3906 Dual Match(J=w) 

3.5 Estimating the Optimal Value of J 
The number of page accesses (=  da ta  page accesses + in- 

dex page accesses) varies according to the query sequence 
Q and tolerance e tha t  are given by the user. Therefore, 
we assume a usage pat tern  [16] consisting of (Q, c) pairs axe 
given in advance and obtain the optimal value of J for those 
(Q, e) pairs given. To do this, we first obtain the average 
number of page accesses for each value of J, and then, de- 
termine the optimal value of J minimizing the average num- 
ber of page accesses. Table 3 summarizes the notation. To 
obtain np~g~(Q, j), we first est imate both nipage(Q, e,j) and 
ndpage (Q, ~,j) for each value j of J .  

nipage(Q,  e , j ) :  t h e  n u m b e r  o f  i n d e x  p a g e  a c c e s s e s  

We estimate n,p,ge(Q,~,j) as follows. 3 We evaluate one 
range query for each (Q, c) finding npu (Q, e, j)  points out 

3Faloutsos and Kamel [7] have est imated the number of in- 
dex page accesses for the R*-tree by using the concept of 
iractal  dimension. In this paper,  however, we do not use 
their est imation method. The reasons axe 1) it  is not clear 
that  the set of f-dimensional  points stored in the index 
for subsequence matching is a fractal, and 2) they assume 
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T a b l e  3: Nota t ion  for e s t i m a t i n g  t h e  average  n u m b e r  of  
p a g e  accesses .  

Symbols 
Q 

npo~ (Q, j) 

nipage (Q, ~, j) 

nd~a~(Q,e,j) 

sizei(j) 

sized 
fint 

f leaf 
nipts ( j )  

n~t, (Q, ~, j)  

n~ub~ (Len(Q)) 

n~a~d(Q,e,j) 

g(j)  

Definitions 
Set of the (Q, e) pairs given 
Average number of page accesses for all 
(Q, e) pairs in Q when J = j 
Number of index page accesses for (Q, e) 
when J = j 
Number of data page accesses for (Q, e) 
when J = j 
Size of the index to be built in pages 
when J = j 
Size of the time-series database in pages 
Average fan-out of internal pages of 
the index 
Average fan-out of leaf pages of the index 
Number of points to be stored in the index 
when J = j 
Number of points retrieved by evaluating 
the range query (Q, e) when J = j 
Number of all possible subsequences of 
Len(Q) in the database 
Number of candidate subsequences retrieved 
for (Q,e) when J = j 
Height of the index to be built when J = j 

(H(j) = 1 + |logf,~, nipts(J) ] 
-777:]- I , i 

of a total of nlpt~(j) points as the result. Thus, evaluation 

of the range query (Q, e) requires approximately - j -  

of total index pages obtaining Eq. (4). 

npt~(Q,e,j) (4) 
nipag~(Q,e,j) ,~ sizei(j) X nlpt~(j) 

We now estimate sizei(j) as in Eq. (5) using nlpt~ (j), fiat, 

r_~.~d.~2] represents the estimated and fte~I. In Eq. (5), / fleaf | 

number of leaf pages and [f~:j~x'f~'~]n~ ,,(3) (1 _< h <_ H(j) - 1) 

that of internal pages. 

Fn'""(J)l [ n'""(J) ] 

[ ] + / .  - ~ " ~ ) - 1  
| Jleaf .llnt 

H(J)-'  r nip,,(j) ] = ~ /Y,~ 7 ~ , |  (5) 
h = O  

By substi tuting size~(j) with Eq. (5), we obtain Eq. (6) from 
Eq. (4). 

nip~e(Q,e, j )~ ( H ~ - i F  niptj(j) ) npt~(Q,e,j) 

ndpage(Q, c,j):  t h e  n u m b e r  o f  d a t a  p a g e  a c c e s s e s  

We estimate ndp~,9~(Q,e,j) as follows. We need to access 
data pages to retrieve candidate subsequences from the dat- 
abase. In subsequence matching, adjacent subsequences are 

square-like MBRs of the same size at each level, but  real 
MBRs that  contain actual f-dimensional points show vari- 
ous shapes of rectangles. 

similar and tend to be stored in the same data page. Thus, 
many candidate subsequences are accessed together in a 
clustered fashion [10]. Hence, we can estimate ndpage (Q, e, j) 
as in Eq. (7). 

n~,~d(Q,e,j) 
ndp~g~(Q,e,j) ~ sized × n,,b,(Len(Q)) (7) 

n p as e (Q  , j): t h e  a v e r a g e  n u m b e r  o f  p a g e  a c c e s s e s  

We obtain npag~ (Q, j )  as in Eq. (8) by adding n,p~g~ (Q, e, j )  
in Eq. (6) and ndpage (Q, e, j)  in Eq. (7) and by averaging 
over all the queries. 

np~9~(Q, j )  = average 
for (Q,~)6Q 

average 
for (Q,e)eQ 

[(n,paa~ (Q, e, j) + ndpag~ (Q, e, j))] 

) 
\ h=0 | ftea[ × flh, t / / 

np,, (Q, ~, j) × 

+s i ze s  × (8) 

In Eq. (8), we have two categories of parameters: 1) the 
first ones that  do not require access to the database in ob- 
taining their values for each (Q, e) and j ,  and 2) the second 
ones that require access to the database for each (Q, e) and 
j.  The parameters in the first category are sized, flnt, f~4,  
nipt,(j), and n~b~(Len(Q)). Those in the second category 
are nrt~ (Q, e, j) and ncand (Q, e, j) .  The values of npt, (Q, e, j )  
and nca,d (Q, e, j) vary according to the values of various fac- 
tors such as query sequences, tolerances, and sizes of the 
windows. Thus, we obtain the values of all npt,(Q,e,j)'s 
and nc~nd (Q, e, j ) ' s  by one database scan. Having obtained 
all the values of the parameters, we calculate np~ge (Q, j )  for 
each j in 1 ~ L(Min(Q) + 1)/2J, and then, determine the 
optimal value of J minimizing np~9~ (Q, j) .  

4. P E R F O R M A N C E  EVALUATION 
In this section, we present the results of performance eval- 

uation comparing FRM-POINT, FRM-MBR, Dual Match, 
and General Match. We describe the experimental data and 
environment in Section 4.1 and present the results of the 
experiments in Section 4.2. 

4.1 Experimental  Data and Environment  
We have performed experiments using three different data 

sets. A data set consists of a long data sequence and has 
the same effect as the one consisting of multiple data se- 
quences [8]. The first data set, a real stock data set 4 used in 
FRM [8] and Dual Match [10], consists of 329112 entries. We 
call this data set STOCK-DATA. The second data set, used 
in Dual Match, contains pseudo periodic synthetic time-series 
data 5 consisting of one million entries. We call this data 
set PERIODIC-1M(M means one million entries). The last 

4This data set can be obtained from ftp://ftp.santafe.edu- 
/pub/Time-Ser ies /da ta / .  
SThis data set is one of those that  are currently 
under construction with support from the Na- 
tional Science Foundation and can be obtained from 
http: / /kdd. ics .uci .edu/dat  abases/synthetic/synthetic.html.  
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da ta  set, also used in FRM and Dual Match, contains ran- 
dom walk da ta  consisting of one million entries: the first 
entry is set to 1.5, and subsequent entries are obtained by 
adding a random value in the range (-0.001,0.001) to the 
previous one. We call this da ta  set WALK-1M. We also 
generate WALK-iOM consisting of ten million entries by re- 
peating WALK-1M ten times and WALK-lOOM by repeat-  
ing WALK-1M 100 times. 

We conduct all the experiments on a SUN Ultra  60 work- 
stat ion with 512 Mbytes of main memory. To avoid the 
buffering effect of the UNIX file system and to guarantee 
actual  disk I /Os,  we use raw disks for da ta  and index files. 
The page size for da ta  and indexes is set to be 4096 bytes. 
As the multidimensional index, we use the R*-tree for all 
the methods. The storage utilization of the R*-tree for esti- 
mat ing the optimal value of J is set to be a s tandard  value 
of 69% [17]. We use Discrete Fourier Transform [11] as the 
feature extraction function and use six features. 6 

We use the number of candidates,  the number of page ac- 
cesses, and the wall clock time as the performance measures. 
We generate query sequences from the da ta  sequence by tak- 
ing subsequences of length Lea(Q) start ing from random 
offsets as has been done in FRM [8] and DualMatch  [10]. 
We use 512.-,1024 as the lengths of query sequences and 
generate ten different query sequences for each length. We 
perform experiments for two ranges of selectivities: Low- 
Range(lO-6,..~lO -4) and High-Range(lO-a,,~lO-1). We ob- 
tain the desired selectivity by controlling the tolerance e 
and uniformly distr ibute query sequences over various se- 
lectivities in the given range. Since the optimal value of J 
for General Match varies according to the da ta  set and the 
range of selectivity, we est imate it for each da ta  set and 
range of selectivity. Accordingly, each experiment uses its 
own optimal value of J. 

4.2 Results of the Experiments 
S T O C K - D A T A  

We first perform an experiment that  evaluates the accuracy 
of the method for estimating the optimal value of J proposed 
in Section 4.6. To do this, we est imate the optimal value of 
J (we call it the estimated J) by using the proposed method 
and compare it with the true optimal value of J (we call it 
the real J) obtained by building an index for each value of 
J and executing the subsequence matching algorithm. As 
the usage pattern[16], we use 3% of query sequences that  
are randomly selected among those in Low-Range. Since we 
limit the value of J (or k : w/J) to be a divisor of w, multi- 
ple values of J have the same value of k. For the same value 
of k, we consider the largest J (the largest w) because, as 
the value of J becomes larger, the number of points stored 
in the index becomes smaller, and the window size becomes 
larger for the same value of k. Figure 7 (a) shows the es- 
t imated and real numbers of average page accesses to do 
subsequence matching for each value of J in Low-Range. 
As shown in the figure, the est imated J is 85, and the real 
J is 57. Figure 7 (a) shows that  the est imated and the real 
numbers differ slightly but  are very similar in trends. Fig- 
ure 7 (b) shows the numbers of page accesses in Low-Range 
when J is 85 (the est imated J) ,  57 (the real J) ,  1 (the value 
for FRM-POINT) ,  and 256 (the value for Dual Mateh) for 

6We have used the real part  of the fourth complex number 
instead of the imaginary par t  of the first one, which is 0. 

various selectivity ranges. As shown in the figure, the num- 
ber of pages accesses is much less when using the es t imated 
J or the real J compared with those when using the values 
for FRM-POINT or Dual Match. In addition, when we use 
the est imated J or the real J ,  there is only a lit t le differ- 
ence (less than 1.58% on the average) in the number of page 
accesses. This result indicates that  estimation of the opt imal  
value obtained by the proposed method is reasonable. 

Figure 8 shows the results of the experiment in Low-Range 
for STOCK-DATA. Here, we use the est imated J of 85 (w 
= 425). In the figure, we note that  FRM-POINT,  Gen- 
eralMatch,  and DualMatch  outperform FRM-MBR in all 
three measures. This difference is due to lack of the point- 
filtering effect in FRM-MBR. Having the largest window 
and exploiting the point-filtering effect, FRM-POINT shows 
the least number of candidates in Figure 8 (a). Due to the 
searching overhead for the index, however, it has higher 
values for the number of page accesses and for the wall 
clock t ime compared with General Match. General Match 
also shows a performance bet ter  than that  of Dua lMatch  
since its window size is larger. In summary in Low-Range, 
General Match reduces the wall clock time averaged over 
the entire range of selectivities by 117% compared with 
Dual Match and 998% compared with FRM-MBR, reduces 
the number of candidates by 101% compared with Dual Match 
and 19200% compared with FRM-MBR, and reduces the 
number of page accesses by 47% compared with Dual Match 
and 395% compared with FRM-MBR. 

Figure 9 shows the results of the experiment in High- 
Range for STOCK-DATA. Since the optimal value of J can 
vary according to the ranges of selectivities, we separately 
estimate the optimal value in High-Range. Here, we ob- 
tain the est imated J of 57 (w = 456). (The real J is 64.) 
As shown in the figure, having the largest window, FRM- 
POINT has the least number of candidates; but, it signifi- 
cantly degrades the other two measures compared with the 
other three methods. This degradation of FRM-POINT is 
due to the searching overhead for the index. For very high 
selectivities (> 10-2), Dual Match shows a minor degrada- 
tion (less than 9.6%) in comparison with FRM-MBR since 
the window size effect becomes more eminent than the point- 
filtering effect in higher selectivities [10]. In contrast, Gen- 
eraIMatch outperforms FRM-MBR even in very high se- 
lectivities since it not only exploits the point-filtering effect 
but  also uses a relatively larger window (89% (= 456 j that  of 
FRM). In summary in High-Range, General Match reduces 
the wall clock t ime averaged over the entire range of selec- 
tivities by 45% compared with DualMatch  and 64% com- 
pared with FRM-MBR, reduces the number of candidates by 
46% compared with Dual Match and 100% compared with 
FRM-MBR, and reduces the number of page accesses by 
17% compared with Dual Match and 17% compared with 
FRM-MBR. 

P E R I O D I C - 1 M  

Figure 10 shows the results of the experiment in Low-Range 
for PERIODIC-1M. Here, we obtain the est imated J of 
57 (w = 456). (The real J is 85.) The results in Fig- 
ure 10 show tendencies similar to those in Figure 8 for 
all three measures. However, the differences between Gen- 
era lMatch and FRM-MBR and between DualMatch  and 
FRM-MBR are much larger than in Figure 8. PERIODIC-  
1M has the characteristic that  the changes among adjacent 
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(a) Comparison of the estimated and the real numbers 
of average page accesses as J varies in Low-Range. 

F i g u r e  7: 

Selectivity (x 10 ~) 

(b) Comparison of the numbers of page accesses by using 85 
(estimated J), 57(real J), I(FRM-POINT), and 256(DualMatch). 

Compar ison  of the es t imated J and the real J in Low-Range for STOCK-DATA.  

] 
[] F R M -  P O I N T  @ F R M - M B R  X D u a l  M a t c h  A G e n e r a l  M a t c h  ] 

[ 

3.5-4 4 - 8  8-16  16-32 32-64 64-128 3.5-4 4 -8  8-16 16-32 32-64 64-12-8 | 3.5~4 4 - 8  8-16  16-32 32-64 

Selectivity (x 10 -6) Selectivity l× 10 -6) [ Selectivity (x 10 -s) 

(a) The number of candidates. (b) The number of page accesses. (c) The wall clock time. 

F i g u r e  8: P e r f o r m a n c e  c o m p a r i s o n s  in Low-Range for STOCK-DATA when d = 85. 

64-128 

entries are relatively large. Therefore, adjacent windows in 
PERIODIC-1M tend to have distances among them larger 
than in STOCK-DATA. Thus, in FRM-MBR, which stores 
MBRs of multiple adjacent windows, many windows in the 
same MBR may be far apart from one another. Since these 
windows are included in the candidate set together, many 
false alarms are generated. In contrast, Genernal Match and 
Dual Match do not have this problem because they store in- 
dividual points rather than MBRs. For this reason, Gen- 
eral Match or Dual Match shows larger improvement in PE- 
RIODIC-1M than in STOCK-DATA[10]. For very low se- 
lectivities (_< 7.5 x 10-6), the number of page accesses for 
General Match is larger than that for Dual Match. This 
is because we estimate the optimal value of J that min- 
imizes the average number of page accesses in the whole 
Low-Range (1.0 x 10 -8 ~ 1.0 x 10 -4) rather than minimiz- 
ing for a specific selectivity. 

In High-Range for PERIODIC-1M, General Match again 
outperforms Dual Match and FRM-MBR since it has advan- 
tages of both FRM-MBR and Dual Match. We omit the de- 
tailed results of this experiment because of space limitation 
of the paper. 

W A L K - 1 M / 1 0 M / 1 0 0 M  

Figure 11 shows the results of the experiment in Low-Range 
for WALK-1M/WALK-10M/WALK-100M. 7 Here, we use 

~We have not tested FRM-POINT since the index size be- 
comes larger than 200Gbytes, which is too large a size to 
build. If it were tested, the curve would be between FRM- 
MBR and Dual Match in Low-Range, and much higher than 
FRM-MBR in High-Range. 

the estimated J of 57 (w = 456). (The real J is 27.) In this 
experiment we obtain the value of each measure by averaging 
over all the selectivities in Low-Range for illustrative pur- 
poses. As shown in this figure, General Match improves per- 
formance over Dual Match as well as over FRM-MBR. More- 
over, the performance differences among the three meth- 
ods stay relatively constant regardless of database sizes. In 
summary, we conclude that  General Match outperforms the 
other methods even for very large databases. 

The results in High-Range show tendencies similar to those 
in Low-Range. We omit the detailed results of this experi- 
ment because of space limitation of the paper. 

5. CONCLUSIONS 
In this paper, we have generalized the method of con- 

structing windows in subsequence matching. Based on the 
generalization, we have proposed a new subsequence match- 
ing method, General Match. From the point of view of this 
generalization, the previous subsequence matching meth- 
ods, FRM [8] and Dual Match [10], can be considered special 
cases of a common framework. By using GeneralMatch, 
we can construct windows in such a way as to achieve op- 
timal performance. GeneralMatch divides data sequences 
into generalized sliding windows (J-sliding windows) and the 
query sequence into generalized disjoint windows (J-disjoint 
windows). General Match outperforms both FRM and Dual- 
Match. This is because it has advantages of both FRM 
and Dual Match: it can use large windows like FRM and, 
at the same time, can exploit the point-filtering effect like 
Dual Match. 
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[] FRM- P O I N T  @ FRM-MBR X Dual Match ,~ General Match 

,~ 10 4 

~o ~ 

I0 ~ 1-2 2-4 4~8 8-16 16-32 32-64 64-128 
Selectivity (x 10 -~) 

(a) The number of candidates. (b) The number of page accesses. (c) The wall clock time. 

F i g u r e  9: P e r f o r m a n c e  c o m p a r i s o n s  in  H i g h - R a n g e  for  S T O C K - D A T A  w h e n  J = 57.  

FRM- P O I N T  --.41,.-..,- FRM-MBR X Dual Match A General Match 1 

(a) The number of candidates. (b) The number of page accesses. (c) The wall clock time. 

F i g u r e  10:  P e r f o r m a n c e  c o m p a r i s o n s  in L o w - R a n g e  for  P E R I O D I C - 1 M  w h e n  J = 57.  

. . -4---  FRM-MBR X Dual Match ,~ General Match } 

........... ~'~ii <% ~!i!~ ~ii~i ~ i~  

WALK-1M WALK-10M WALK-100M 
# of entries 

(a) The number of candidates. 

WALK-'IM WALK-IOM WALK-IOUM 
# of entries 

(b) The number of page accesses. 

10 6 

I ~ i~i~, ~ ~ ~:~ ,. ~ ~ , I  
102| !ii~iiiiiiii! ii~:i~iii ~iiiiiiiiiiiiiiiii !~ ' - " :~  !!iil il iiiiiiii | 

WALK-IM WALK-10M WALK-100M 
# of entries 

(c) The wall clock time. 

F i g u r e  11:  P e r f o r m a n c e  c o m p a r i s o n s  in L o w - R a n g e  for  W A L K - 1 M / 1 0 M / 1 0 0 M  w h e n  J = 57.  
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We have formally proven the correctness of General Match 
in Theorem 1. That  is, Theorem 1 guarantees that  Gen- 
eral Match perform subsequence matching without false dis- 
missals. We have also proven that, given the minimum 
length of the query sequences, there is a maximum bound of 
the window size to guarantee correctness of General Match. 
We have derived the maximum window size in Lemma 6. 
Finally, we have proposed a method of estimating the opti- 
mal value of the sliding factor J that  minimizes the number 
of page accesses. 

We have performed extensive experiments for General- 
Match using various data sets and selectivity ranges. Exper- 
imental results show that, regardless of data sets, selectiv- 
ity ranges, and database sizes, General Match significantly 
reduces the number of candidates, the number of page ac- 
cesses, and the wall clock time compared with Dual Match 
as well as compared with FRM. Experimental results for 
real stock data show that, for low selectivities (10-6~10-4),  
General Match improves performance (the wall clock time) 
averaged over the entire range of selectivities by 117% over 
Dual Match and by 998% over FRM; for high selectivities 
(10-3~10-1) ,  by 45% over DualMatch and by 64% over 
FRM. 

Overall, these results indicate that  GeneralMatch is a 
new subsequence matching method significantly more effi- 
cient than existing methods in supporting various database 
applications. These results also provide an excellent theo- 
retical basis for understanding the underlying mechanisms 
in subsequence matching and for formally analyzing the per- 
formance. 
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A p p e n d i x  A 

PROOF OF LEMMA 5: Let the first J-sliding window included 
J the a-th J-sliding window in the subsequence S[i : j] be s~, 

of S. Then, the following Eq. (9) holds because the first 
entry of 8~ is S [ ( a  - -  1) * J + 1]. 

i - 1  
( a - 1 ) . J + l > _ i  ~ a>_ ~ + 1  (9) 

In Eq. (9), since a is an integer, Eq. (10) holds. 

J is the first J-sliding window included in S[i : j], Since sa 
a = [ ~ 1  + 1 must be satisfied. [] 

392 



Appendix B 
PROOF OF THEOREM 1: In Figure 12, suppose the subse- 
quence S[i : j]  is in e-match with the query sequence Q, and  

J (s tart ing the first J-s l iding window included in S[i : j]  is Sa 
offset ---- ( a - -  1) * J +  1). Then,  S[i : j] can be repre- 
sented as S[i : ( a -  1)*  J ] S [ ( a -  1 )*  J +  1 : j]. Suppose 
S [ ( a -  1) .  J +  1 : j] is divided into p disjoint windows. Then,  
S[i : j] mus t  include J J J where k = ~ 8 a  , 8 a + k ,  • , ,, 8 a + ( p - - 1 ) .  k ~ "  

Note tha t  we l imit  the value of J to be a divisor of w. It  
also includes (possibly null) subsequences Sh (at the head) 
and  s, (at the tail). Thus,  S[i : j] can also be represented as 

J J Sh S~Sa+k • • • S~a+(p_l).k S*. Then,  Q can be represented as 
J 3 J qh q(b+l,1) q(b+l,2) ' ' "  q(b+l,p) q~, where Len(qh) = Len(sh)  

and  Len(q~) = Lea(s t ) .  

Appendix D 
PROOF OF LEMMA 7: Suppose the  da ta  sequence S is di- 
vided into n J-s l id ing windows. Then,  the last J-s l iding 

J window of S i s s . ( = S [ ( n - 1 ) * J + l : ( n - 1 ) * J + w ] ) .  
Thus,  ( n -  1 )*  J + w _< L e n ( S )  ¢:~ n _<~ Len(S)--wj + 1 .  

[_~.L(~_-.__J + l  is also satisfied since a is an inte- Next, n <_ 

J is the last window of S, it must  be tha t  get. Here, since sn 

i (  Subsequence Sl i:j] > 
I Sh $1 s~.~l~,k s, 

. . . . . . .  

q l~ ~,~ 
Query sequence Q J ~ 

J 

£en(Q) - b 

F i g u r e  12: A subsequence  S[i : j] in e -match  w i th  the  
que ry  sequence  Q. 

Finally, we obta in  Eq. (11) by using Lemmas  1 and  2. 

D(S[i  : j], Q) _< 

D(sJ  a J J " ' '  Sa+(p-1).k,q(b+ld) "'" q(b+l,p))_< e 

p--1 

V a J D(sa+. . k ,  e/V/~ (11) q(b+l,,+l)) _< 
nmO 

J is the first window of S[i :  j] ,  a is [ L ~ ]  + 1 Here, since Sa 
by Lemma 5; b is (a - 1) * J -  i - 1 since b ( =  Len(sh))  = 

Len (S[ i :  ( a - 1 ) * J ] ) ;  p is [ ~ - ~ - ~ J  since Q [ b + l  : Lea(Q)] 

is divided into [L~(Q) -bJ  disjoint windows. [] 

Appendix C 
PROOF OF LEMMA 6: By Theorem 1, a subsequence tha t  is 
in e-match with the query sequence must  include at least one 
J-dis joint  window. In other words, p _> 1. Then,  we obta in  
the relat ionship between the length of the query sequence 
and  the size of the window as follows: 

p = L ( L e n ( Q ) -  b)/wJ >>_ 1 

¢:::=> (Lea(Q)  - b)/w _> 1 (holds since 1 is an integer) 

¢::=> Len(Q)  > w + b 

Since Min(Q)  is the m i n i m u m  length of the query sequence, 
w <_ Min(Q)  - b  must  be satisfied. Since b can be as large as 
J - 1, w <_ M i n ( Q )  - J + 1 must  also be satisfied. Finally, 
since the value of J is l imited to be a divisor of w, the 

m a x i m u m  window size allowable is /Min(Q~)-J+l |  * J.  [] k a J 
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