
The Ubiquitous DBMS
Kyu-Young Whang1, Il-Yeol Song2, Taek-Yoon Kim1, and Ki-Hoon Lee1

1 Department of Computer Science, KAIST, Daejeon, Korea, {kywhang, tykim, khlee }@mozart.kaist.ac.kr
2 College of Information Science and Technology, Drexel University, Philadelphia, USA, songiy@drexel.edu

ABSTRACT
Advancement in mobile computing technologies has
prompted strong needs for database systems that can be
used in small devices such as sensors, cellular phones,
PDAs, car navigators, and Ultra Mobile PCs (UMPCs).
We term the database systems that are customizable for
small computing devices as Ubiquitous Database
Management Systems (UDBMSs). In this paper, we
first review the requirements of the UDBMS. The
requirements identified include lightweight DBMSs,
selective convergence, flash-optimized storage systems,
data synchronization, support of unstructured/semi-
structured data, complex database operations, self-
management, and security. Next, we review existing
systems and research prototypes. We review the
functionality of UDBMSs including the footprint size,
support of standard SQL, transaction management,
concurrency control, recovery, indexing, and access
control. We then review the supportability of the
requirements by those UDBMSs surveyed. We finally
present research issues related to the UDBMS.

1. INTRODUCTION
The growing popularity of mobile technologies and
advancement in computing power have prompted
strong needs for database systems that can be used in
small computing devices such as sensors, smart cards,
cellular phones, PDAs, car navigators, and Ultra
Mobile PCs (UMPCs). These small devices with
mobility and embedded processors are called
ubiquitous devices [WH04]. As the ubiquitous devices
get computationally powerful and the bandwidth of the
wireless network rapidly expands, we can use them to
perform tasks anytime and anywhere often
downloading a variety of data from servers and
uploading sensor data to servers. This kind of
computing environment is commonly called the
ubiquitous environment. New storage devices suitable
for ubiquitous devices such as flash memory [GT05]
and MEMS (Micro-Electro-Mechanical Systems)-
based storage devices [SG04] have been developed. As
the capacity of the storage devices is getting bigger and
bigger, we can easily store and manage a huge amount
of data in a ubiquitous device. This trend prompted
strong needs for the database systems that can be used
in ubiquitous devices. We term the database systems
customizable for small computing devices as

Ubiquitous Database Management Systems
(UDBMSs).

Representative ubiquitous devices include sensors,
smartcards, cellular phones, PDAs, car navigators, and
UMPCs. Sensors and smartcards are extremely small in
size and have low computing power. A sensor is as
small as a coin and is used for gathering data from its
surrounding environment and for processing the data.
A smartcard embeds a CPU, memory, and storage
device for storing and managing data. The other
devices are small in size but have high computing
power. A cellular phone is used for managing personal
information and playing multimedia data. A car
navigator is used for finding the shortest way from the
current location to the destination. A PDA is used for
personal business management and for supporting
applications such as an e-mail client, word processor,
and spreadsheet. A UMPC is a general purpose PC but
much smaller than laptops. Various applications that
used to be run on a server can now be run on a UMPC.

The primary storage of ubiquitous devices is flash
memory. Flash memory is non-volatile and has many
advantages over the disk. Since the capacity of flash
memory is increasing and the cost decreasing, flash
memory will be widely used also in PCs and servers.
Another type of storage media for ubiquitous devices is
MEMS-based storage devices. A MEMS-based storage
device is a secondary storage device and also has many
advantages over the disk. Currently, there are some
prototypes of MEMS-based storage devices but no
products are available yet.

Ubiquitous devices usually have a limited storage
capacity. Hence, users store bulk of data in the server
and download the necessary parts to the ubiquitous
devices. In this environment, when the data are
modified in the ubiquitous device, the data need to be
transmitted back and stored at the server to maintain
consistency of data between them. This issue is called
data synchronization [IBM06].

As the applications for ubiquitous devices are diverse,
many different types of data need to be handled. The
data types that need to be supported in ubiquitous
devices include text data, web pages, XML data, spatial
data, multimedia data, and sensor/stream data. E-mail
clients, word processors, and spreadsheet applications
manage text data. Web browsers manage web pages

14 SIGMOD Record, December 2009 (Vol. 38, No. 4)

and XML data. Car navigation systems manage spatial
data. Image viewers, MP3’s, and movie players
manage multimedia data such as JPEG, MP3, and AVI
files. A sensor transmits the data sensed to the server as
a stream.

To support the ubiquitous environment, the UDBMS
needs to be able to be deployed to different types of
ubiquitous devices and to be able to support various
applications. In addition, the UDBMS should support
new types of storage devices, different types of data,
data synchronization, self-management, and security.

There are some research prototypes and commercial
products of UDBMSs. Representative research
prototypes are TinyDB [FHM07], PicoDBMS [ABP07,
ABPV08], and Odysseus/Mobile 1 . Representative
commercial products are IBM DB2 Everyplace
[IBM06, IBM08], Oracle 10g Lite [Orac06], Oracle
Berkeley DB [Orac08, SO07], and Microsoft SQL
Server CE (Compact Edition) [DS07, MS05]. TinyDB
and PicoDBMS have been developed for extremely
small devices with low computing power. TinyDB runs
on sensors, and PicoDBMS on smartcards. The other
DBMSs have been developed for small devices with
high computing power such as cellular phones, PDAs,
and UMPCs.

Research on UDBMSs is still at an initial stage.
Research groups and commercial DBMS vendors have
mainly focused on shrinking the footprint size but have
not actively dealt with other important problems such
as managing various types of data and supporting flash
memory and MEMS-based storage devices.

The rest of this paper is organized as follows. In
Section 2, we present important requirements of the
UDBMS. In Section 3, we survey the functionalities of
existing UDBMSs and analyze how well they satisfy
the requirements identified. In Section 4, we introduce
research issues related to the UDBMS and present the
current status and future work of each issue. Finally, in
Section 5, we summarize this paper.

2. REQUIREMENTS OF THE UDBMS
In this section, we present important requirements of
the UDBMS. Nori [Nori07] has presented a broad
survey of mobile and embedded DBMSs. Bernhard et
al. [BBB+04] have presented open issues and research
topics on mobile DBMSs. In this paper, we consider
mobile and embedded DBMSs as UDBMSs. Based on
existing surveys [BBB+04, Nori07, Whan07], we
identify important requirements for the UDBMS as
follows.

1 Odysseus/Mobile is the ubiquitous version of the Odysseus

DBMS [WLK+09, WLL+05, WPHL02].

 Lightweight DBMSs
Table 1 shows a summary of typical specifications of
ubiquitous devices in 2008. As shown in Table 1,
ubiquitous devices have lower computing power than
PCs or servers.

Table 1. Typical specifications of ubiquitous devices in
2008.

Ubiquitous
Devices

CPU
Clocks

Main Memory
Sizes

Storage
Sizes

Sensors 7 MHz 0.5 ~ 8 KBytes 8 ~ 128 KBytes
Smartcards 14 MHz 4 KBytes 128 KBytes
Cell Phones 300 MHz 64 MBytes 128 MBytes

PDAs 624 MHz 128 MBytes 256 MBytes
Car Navigators 1 GHz 256 MBytes 16 GBytes

UMPCs 1.3 GHz 1 GBytes 80 GBytes

Using a low-clock CPU, small memory, and small
storage, a UDBMS needs to support the functionalities
required by applications with acceptable performance.
Furthermore, since ubiquitous devices have limited
power sources such as batteries, a UDBMS needs to
support the functionalities with low power
consumption. Thus, it is important to design and
implement a UDBMS as simple as possible considering
the performance of devices [BBB+04, Nori07]. We
also need to consider co-design of hardware and
software [ABPV08, BBB+04], specifically, for devices
with tight hardware constraints such as sensors and
smartcards.

 Selective Convergence
To support the lightweight DBMS requirement, it is
important to selectively compose the modules of a
UDBMS depending on the applications and the device
type. In order to emphasize the capacity that selects
only necessary modules, we call this property
“selective convergence” [Whan07]. Selective
convergence is a notion that contrasts to extensibility
[SAH87] in that it requires all the functionalities be
implemented apriori and then customized according to
individual needs while extensibility requires new
functionalities be easily implemented for added
features. For low performance devices such as sensors
and smartcards, users would want only simple and
basic functionalities. In contrast, for high performance
devices such as PDAs and UMPCs, users would want
advanced functionalities such as data synchronization.
For example, if a user wants to run a GIS application in
his PDA, the user would want spatial functionalities. A
similar notion has been introduced by Nori [Nori07] as
“componentization.”

 New Storage Devices
For ubiquitous devices, non-volatile memories (e.g.,
flash, EEPROM, and FeRAM) and very small

SIGMOD Record, December 2009 (Vol. 38, No. 4) 15

secondary storage devices (e.g., MEMS) have many
advantages over the disk.

Flash memory is a representative non-volatile memory.
Compared with the disk, flash memory has attractive
features such as small size, better shock resistance,
lower power consumption, fast access time, and no
mechanical seek and rotational latency [KV08].
Besides, there is an erase operation, which does not
exist in the disk. In order to update existing data in a
page, an erase operation should be performed first on
the entire block to which the page belongs. The erase
time is about ten times slower than the write time, and
the number of erase operations is limited to 100,000 ~
1,000,000 times [GT05, NG08].

A MEMS-based storage device is a very small non-
volatile secondary storage. The size is as small as 1cm2,
and the average access time is ten times faster than that
of the disk with lower power consumption. The MEMS
device is composed of a media sled and a probe tip
array. The media sled is a square plate on which data
are recorded, and the probe tip array is a set of heads.
The MEMS device reads and writes data by moving the
media sled in the direction of both X and Y axes. By
selecting and activating a portion of the heads
simultaneously, users can access multiple data sectors
in parallel [GSGN00, SG04].

The storage system of the traditional DBMSs has been
developed for the disk but not for new storage devices
such as flash memory or MEMS devices. To fully
exploit the advantages of the new storage devices, we
need to develop new storage systems optimized for
them [Nori07]. For flash memory, data update time can
be optimized by considering overhead caused by
updates and the number of erase operations. For
MEMS devices, data access time can be optimized by
considering data placement and movements of heads.

 Complex Operations for Advanced Applications
Advanced database applications require complex
operations such as data mining that cannot be
implemented by SQL. As ubiquitous devices are
rapidly evolving, many advanced applications that have
been used in servers will also be required of ubiquitous
devices. Thus, a UDBMS should be able to support
complex operations.

For example, on PDAs or UMPCs, we foresee the need
for running advanced search applications. For example,
there may be an application that finds documents
similar to a given document. The application needs
complex search operations that analyze relationships
and similarity between the given document and the
stored documents.

In a u-health care environment, we may need advanced
applications for patient management. U-health means

an anytime and anywhere medical service [IBM09]. In
a u-health care environment, sensors are attached to the
patient and gather and send the patient’s health data to
doctors’ PDAs. Using PDAs, doctors can check their
patients’ conditions and decide prescriptions for them
anytime and anywhere. As the computing power of the
PDA increases, there may be advanced applications
that find a patient’s walking pattern and abnormal
symptoms. The applications need a complex operation
that finds meaningful or frequent patterns from a
patient’s health data.

 Unstructured and Semi-structured Data
Various types of unstructured/semi-structured data
such as text, multimedia, XML, spatial, stream, and
sensor data are widely used in database applications.
Those unstructured/semi-structured data are important
not only in servers but also in ubiquitous devices.
Examples are lyrics data in MP3 players, map data in
car navigators, and multimedia data in PDAs. Thus,
efficient management and search of unstructured/semi-
structured data will also be required of the UDBMS.

 Data Synchronization
Ubiquitous devices cannot stay connected to the server
all the time due to limited power resources and
unstable wireless connection. Furthermore, ubiquitous
devices are not able to store a large amount of data due
to lack of storage capacity. Thus, users store bulk of
data in the server and download only the necessary
parts of the data from the server to the ubiquitous
device.

In this environment, many users can share and manage
data by replicating the same data in the server to their
own devices. For example, in a hospital, bulk of
patients’ data is stored in the server database, and
doctors replicate a portion of these data to their PDAs.
In this way, many doctors can share and manage the
same patient’s data anytime and anywhere. As a result,
different versions of the data may exist and result in
data inconsistency. Therefore, a UDBMS needs to
support a functionality to integrate different versions of
data into a consistent version [BBB+04, Nori07], i.e.,
data synchronization.

 Self-Management
Unlike in traditional DBMSs, in a UDBMS, there can
be no database administrator (DBA) to manage the
database. Thus, a UDBMS needs to support self-
management functionalities. That is, it needs to
automatically perform operations like backup, restore,
recovery, indexing, and tuning [Nori07].

 Security
Since ubiquitous devices often contain personal data
such as banking and healthcare data, a UDBMS needs

16 SIGMOD Record, December 2009 (Vol. 38, No. 4)

to ensure the data security by providing access control
policies [ABPV08].

 Longevity and Distributed Processing
In a wireless sensor network, several thousands of
sensor nodes with limited resources, e.g., battery power,
are connected through the network to the server (or
base station). The server sends queries into the sensor
network, and sensor nodes collect, filter, aggregate, and
route data back to the server. Thus, a UDBMS in a
sensor node needs to support distributed query
processing and to minimize power consumption for
longevity [MFHH05].

3. EXISTING SYSTEMS
In this section, we survey representative research
prototypes and commercial products of the UDBMS
and compare their functionalities. Then, we review the
supportability of the requirements identified in Section
2 for the UDBMSs surveyed.

3.1 Representative Systems
Some research groups and commercial DBMS vendors
have developed UDBMSs. Table 2 shows the research
prototypes and commercial products we surveyed.
Commercial products include IBM DB2 Everyplace,
Oracle 10g Lite, Oracle Berkeley DB, and Microsoft
SQL Server CE. Oracle Berkeley DB has been
developed by University of California, Berkeley, but its
license has moved to Oracle corp.

Table 2. Research prototypes and commercial
products of the UDBMS.

Research Prototypes Commercial Products

TinyDB,
PicoDBMS,

Odysseus/Mobile

IBM DB2 Everyplace,
Oracle 10g Lite,

Oracle Berkeley DB,
MS SQL Server CE

Research prototypes include TinyDB, PicoDBMS, and
Odysseus/Mobile. TinyDB has been developed at
University of California, Berkeley. PicoDBMS has
been developed at University of Versailles and INRIA.
Odysseus/Mobile is the ubiquitous version of the
Odysseus DBMS [WLK+09, WLL+05, WPHL02] that
has been continually evolving for the last 19 years at
KAIST. Odysseus DBMS is tightly coupled with
information retrieval (IR) and spatial database
functionalities.

Odysseus/Mobile supports all the functionalities of the
Odysseus DBMS and additionally supports selective
convergence, data synchronization, and the flash-
optimized storage system (ongoing) for ubiquitous
devices. Odysseus/Mobile supports selective
convergence through the architecture that allows users
to choose necessary modules at compile time.

Existing UDBMSs can be categorized by target devices
in which the DBMS is deployed. Table 3 shows the
summary. In Table 3, it seems that sensors, smartcards,
and high performance devices are different enough to
justify different DBMSs. However, we expect that the
difference will become less obvious as device
technology evolves, and UDBMSs that support the
requirements in Section 2.1 will be needed for all those
devices. For example, even in sensors, complex
operations such as data mining will be needed to detect
and filter out outliers in sensed data.

Table 3. Existing UDBMSs categorized by target
devices.

Target Devices UDBMSs

Sensors TinyDB Extremely Small
Devices with Low
Computing Power Smartcards PicoDBMS

Small Devices with
High Computing

Power

Cell Phones,
PDAs, Car
Navigators,
and UMPCs

IBM DB2 Everyplace,
Oracle 10g Lite,

Oracle Berkeley DB,
MS SQL Server CE,

Odysseus/Mobile

3.2 Functional Analysis
Table 4 shows the functionalities of existing UDBMSs.
General functionalities of server DBMSs include SQL
query processing, views, integrity constraints,
transaction management, concurrency control, recovery,
indexing, access control, encryption, and compression2.
Existing UDBMSs support only essential
functionalities among those of server DBMSs.

TinyDB supports only essential functionalities for
sensor applications. Since most of the sensor
applications are used to filter out some data, they just
need the functionality that selects data satisfying given
conditions. Thus, TinyDB supports only SELECT
statements of TinySQL3, and its footprint is extremely
small―only 3 KBytes. For more information on
TinyDB, refer to Madden et al. [FHM07].

PicoDBMS supports sufficient functionalities for
smartcard applications. Smartcard applications are used
for data management such as insert, delete, update and
search. Thus, PicoDBMS supports a part of SQL such
as INSERT, UPDATE, DELETE, SELECT (with join
and aggregation), and CREATE/DROP TABLE
statements. Additionally, it supports CREATE/DROP
VIEW and GRANT/REVOKE statements. PicoDBMS

2 Memory consumption is also important, but we excluded

since it is not published by commercial vendors or research
groups.

3 TinySQL supports a very limited part of SQL99 such as
INSERT, UPDATE, SELECT, and CREATE/DROP
TABLE statements.

SIGMOD Record, December 2009 (Vol. 38, No. 4) 17

also supports functionalities for indexing, transaction
management, recovery, access control, and
compression. The footprint size of PicoDBMS is about
30 KBytes, larger than TinyDB. For more information
on PicoDBMS, refer to Bobineau et al. [ABP07,
ABPV08].

Oracle Berkeley DB, Oracle 10g Lite, IBM DB2
Everyplace, Microsoft SQL Server CE, and
Odysseus/Mobile support most of the functionalities of
server DBMSs since their target devices, such as
cellular phones, PDAs, car navigators, and UMPCs,
have a lot more computing power than sensors and
smartcards. These DBMSs commonly support views,
transaction management, concurrency control, recovery,
and indexing. All the above-mentioned DBMSs, except
Oracle Berkeley DB, support a part of the SQL99
standard, which is broader than that of PicoDBMS.
Oracle Berkeley DB, however, uses proprietary APIs
instead of SQL. The footprint sizes of these DBMSs
range from 350 KBytes to 2.5 MBytes.

There is no existing UDBMS that supports all the
requirements of the UDBMS. Table 5 shows the
supportability of the requirements for each product we
reviewed. The UDBMSs that support selective
convergence are Oracle Berkeley DB and
Odysseus/Mobile. In these UDBMSs, users can choose
functionalities such as concurrency control, recovery,
and indexing at the compile time. None of the existing
UDBMSs support the flash-optimized storage system
and complex database operations for advanced
applications. The UDBMSs that support self-
management are TinyDB, PicoDBMS, and Oracle
BerkeleyDB. For Oracle 10g Lite and MS SQL Server
CE, support of self-management is not clearly known.
All the existing UDBMSs except TinyDB and Oracle
BerkeleyDB support security. The UDBMSs that
support the data synchronization functionality are
Oracle Berkeley DB, Oracle 10g Lite, IBM DB2
manages XML data, and Odysseus/Mobile manages
XML, text, and spatial data. In these DBMSs,
management of unstructured/semi-structured data can
also be selectively converged to the DBMS.

4. RESEARCH ISSUES
In this section, we present five research areas that are
important for satisfying the requirements of the
UDBMS. We present the current status of each
research issue and propose future work.

4.1 Lightweight DBMSs
Commercial UDBMSs have shrunken the footprint size
and memory usage by simplifying the functionalities of
server DBMSs, but commercial vendors have not
reported the techniques they adopted. The
representative research work that deals with

lightweight DBMS techniques is PicoDBMS [ABP07,
ABPV08]. The paper proposes a new storage system
and a new query processor for smartcards, which have
a very small storage and memory. The storage system
uses a pointer-based storage model where tuples
reference their attribute values by means of pointers to
preclude any duplicate value. In addition, considering
small memory of smartcards, the paper presents
techniques for processing queries with a limited
memory capacity.

As the ubiquitous environment evolves, many
advanced applications that have been used in servers
will also be required of ubiquitous devices. However,
even high performance devices such as PDAs and
UMPCs still lack computing power to run a fully-
fledged DBMS that supports as many functionalities as
server DBMSs do. Thus, selective convergence will
become a very important technique since it enables
lightweight DBMSs by selectively composing the
modules of a fully-fledged DBMS. We expect research
on designing and implementing a new DBMS
architecture that supports selective convergence will
soon become active.

4.2 Storage Systems for New Storage
Devices
Research on flash memory has been actively conducted
in the field of operating systems (OS) [Alep02, Ban99,
Wood01], and recently, in the field of databases [LM07,
LMP+08]. The main goal of the research is to optimize
the data update cost considering the cost of the erase
operation of flash memory. In flash memory, the unit
of read/write operations is a page, but the unit of the
erase operation is a block, which consists of multiple
pages.

In the early days of flash memory, update of an
existing page in a block is performed by the method
called in-place update [GT05]. In the in-place update
method, the updated page is overwritten into the
original location of the page. The method consists of
the following four steps: (1) read all the pages of the
block into memory, (2) update the page, (3) erase the
block in the storage, and (4) write all the pages in
memory to the erased block. This method has an
overhead of reading and writing the entire block and
needs an expensive erase operation. To solve these
problems, the out-place update method [GT05] has
been proposed. This method writes the updated page
into an empty page and

18 SIGMOD Record, December 2009 (Vol. 38, No. 4)

Table 4. Functionalities of the existing UDBMSs.

Table 5. Supportability of the requirements of the UDBMS.

 TinyDB PicoDBMS Oracle
Berkeley DB

Oracle
10g Lite

IBM DB2
Everyplace

MS SQL
Server CE

Odysseus/
Mobile

Lightweight DBMS Y Y Y Y Y Y Y
Selective Convergence N N Y N N N Y

Flash-optimized Storage System N N N N N N under development
Complex Operations N N N N N N N

Unstructured/Semi-structured Data N N XML only N N N text, spatial, XML
Data Synchronization N N Y Y Y Y Y

Self-Management Y Y Y N/A Y N/A N
Security N Y N Y Y Y Y

4 In general, transaction management includes concurrency control. However, in a single user environment like PicoDBMS,

concurrency control is not needed for transaction management.

invalidates the original page. The invalidated pages are
erased at once in a batch fashion.

There are two active research topics on flash-memory
management⎯the flash translation layer (FTL) and the
flash-optimized storage system. FTL is a layer that
emulates a disk using flash memory. Using the FTL,
most of commercial OS file systems and UDBMSs
with a disk-based storage system are able to run on
flash memory [Ban99]. The emulation approach,
however, has a disadvantage that it is hard to achieve
the best performance since the storage system
indirectly manages flash memory. The flash-optimized
storage system directly manages flash memory without
the FTL and is able to achieve the best performance. It
has been developed by adapting the data placement

method of the log-structured file system to flash
memory [GT05]. Representative flash-optimized OS
file systems are JFFS [Wood01] and YAFFS [Alep02].
For the flash-based storage system of DBMSs, a
prototype called LGeDBMS [KBL+06] and data
update methods [KWS10, LM07] have been proposed.

The specificity of considering flash memory in small
devices such as smartcards is that they could have
extremely small main memory. Recently, there has
been research on flash (or EEPROM) storage system
for those devices. Yin et al. [YPM09] and Bolchini et
al. [BSST03] have addressed the problem of adapting
data structures and algorithms to extremely small main
memory considering the hardware constraints of flash
(or EEPROM) devices.

 TinyDB PicoDBMS Oracle
Berkeley DB Oracle 10g Lite IBM DB2

Everyplace
MS SQL

Server CE
Odysseus/

Mobile
2.5 MBytes

(embedded Linux) Minimum
Code Footprint

Size
3 KBytes 30 KBytes

500 KBytes
(embedded

Linux, storage
system only)

970 KBytes
(Windows)

350 KBytes
(embedded

Linux)

2 MBytes
(Windows) 410 KBytes

(embedded Linux,
storage system only)

SQL SELECT
only

a part of
SQL99 N a part of

SQL99
a part of
SQL99

a part of
SQL99

a part of
SQL99

Views N Y N Y Y Y Y
Integrity

Constraints N N/A N Y Y Y N

API TinyDB
API JDBC Berkeley DB

API

JDBC, ODBC,
ADO.NET,
SODA API

DB2 CLI,
JDBC, ODBC,
ADO.NET API

ADO.NET
API

OOSQL CLI, JDBC,
ODBC, PHP,
Python API

Transaction
Management4 N Y Y Y Y Y Y

Concurrency
Control N N Y Y Y Y Y

Indexing N Y Y Y Y Y Y
Access Control N Y N Y Y Y Y

Encryption N N/A Y Y Y Y N
Compression N Y N/A Y Y Y text only

SIGMOD Record, December 2009 (Vol. 38, No. 4) 19

Research on the MEMS-based storage device is still at
an initial stage. Data placement methods considering
the movement of headers have been proposed. Similar
to flash memory, there are methods proposed to
emulate the disk using the MEMS-based storage device
[DM03, GSGN00] and those to develop the MEMS-
optimized storage system by directly controlling the
device [KWKS09, YAA07].

Research on utilizing flash memory and MEMS-based
storage devices for DBMSs will become more active.
Especially, as the capacity of flash memory per unit
cost increases, flash memory is expected to be widely
used as storage devices not only for ubiquitous devices
but also for PCs and servers. There are many
challengeable optimization problems considering the
characteristics of flash memory⎯including
optimization of index structures, buffer management,
recovery, query processing, and sorting methods.
Adaptation of data structures and algorithms to an
extremely small main memory environment is also an
important issue.

4.3 Data Synchronization
In a mobile environment, data synchronization is a very
important issue. However, research on data
synchronization between the UDBMS and the server
has been rare. Representative synchronization modules
are the sync server of IBM DB2 Everyplace [IBM06],
the mobile server of Oracle 10g Lite [Ora06], and the
active sync of Microsoft SQL Server CE [DS07].
Commercial synchronization solutions consist of client
databases on ubiquitous devices, a synchronization
server, and a server database. The synchronization
server controls the consistency of replicated data in the
client and server databases.

Main research issues on data synchronization are (1)
efficiently maintaining data synchronization between a
huge number of ubiquitous devices and the server, (2)
resolving conflicts when there are different versions of
the same data among ubiquitous devices and the server,
(3) recovering from crash and restarting data
synchronization when system failure occurs during data
synchronization.

4.4 Unstructured/Semi-structured Data
Research on managing unstructured/semi-structured
data has been active in the context of server DBMSs
and will be also important in the context of UDBMSs.
Among various types of unstructured/semi-structured
data, text, XML, stream, and spatial data have been
actively studied. Recently, DB-IR integration
[ACR+05, WPHL02] has become a subject of active
research.

For server DBMSs, commercial vendors and research
groups have developed database systems for managing

unstructured/semi-structured data. For XML data,
vendors have released extended versions of their
DBMSs that support XML data. Research groups have
also published on prototypes such as
MonetDB/XQuery (CWI) [BGK+06], dbXML
(dbXML Group) [dbXML08], and Odysseus/XML
(KAIST) [HLL03, LKWL06]. For stream data, many
prototypes have been developed. Representative
prototypes are TelegraphCQ (University of California,
Berkeley) [CCD+03], NiagaraCQ (University of
Wisconsin) [CDTW00], and STREAM (Stanford
University) [ABB+03]. For text data and spatial data,
commercial vendors and research groups have released
their products or prototypes. The Odysseus DBMS
supports managing text and spatial data in a tightly-
coupled fashion [WLK+09, WLL+05, WPHL02]. An
early version of the Odysseus DBMS has been used
(1997-2000) for the Naver search engine of NHN Co.,
which is currently the best portal in Korea.

There are two approaches to support unstructured/semi-
structured data. One is the loose coupling approach,
and the other is the tight coupling approach.
Commercial vendors use the loose coupling approach.
In the loosely-coupled architecture, the functionality of
managing the data is implemented using the DBMS
API on top of the DBMS engine. Thus, the loosely-
coupled architecture incurs overhead caused by the
high-level (typically, SQL-level) API calls between the
unstructured/semi-structured data management module
and the DBMS engine. In contrast to commercial
vendors, the Odysseus DBMS uses the tight coupling
approach. In the tightly coupled architecture, the
functionality of managing unstructured/semi-structured
data is integrated into the DBMS engine [WLK+09,
WLL+05, WPHL02]. The tight coupling architecture
eliminates the overhead caused by the high-level API
calls—obtaining high performance.

Since ubiquitous devices (including PDAs and
UMPCs) lack computing power to run a fully-fledged
DBMS that supports unstructured/semi-structured data,
research on developing a lightweight version of the
unstructured/semi-structured data management module
considering the specification and performance of the
ubiquitous devices needs to be conducted. For example,
in a fully-fledged DBMS, one could implement many
existing query processing methods and combine them
under a cost-based optimization framework so as to
select the best query evaluation plan. However, since
ubiquitous devices have small memory and storage, it
may not be feasible to include many query processing
methods and the optimization module in the UDBMS.
Thus, we need to study query processing methods that
show robust and predictable performance in a
lightweight environment where cost-based optimization
is not available [MVT05].

20 SIGMOD Record, December 2009 (Vol. 38, No. 4)

4.5 Data Mining for Complex Database
Operations
Advanced applications perform complex operations
such as finding relationships, trends, and meaningful
patterns of data. Moreover, target data of the operations
are not only relational but also unstructured/semi-
structured. Those operations are hard to be
implemented with SQL only, but require more
advanced techniques such as data mining, which have
been a useful tool for supporting complex operations
on relational data as well as unstructured/semi-
structured data.

In the context of server DBMSs, there has been active
research on data mining for various types of
unstructured/semi-structured data [HK05]. Examples
are text data mining, web page mining, spatial/temporal
data mining, stream data mining, multimedia data
mining, and bioinformatics data mining. Currently,
active research is in progress on adapting traditional
mining techniques for relational data to
unstructured/semi-structured data [HK05].

Research on data mining will be expanded to the
context of the UDBMS. For advanced applications
such as advanced search and u-health care mentioned
in Section 2, data mining techniques are very useful in
implementing complex operations needed for them. For
example, in simple filtering applications for the sensor
devices, the sensed data are filtered out by checking
whether the data are compatible with given arithmetic
conditions such as larger-than, less-than, or equal-to; in
advanced filtering applications, however, more
complex filtering operations such as detecting outliers
can be executed by discovering overall trends of the
sensed data [SLMJ07]. Considering the specification
and performance of ubiquitous devices, research on
developing a lightweight version of mining techniques
needs to be conducted.

5. SUMMARY
In this paper, we have introduced the concept of the
UDBMS and related research issues. We have defined
the UDBMS as a customizable database system for
small computing devices. We have identified important
requirements of the UDBMS such as lightweight
DBMSs, selective convergence, flash-optimized
storage systems, data synchronization, support of
unstructured/semi-structured data, complex database
operations, self-management, and security. We then
have reviewed the functionalities of existing UDBMSs
and research prototypes. We have also discussed how
well those existing UDBMSs and research prototypes
support the requirements identified. We have found
that, as of now, there is no UDBMS that supports all
the requirements. Especially, flash-optimized storage

systems and complex database operations are not
supported by any UDBMS. Finally, we have presented
research issues related to the UDBMS for each
category of the requirements identified.

6. ACKNOWLEDGEMENTS
This work was supported by the National Research Lab
orogram (No. 2009-0083120) through National
Research Foundation (NRF) of Korea funded by
Ministry of Education, Science, and Technology
[Whan07]. We deeply appreciate anonymous
reviewers’ incisive comments on the earlier version
that made this paper more complete and readable.

7. REFERENCES
[ABB+03] Arasu, A. et al., “STREAM: The Stanford Stream

Data Manager,” IEEE Data Eng. Bull., 26(1), pp.
19-26, 2003.

[ABP07] Anciaux, N., Bouganim, L., and Pucheral, P.,
“Future Trends in Secure Chip Data
Management,” IEEE Data Eng. Bull., 30(3), pp.
49-57, 2007.

[ABPV08] Anciaux, N., Bouganim, L., Pucheral, P., and
Valduriez, P., “DiSC: Benchmarking Secure
Chip DBMS,” IEEE TKDE, 20(10), pp. 1363-
1377, 2008.

[ACR+05] Amer-Yahia, S., Case, P., Rolleke, T.,
Shanmugasundaram, J., and Weikum, G.,
“Report on the DB/IR Panel at SIGMOD 2005,”
SIGMOD Record, 34(4), pp. 71-74, 2005.

[Alep02] Aleph One Ltd., “YAFFS: Yet Another Flash
Filing System,” http://www.yaffs.net, 2002.

[Ban99] Ban, A., Flash File System Optimized for Page-
Mode Flash Technologies, US patent 5,937,425,
1999.

[BBB+04] Bernard, G. et al., “Mobile Databases: a
Selection of Open Issues and Research
Directions,” SIGMOD Record, 33(2), pp. 78-83,
2004.

[BGK+06] Boncz, P. et al., “MonetDB/XQuery: a Fast
XQuery Processor Powered by a Relational
Engine,” In SIGMOD, pp. 479-490, 2006.

[BSST03] Bolchini, C. et al., “Logical and Physical Design
Issues for Smart Card Databases,” TOIS, 21(3),
pp. 254-285, 2003.

[CCD+03] Chandrasekaran, S. et al., “TelegraphCQ:
Continuous Dataflow Processing for an
Uncertain World,” In CIDR, pp. 269-280, 2003.

[CDTW00] Chen, J. et al. “NiagaraCQ: A Scalable
Continuous Query System for Internet
Databases,” In SIGMOD, pp. 379-390, 2000.

[dbXML08] dbXML 2.0, http://www.dbxml.com, 2008.
[DM03] Dramaliev, I. and Madhyastha, T., “Optimizing

Probe-Based Storage,” In FAST, pp. 379-390,
2003.

[DS07] Dhingra, P. and Swanson, T., Microsoft SQL
Server 2005 Compact Edition, Sams, 2007.

[FHM07] Franklin, M. J., Hellerstein, J. M., and Madden S.,
“Thinking Big About Tiny Databases,” IEEE

SIGMOD Record, December 2009 (Vol. 38, No. 4) 21

Data Eng. Bull., 30(3), pp. 37-48, 2007.
[GSGN00] Griffin, J. L., Schlosser, S. W., Ganger, G. R.,

and Nagle, D. F., “Operating Systems
Management of MEMS-Based Storage Device,”
In OSDI, pp. 227-242, 2000.

[GT05] Gal, E. and Toledo, S., “Algorithms and Data
Structures for Flash Memories,” Computing
Surveys, 37(2), pp. 138-163, 2005.

[HK05] Han, J. and Kimber, M., “Data Mining—On
What Kind of Data?,” In Book Data Mining:
Concepts and Techniques, 2nd ed., Morgan
Kaufmann, 2005.

[HLL03] Han, W., Lee, K., and Lee, B., “An XML Storage
System for Object-Oriented/Object-Relational
DBMSs,” JOT, 2(3), pp. 113-126, 2003.

[IBM06] IBM, DB2 Everyplace Enterprise Edition
Release Notes for Version 9.1, 2006.

[IBM08] IBM Information Center for DB2 Everyplace
v9.1, http://publib.boulder.ibm.com/infocenter/
db2e/v9r1/index.jsp, 2008.

[IBM09] IBM Ubiquitous Solution, http://www-
903.ibm.com/kr/ubiquitous/ucity/health.html,
2009 (in Korean).

[KBL+06] Kim, G., Baek, S., Lee, H., Lee, H., and Joe, M.,
"LGeDBMS: a Small DBMS for Embedded
System with Flash Memory," In VLDB, pp. 1255-
1258, 2006.

[KV08] Koltsidas, I. and Viglas, S. D., “Flashing up the
Storage Layer,” In VLDB, pp. 514-525, 2008.

[KWKS09] Kim, Y., Whang, K., Kim, M., and Song, I., “A
Logical Model and Data Placement Strategies for
MEMS Storage Devices,” IEICE Trans. on
Information and Systems, E92-D(11), pp. 2218-
2234, 2009.

[KWS10] Kim, Y., Whang, K., and Song, I., “Page-
Differential Logging: An Efficient and DBMS-
independent Approach for Storing Data into
Flash Memory,” In SIGMOD, 2010 (to appear).

[LKWL06] Lee, K., Kim, S., Whang, E., and Lee, J., "A
Practitioner's Approach to Normalizing XQuery
Expressions," In DASFAA, pp. 437-453, 2006.

[LM07] Lee, S. and Moon, B., “Design of Flash-Based
DBMS: An In-Page Logging Approach,” In
SIGMOD, pp. 55-66, 2007.

[LMP+08] Lee, S. et al., “A Case for Flash Memory SSD in
Enterprise Database Applications,” In SIGMOD,
pp. 1075-1086, 2008.

[MFHH05] Madden, S. R., Franklin, M. J., Hellerstein, J. M.,
and Hong, W., “TinyDB: an Acquisitional Query
Processing System for Sensor Networks”, TODS,
30(1), pp. 122-173, 2005.

[MS05] Microsoft, “SQL Server Compact 3.5,”
http://www.microsoft.com/sqlserver/2005/en/us/
compact.aspx, 2005.

[MVT05] Moro, M. M., Vagena, Z., and Tsotras, V. J.,
“Tree-Pattern Queries on a Lightweight XML
Processor,” In VLDB, pp. 205-216, 2005.

[NG08] Nath, S. and Gibbons, P. B., “Online
Maintenance of Very Large Random Samples on
Flash Storage,” In VLDB, pp. 970-983, 2008.

[Nori07] Nori, A. K., “Mobile and Embedded Databases,”
IEEE Data Eng. Bull., 30(3), pp. 3-12, Sept.

2007 (also in 2007 SIGMOD as a tutorial abstract,
June 2007).

[Orac06] Oracle, Oracle Database Lite 10g Technical
White Paper, 2006.

[Orac08] Oracle Berkeley DB, http://www.oracle.com/
technology/products/berkeley-db/index.html,
2008.

[SAH87] Stonebraker, M., Anton, J., and Hirohama, M.,
“Extendability in POSTGRES,” IEEE Data Eng.
Bull., 10(2), pp. 16-23, 1987.

[SG04] Schlosser, S. W. and Ganger, G. R., “MEMS-
Based Storage Devices and Standard Disk
Interfaces: A Square Peg in a Round Hole?,” In
FAST, pp. 87-100, 2004.

[SO07] Seltzer, M. and Oracle Corporation,
“BerkeleyDB: A Retrospective,” IEEE Data Eng.
Bull., 30(3), pp. 21-28, 2007.

[SLMJ07] Sheng, B., Li, Q., Mao, W., and Jin, W., "Outlier
Detection in Sensor Networks," In MobiHoc, pp.
219-228, 2007.

[WH04] Wu, J. and Hisa, T., "Analysis of E-commerce
Innovation and Impact: a Hypercube Model,"
Electronic Commerce Research and Applications,
3(4), pp. 389-404, 2004.

[Whan07] Whang, K., “Development of
Customizable/Lightweight DB Engine
Technologies for Ubiquitous Small Devices,”
National Research Lab Program, National
Research Foundation (NRF) of Korea, Proposal
Apr. 2007, Project July 2007-June 2012.

[WLK+09] Whang, K. et al., “Tightly-Coupled Spatial
Database Features in the Odysseus/OpenGIS
DBMS for High-Performance,” GeoInformatica,
to appear, 2009 (on-line version at
http://www.springerlink.com/content/m68512467
06v6n65).

[WLL+05] Whang, K. et al., “Odysseus: a High-
Performance ORDBMS Tightly-Coupled with IR
Features,” In ICDE, pp. 1104-1105, 2005. This
paper received the Best Demonstration Award.

[Wood01] Woodhouse, D., “JFFS: The Journaling Flash
File System,” http://sources.redhat.com/jffs2/
jffs2.pdf, 2001.

[WPHL02] Whang, K., Park, B., Han, W., and Lee, Y.,
Inverted Index Storage Structure Using
Subindexes and Large Objects for Tight
Coupling of Information Retrieval with Database
Management Systems, US Patent 6349308, Feb.
2002. (Appl. No. 09/250,487, Feb. 15, 1999)

[YAA07] Yu, H., Agrawal, D., and Abbadi, A. E.,
“MEMS-Based Storage Architecture for
Relational Databases,” The VLDB Journal, 16(2),
pp. 251–268, 2007.

[YPM09] Yin S., Pucheral, P., and Meng, X., “A
Sequential Indexing Scheme for Flash-Based
Embedded Systems,” In EDBT, pp. 588-599,
2009.

22 SIGMOD Record, December 2009 (Vol. 38, No. 4)

