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1. INTRODUCTION

In evaluating the access cost of a query for a database organi-
zation in which records are grouped into blocks in secondary
storage [16), one must often estimate the number of block
assesses required to retrieve the records selected by the
query. Various formulas have been proposed for this purpose
(2. 3.8-13, 17, 19]. In particular, Yao [17] presented the fol-
lowing theorem:’

TuEOREM 1: [Yao] Let n records be grouped into m blocks (1 <
m = n), each containing p = n/m records. If k records® are

randomly seiected from the n records, the expected number of
blocks hit (blocks with at lenst one record selected) is given by

b(m, p, k]

o= 7))

m[1 = ({n — p)i{n = K)))/([n = p — k)in}] (2)

I

=m[1—ﬁ(n—p—i+1)/(n—i+1)] (3)

i=1
when k <=n —p, and
b(m, p, k) (4)

=m when k > n — p.

1 The notation and some of the conditions have been slightly modified.
2Cases in which k or m are random variables with various distributions have
been studied [7].

ABSTRACT: A closed, noniterative
farmula is introduced for estimating
the number of block accesses in a
database organization, and the
error analyzed. This formula, an
approximation of Yao's exact
formula, has a maximum error of
3.7 percent, and significantly
reduces the computation time by
eliminating the iterative loop. It
also achieves a much higher

accuracy than an approximation
proposed by Cardenas.
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Earlier Cardenas [3] suggested the formula
bdm, p, k) =m[1 - {1 - 1/m)"], {5)

assuming that there are n records divided into m blocks and
that the k records are randomly selected from the n records. It
is interesting to note that Eq, (5) is independent of the block-
ing factor p.

Yao [17] showed that Eq. (5) is based on the assumption
that records are selected with replacement, i.e., a record can
be selected more than once. But this assumption does not
hold in practice, since records selected by a query simultane-
ously must be distinct from one another. Yao eliminated this
assumption and proved Theorem 1 under the assumption that
records are actually selected without replacement, i.e., a re-
cord cannot be selected more than once at one time.

Theorem 1 gives the exact formula under the given as-
sumptions. However, we notice that Eq. (3) has an iterative
form, which will take excessive time to evaluate if k becomes
large. Another way of evaluating Yao's formula is by using
the Gamma function (in practice a Log Gamma (LGAM)] {6]
function should be used, since the Gamma function grows
very steeply). By modifying Eq. (2) slightly, we obtain

b(m, p, k)
= m[1 — exp[LGAM(n — p + 1) + LGAM(n ~k + 1) (6)
- LGAM(n -~ p — k + 1) — LGAM(n + 1))].

Evaluation of this formula poses a problem in praclice, espe-
cially when k is small. Since, in the evaluation of the argu-
ment of the exponential function, we are subtracting big
numbers from equally big numbers to get a very small num-
ber, the roundoff error of the computation can become intol-
erable. For example, when Eq. (6) is calculated by using sin-
gle-precision variables on a 36-bit machine having the resolu-
tion of 277 (=10 [4], it has a 46% error at p = 10, m = 1000,
n = 10000, and k = 2. The roundoff error is 310% when p =
10, m = 3162, n = 31620, and k = 3. But these values of
parameters are well within the range of relevant databases.

We propose below a closed, noniterative formula that ap-
proximates Yao's exact formula with reasonable accuracy, as
well as reducing considerably the computation error caused
by limited precision.

2. A NONITERATIVE FORMULA

In this section, we introduce the following formula and dis-
cuss how it was obtained. Errors of this formula will be dis-
cussed in Section 3. We assume throughout that m and k
have only integer values.

bu(m, p, k)/m = [1 = (1 ~ 1/m)¥|
+[1/m*p X k(k — 1)/2
X (1 —1/m} (7)
+ [1.5/mp* X k(k — 1)(2k — 1)/6
X (1 = 1/m}7]
when k = n - p, and
bulm, p, k)/m= 1 when k >n —p (®

Let us see how Eq. (7} has been derived. When k > n — p, we
always have b,.(m, p, k)/m = 1 from Eq. (4). If we use n =
mp, Eq. (3) can be transformed to an equivalent form

bm, p, K/m=1~11 1 = 1/m1 —i/mp) (@
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If we perform a series expansion on 1/m(1 - i/mp) and take
only the first three terms, we obtain

k=1
b{m, p, k)/m =1 - [ (1 — 1/m) - i/m*p — i*/mp9)
i=0
If we expand the multiplication and keep the first three
terms, we get

b(m, p, k)/m = [1 ~ (1 — 1/m}¥
+ [1/m’p x k(k — 1)/2
X (1 = 1/m)] (10)
+ [1/m’p* x kik — 1)(2k — 1)/6
x (1 —1/m*]

Eq. (10) is only an approximation of Eq. (9), since we tock
only a few terms from the expansions. Two factors were
added to Eq. (10} to derive Eq. (7). The factor 1.5 has been
introduced empirically to compensate for the errors at small
values of p, i.e., p = 1. It was chosen especially to reduce the
error to zero when p = 1, k = [n — p], as n goes to infinity (n
— ), in which case Eq. (10) has the most significant error.
The factor 1/p? has been introduced empirically to reduce
the effect of the third term for higher values of p, for adding
the third term at these values of p increases the error (al-
though it reduces the error at lower values of p). Let us note
that the first term is identical to Cardenas’ formula, with the
remaining two terms compensating for its error. We shall
show later that the approximation formula derived here con-
stitllnes a practically negligible deviation from the exact for-
mula.

3. ERROR ANALYSIS
We note that the first term of Eq. (7) is identical to Cardenas’
formula, Eq. (5). The second term compensates for the major

L momnnirg

b o

FIGURE 1. Error of Eq. (7) as m Goes to Infinity,
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error of Eq. (5), while the third term provides a finer adjust-
ment to further reduce the error. The third term has been
empirically madified to get a better approximation.

Derived in Theorem 2 and plotted in Figure 1 for various
values of p and « = k/n is a formula that gives the limiting
values of error ERR(m, p, k] = (b(m, p, k) = bu:(m, p, k)/b(m,
P, k) as the total number of blocks m (and, accordingly, the
total number of records n) goes to infinity.

THEOREM 2:
lim
- ERR(m, p, k)

=1-{1—e™1 - p/2—«/2p)/01 = (1 —«)) (11)

where ERR(m, p, k) = (b{m, p, k] — b..(m, p, K))/blin, p, k),
and p and « have fixed values.

Proor: To derive this formula, we need the following form of
Yao's formula, which has the iteraticn on the blocking factor
p rather than on the number of selected records k.

b(m‘p,k]=1—ﬁ[[n~k~i+1]/(n—i+1)) (12)
it

This formula is easily derivable from Eg. (2). If we subtract Eq.
(7) from Eq. (12), and divide the result by Eq. (12), we can
obtain Eg. (11), by taking the limit as m — % {accordingly

n - o) and by using the identity lr;n_l,,, 1-1/m)"=e"
Q.E.D.

Eq. (12) is also a convenient formula for evaluating the
exact value when we have integer blocking factors. In fact, all
computed values for integer blocking factors that we shall
employ later in this section were produced by using Eq. (12).
The limiting values, as the blocking factor p goes to infinity
with m and « fixed, are proved to be zero in the following
theorem.,

THEOREM 3: ETQERR[m, p, k) = 0, where m and « = k/n have
fixed values. Here 0 = k =< (m — 1)p, and k is an integer.

Proor: If « = 0, both b{m, p, k)/m and b..(m, p, k)/m simply
become 1, so ERR(m, p, k) must be zero. If « > 0, we know

that h_";b(m, p. k) = 1, since at least one block must be hit.

Therefore, the denominatar of ERR{m, p, k] is always at least
1 and cannot be 0. To study the behavior of the numerator,
let us look at Eq. (12). InEq. (12, n—k~i+1)/(n—i+ 1) =

(n—K)/n=1— < 1. Therefore, EEL [ fin —k — i+ 1)/

n-i+1))= i]lf,nm (1 —x)? = 0. Thus, Eﬂb(m. p. k) =1. But it

is clear from Egq,. (7) that i:_lﬂbm[m, p, k) =1 also, since g_ri(]
- 1/mymrt = 1;{2,(1 —1/m)™ = gﬂe‘m =0, and an expo-
nential order can suppress any poiynomial order of p. Hence,
EE,ERR(m, b, k=0 QED.

The errors that occur when both n and p are finite were
investigated by performing an exhaustive computer calcula-
tion. These analyses show that Eq. (7) yields at most 3.7%
(—3.7% if the sign is considered) of deviation from the exact
formula, Eq. (3), over the enfire rangeof p=1, m=1,0<k
= n — p, where m and k are integers. This maximum error
occurs at p =1+ v2, k = ln — pl as m — = (This can he
chserved in Figure 1. The maximum error and the value of p
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FIGURE 2. Error of Eq. (7} when k = [n ~ p].

at which this error occurs can in fact be derived from Eq. (11)
once we know that this occurs at « = 1, as m — =.) The
maximum positive error [2.5%) occurs at p = 1.5, k = 3, and
m = 3. The maximum positive error when m — o is 2.1% at
p=1.7 and k = 0.65n.

The dependence of the error on the values of n/p = m is
shown in Figure 2, where k is set 1o be equal to Ln — pl. (Note
that the maximum error occured at this k value,) At low
values of m and p, there is a short range within which errors
are changing by a large amount, since at these values of m
and p, k = Ln — pJ = L{m — 1)p} in the range where high
positive errors occur, as we see in Figure 1 (see the value
when p =2, m= 3, n =6, and k = 4, for example). The
dependence of the error on m is otherwise very flat, as in

ERR(m,p,k) (%)
s
: k/nz0.65
: S p=1.7
p i . n=-1
2P T p=2
L8 m
p=3
p=4
p=bh.
.'1 [
. p=1
PR Sa— ! ) SRR R B
S 16 100" 1000 - :10Q00 100000
NUMBER OF BLOCKS m

FIGURE 3. Error of Eq. (7) when k = 0.65n.
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Figure 3, which shows the values when x = 0.65 with corre-
sponding k values rounded to the nearest integers. In Figure 3,
the values al m = 1 and m = 2 are 0 from Eq. {4) and Eq. (8),
since at these points k = 0.65n > n - p.

The values of variables we used in the exhaustive com-
puter calculation with the censtraint that mp < 107 (10° for
noninteger blocking factors) are as follows: -

«m: 1; 2; 3; 10; 32; 100; 316; 1,000; 3,162; 10,000; 31,623;
100,000; 316,228; 1,000,000

p1; 2, 3; 4, 5; 10; 32; 100; 316; 1,000; 3,162; 1.1, 1.2, ..., 1.9
21,22,...,29vk/n: 00,002, 005 01,015 02,...,10

k:ln—pl1,23,4,5.6,7, 8,9, 10, 32, 100

4. COMPUTATIONAL ERROR DUE TO LEMITED
PRECISION

The major computational error is due to the evaulation of (1
—1/m) in Eq. (7). For example, if m = 10°, we need better
resolution than 107°, However, it is shown in [15] that the
number of valid digits required by Eq. (7) is roughly prapor-
tional to log,o[m), while that required by Eq. (6) using the
Gamma function is proportional to log,e{mn In(n)) for the same
precision in the result. In the exhaustive calculation using a
DEC System 20 with single-precision variables, we obtained a
maximum error of 0.2% when m = 10° over the range of
variables shown in Section 3.

5. COMMENTS ON RELATED WORK

Formulas essentially identical to Cardenas’s and Yao’s formu-
las were derived independently by Waters and Karayiannis
{11-13). Waters summarized three related formulas [13],
which are

bwari(m, p, k) = m[1 — (1 = k/n)] (13)
bwarz(m, p, k) =m[1 - (1 - p/n]k] (14)

wa‘a[m. p, k) = m[l - :‘=1 (1=-p}/ln—i+ 'l]]] (15}

Eg. (14} and Eq. (15) are identical to Eq. (5) and Eq. (3),
respectively. Eq. (13) was derived in [11, 12), as follows:
RHR = number of distinct records hit/total numher

of records in file
= probability that any particular record is hit

=k/n.
1 — RHR = probability that any particular record is
not hit.
(1 — RHR) = probability that any particular block is
not hit,
.1 —(1 — RHR)” = probability that any particular block is
hit.

Subsequently, during one of Waters’ lectures, Karayiannis
{then a student) suggested that Eq. (13) was incorrect, painting
out that Eq. (13} gives an incorrect result where m = 1 (cor-
recl results is b(m, p, k) = 1 if k > 0). He further suggested Eq.
(14) as an alternative formula. Later, Waters [3] announced
that Eq. (13) and the above derivation were incorrect and
instead suggested Eq. (15) as an alternative formula.

We note, however, that the derivation of Eg. (13) is correct
if we make the independence assumption in calculating the
probability that any particular block will not be hit. More
rigorous derivation should use conditional probability, since
the events of each record’s being hit are not mutually proba-
bilistically independent.
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Note that if we inmterchange p and k, Eq. (12) bears the same
relationship with Eq. (13) as Eq. (3) does with Eq. (14). In this
sense, Eq. (12) and Eq. (13) are a dual of Eq. (3) and Eq. (14).

It was ohserved that Eq. (14) yields a good approximation
when k << n{x << 1) or p > 1 [17]. Hence, Eq. (13) will give a
good approximation when p << n(m > 1) or k > 1 by duality.
This means that one formula will result in a good approxima-
tien when its counterpart yields a poor one, and vice versa.
Therefore, an obvious alternative approach to the one pre-
sented in Lhis paper is 1o combine these lwo formulas in such
a way as o get a good approximation over the entire range.
As an example, we suggest here the following formula:

bwg(m, B, k) = mﬂx'bWATj(m. B k}, bWATZ[mﬂ P, k]} (16)
= max{m[1 = (1 — k/n)},
m[1 ~ (1 = p/n)*}}

where ‘max’ represents the maximum of the two arguments.
This equation will be a good approximation, since either for-
mula always produces a value smaller than the exact for-
mula. {This can be easily understood by examining the un-
derlying assumptions.)

6. APPLICATION

An implicit assumption made throughout the development of
all the formulas is that a block is accessed no more than once.
We encounter this situation in practice when the records
selected are accessed in TID (tuple identifier or database key)
order.

Twuo typical applications of these formulas are in query
optimization [18] and physical-database design [5, 14]. The
formulas are used to estimate the number of block accesses,
which is an important measure of cost. They are also used to
estimate the number of logical groups of records selected [14}.
A logical group is a set of records grouped according 1o certain
criteria—for example, common poessession of the same value
on a certain field. Close estimation of the number of logical
groups selected is necessary in analyzing the interactions
amang relations in the design of a physical database. In this
application, we are very likely to have low grouping factors
(number of records in a group) that correspond to the blocking
factors of a block [physical group). For example, we have a
grouping factar of 1 when the records are grouped according
to the values of a key field.

Although Cardenas's formula, currently used in System R
[1], gives a reasonable approximation in many cases, it is
especially prone to failure at low blocking faclors (particularly
when p < 10}. Eq. (7) proves tc be very useful in these
situations.

7. CONCLUSION

A closed, noniterative formula for estimating the number of
block accesses was introduced. It improves Yao’s exact for-
mula in the sense that it significantly reduces the computa-
tion time by eliminating the iterative loop, while providing a
practically negligible deviation (maximum error = 3.7%) from
the exact formula over the entire range of variables involved.
The computational errer due to the machine’s limited preci-
sion has been greatly reduced as compared with a method
using the gamma function based on Yao's formula. It signifi-
cantly improves Cardenas’s earlier formula, which has a max-
imum error of e™' = 36.8% [at p = 1).
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