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1. I N T R O D U C T I O N  
In eva lua t ing  the  access  cost  o f  a q u e r y  for a da tabase  organi-  
za t ion  in w h i c h  records  are  g rouped  into b locks  in s e c o n d a r y  
storage [16], one  m u s t  o f ten  es t ima te  t he  n u m b e r  of  b lock 
assesses  r equ i r ed  to re t r ieve  t h e  records  se lec ted  by  t h e  
query .  Var ious  fo rmulas  h a v e  b e e n  p roposed  for this  pu rpose  
[2, 3, 8-13,  17, 19]. In part icular ,  Yao [17] p r e s e n t e d  the  fol- 
lowing  theo rem:  1 

Trn~OREM 1: [Yao] Let n records  be g rouped  into m blocks (1 _< 
m _< n), each containing p = n / m  records.  If k records  2 a re  
randomly selected from the n records,  the  expected n u m b e r  of  
blocks hit (blocks with at least one  record selected) is given by 

b(m,  p,  k) 

= r o l l  - ((n - p)!(n - k) ! ) / ( (n  - p - k)!n!)] 

= m  1 -  ( n - p - i + l ) / ( n - i + l )  
i=1 

w h e n  k _< n - p,  a n d  

b(m,  p,  k) 

= m w h e n  k > n - p. 

(1) 

(2) 

(3) 

(4) 

1 The notation and some of the conditions have been slightly modified. 
2 Cases in which k or m are random variables with various distributions have 
been studied [7]. 
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Earlier Cardenas [3] suggested the formula 

be(m, p, k) = m[1 - (1 - 1/m)k], (5) 

assuming that there are n records divided into m blocks and 
that the k records are randomly selected from the n records. It 
is interesting to note that Eq. (5) is independent  of the block- 
ing factor p. 

Yao [17] showed that Eq. (5) is based on the assumption 
that records are selected with replacement, i.e., a record can 
be selected more than once. But this assumption does not 
hold in practice, since records selected by a query simultane- 
ously must be distinct from one another. Yao eliminated this 
assumption and proved Theorem 1 under  the assumption that 
records are actually selected without replacement, i.e., a re- 
cord cannot be selected more than once at one time. 

Theorem 1 gives the exact formula under  the given as- 
sumptions. However, we notice that Eq. (3) has an iterative 
form, which will take excessive time to evaluate if k becomes 
large. Another  way of evaluating Yao's formula is by using 
the Gamma function (in practice a Log Gamma (LGAM) [6] 
function should be used, since the Gamma function grows 
very steeply). By modifying Eq. (2) slightly, we obtain 

b(m, p, k) 

= m[1 - exp(LGAM(n - p + 1) + LGAM(n - k + 1) (6) 

- LGAM(n - p - k + 1) - LGAM(n + 1))]. 

Evaluation of this formula poses a problem in practice, espe- 
cially when  k is small. Since, in the evaluation of the argu- 
ment  of the exponential function, we are subtracting big 
numbers  from equally big numbers  to get a very small num-  
ber, the roundoff error of the computation can become intol- 
erable. For example, when  Eq. (6) is calculated by using sin- 
gle-precision variables on a 36-bit machine  having the resolu- 
tion of 2 -27 (-~10 -8) [4], it has a 46% error at p = 10, m = 1000, 
n = 10000, and k = 2. The roundoff error is 310% when  p = 
10, m = 3162, n = 31620, and k = 3. But these values of 
parameters are well within the range of relevant databases. 

We propose below a closed, noniterative formula that ap- 
proximates Yao's exact formula with reasonable accuracy, as 
well as reducing considerably the computation error caused 
by limited precision. 

2. A NONITERATIVE FORMULA 
In this section, we introduce the following formula and dis- 
cuss how it was obtained. Errors of this formula will be dis- 
cussed in Section 3. We assume throughout that m and k 
have only integer values. 

bw~(m, p, k ) / m  = [1 - (1 - l / m }  k] 

+ [1/m2p x k(k - 1) /2  

x (1 - l / m )  k-~] (7) 

+ [1.5/m3p 4 x k(k - 1)(2k - 1)/6  

x {1 - l ira)  ~-~] 

w h e n  k _< n - p, and  

b~,~(m, p, k ) / m  = 1 w h e n  k > n - p (8} 

Let us see how Eq. (7) has been derived. When  k > n - p, we 
always have b~(m, p, k ) /m  = 1 from Eq. (4}. If we use n = 
rap, Eq. (3) can be transformed to an equivalent form 

k--1 

b{m, p, k ) / m  = 1 - H {1 - 1/m{1 - i /mp)}  {9} 
i=O 

If we perform a series expansion on 1/m(1 - i /mp) and take 
only the first three terms, we obtain 

k - - I  

b(m, p, k ) / m  = 1 - I I  ((1 - 1/m)  - i /m2p - i2/map 2) 
i = o  

If we expand the multiplication and keep the first three 
terms, we get 

b(m, p, k ) / m  ~- [1 - (1 - 1/m} k] 

+ [1/m2p x k(k - 1}/2 

x (1 - l / m }  k-l] (10) 

+ [1/m3p 2 x k(k - 1)(2k - 1 ) /6  

× (1 - I / re )k- ' ] .  

Eq. (10) is only an approximation of Eq. (9}, since we took 
only a few terms from the expansions. Two factors were 
added to Eq. (10) to derive Eq. (7). The factor 1.5 has been 
introduced empirically to compensate for the errors at small 
values of p, i.e., p = 1. It was chosen especially to reduce the 
error to zero when  p = 1, k = [n - p], as n goes to infinity (n 

~), in which case Eq. (10) has the most significant error. 
The factor 1 /p  2 has been introduced empirically to reduce 
the effect of the third term for higher values of p, for adding 
the third term at these values of p increases the error (al- 
though it reduces the error at lower values of p). Let us note 
that the first term is identical to Cardenas'  formula, with the 
remaining two terms compensating for its error. We shall 
show later that the approximation formula derived here con- 
stitutes a practically negligible deviation from the exact for- 
mula. 

3. ERROR ANALYSIS 
We note that the first term of Eq. (7) is identical to Cardenas' 
formula, Eq. (5). The second term compensates for the major 

ERR(m,p,k) (%) 

3 

/ m: infinity 
2 

- 1  

-2 

-3 

-4 
0 .2  O.4 ~ 0 .6  0 .8  1.O 

PERCENTAGE OF SELECTED RECORDS k / n  

FIGURE 1. Error of Eq. (7) as m Goes to Infinity. 
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error of Eq. (5), while  the third term provides a finer adjust- 
ment  to further reduce the error. The third term has been 
empirically modified to get a better approximation. 

Derived in Theorem 2 and plotted in Figure I for various 
values of p and K = k / n  is a formula that gives the limiting 
values of error ERR(m, p, k) = (b(m, p, k) - b~(m, p, k)/b(m, 
p, k) as the total number  of blocks m (and, accordingly, the ~ 
total number  of records n} goes to infinity. 
THEOREM 2: 

l im ERR(m, p, k) 
m - . ~  

= 1 - (1 - e-P'(1 - pK2/2 - ~3/2p))/(1 - (1 - K) p) (11) 

where  ERR(m, p, k) = (b(m, p, k) - b~(m, p, k))/b(m, p, k), 
and p and ~ have fixed values. 

PROOF: To derive this formula, we need the following form of 
Yao's formula, which  has the iteration on the blocking factor 
p rather than on the number  of selected records k. 

P 

b ( m , p , k ) = l -  I I  ( ( n - k - i + l ) / ( n - i  + 1 ) )  (12) 
i( 

This formula is easily derivable from Eq. (2). If we subtract Eq. 
(7) from Eq. (12), and divide the result by Eq. (12), we can 
obtain Eq. (11), by taking the limit as m --~ oo (accordingly 

l im "1 l / m )  m e-L n ~ oo) and  by us ing  the  iden t i t y  m ~  ( - = 

Q.E.D. 

Eq. (12) is also a convenient  formula for evaluating the 
exact value w h e n  we  have integer blocking factors. In fact, all 
computed values for integer blocking factors that we shall 
employ later in this section were  produced by using Eq. (12). 
The  limiting values, as the blocking factor p goes to infinity 
with m and K fixed, are proved to be zero in the following 
theorem. 

THEOREM 3: lni_~ERR(m, p, k) = 0, where  m and K = k/n  have 
r 

fixed values. Here 0 _< k _< (m - 1)p, and k is an integer. 

PROOF: If K = 0, both b(m, p, k)/m and b~(m, p, k)/m simply 
become 1, so ERR(m, p, k) must be zero. If K > O, we know 

l im ,  , 
that  p_.=ptm, p, k) _> 1, since at least one block must be hit. 

Therefore, the denominator  of ERR(m, p, k) is always at least 
1 and cannot be O. To study the behavior of the numerator,  
let us look at Eq. (12). In Eq. (12), (n - k - i + 1)/(n - i + 1) _< 

(n - k)/n = 1 - K < 1. Therefore, l im [I,% ((n - k - i + 1)/  p - ~  

l im . l i r a , ,  
(n - i + 1)) _< p._~ (1 - ~)P = O. Thus, p_.=otm, p, k) = 1. But it 

l im,  , l i m .  
is clear from Eq. (7) that p__~oow~tm, p, k) = 1 also, since p_~(1 

l im _~ _ 1 / m ) , m ~  = l im 1 - l / m )  `mp= p_~e = 0, and an expo- p-,=t 

nential order can suppress any polynomial order of p. Hence, 

l im k) = O. Q.E.D. p.22ERR(m, p, 

The  errors that occur w h e n  both n and p are finite were  
investigated by performing an exhaustive computer  calcula- 
tion. These analyses show that Eq. (7) yields at most 3.7% 
(-3.7% if the sign is considered) of deviation from the exact 
formula, Eq. (3), over the entire range of p _> 1, m _> 1, 0 _< k 
_< n - p, where  m and k are integers. This m a x i m u m  error 
occurs at p = 1 + ~/2, k = Ln - pJ as m ~ oo (This can be 
observed in Figure 1. The  m a x i m u m  error and the value of p 

: NUMBER OF BLOCKS : m 

FIGURE 2. Error of Eq. (7) when k = [n - p]. 

at which this error occurs can in fact be derived from Eq. (11) 
once we know that this occurs at K = 1, as m ~ oo.) The 
m a x i m u m  positive error (2.5%) occurs at p = 1.5, k = 3, and 
m = 3. The m a x i m u m  positive error w h e n  m ~ oo is 2.1% at 
p = 1.7 and k = 0.65n. 

The  dependence of the error on the values of n / p  = m is 
shown in Figure 2, where  k is set to be equal to Ln - pJ. (Note 
that the m a x i m u m  error occured at this k value.) At low 
values of m and p, there is a short range within which errors 
are changing by a large amount,  since at these values of m 
and p, k = Ln - pJ = L(m - 1)p] in the range where  high 
positive errors occur, as we  see in Figure 1 (see the value 
w h e n  p = 2, m = 3, n = 6, and k = 4, for example). The 
dependence of the error on m is otherwise very flat, as in 

ERR(m,p ,k )  (%)  
3 m 

k / n  = 0 . 6 5  
p = 1 . 7  

2 m ~ '  n = 1 _ 5  ' 
- - " - -  p = 2  

-1 

p = 3  

p = l O  

p = 4  

) : 1  

-2 
10 100  1 0 0 0  1 0 0 0 0  1 0 0 0 0 0  

NUMBER OF BLOCKS m 

FIGURE 3. Error of Eq. (7) when k = 0.65n. 
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Figure 3, which shows the values when K = 0.65 with corre- 
spending k values rounded to the nearest integers. In Figure 3, 
the values at m = 1 and m = 2 are 0 from Eq. (4) and Eq. (8), 
since at these points k = 0.65n > n - p. 

The values of variables we used in the exhaustive com- 
puter calculation with the constraint that mp _< 107 (106 for 
noninteger blocking factors} are as follows: • 
• m: 1; 2; 3; 10; 32; 100; 316; 1,000; 3,162; 10,000; 31,623; 

100,000; 316,228; 1,000,000 
• p: 1; 2; 3; 4; 5; 10; 32; 100; 316; 1,000; 3,162; 1.1, 1.2 . . . . .  1.9; 

2.1, 2.2 . . . . .  2.9 vk /n :  0.0, 0.02, 0.05, 0.1, 0.15, 0.2 . . . . .  1.0 
• k: [.n - pJ, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 32, 100 

4. COMPUTATIONAL ERROR DUE TO LIMITED 
PRECISION 
The major computational error is due to the evaulation of (1 
- 1 / m )  in Eq. (7). For example, if m = 106, we need better 
resolution than 10 -6. However, it is shown in [15] that the 
number of valid digits required by Eq. (7) is roughly propor- 
tional to logm(m}, while that required by Eq. (6) using the 
Gamma function is proportional to logm(mn In(n)) for the same 
precision in the result. In the exhaustive calculation using a 
DEC System 20 with single-precision variables, we obtained a 
maximum error of 0.2% when m = 106 over the range of 
variables shown in Section 3. 

5. COMMENTS ON RELATED WORK 
Formulas essentially identical to Cardenas's and Yao's formu- 
las were derived independently by Waters and Karayiannis 
[11-13]. Waters summarized three related formulas [13], 
which are 

bwarl(m, 

bwar2(m, 

p, k} = m[1 - {1 - k / n )  p] (13) 

p, k) = m[1 - (1 - p /n} k] (14) 

bwara(m, p, k} = m [ 1 -  I-I~=, ( 1 -  p ) / {n  - i + 1)}] {15) 

Eq. (14) and Eq. (15) are identical to Eq. (5) and Eq. (3), 
respectively. Eq. (13) was derived in [11, 12], as follows: 

RHR = number  of dist inct  records h i t / t o t a l  number  
of records in file 

= probabi l i ty  that  any par t icular  record is hit 
= k / n .  

.'. 1 - RHR = probability that any particular record is 
not hit. 

.'. (1 - RHR} p = probability that any particular block is 
not hit. 

.'. 1 - {1 - RHR) p = probability that any particular block is 
hit. 

Subsequently, during one of Waters' lectures, Karayiannis 
(then a student) suggested that Eq. (13) was incorrect, pointing 
out that Eq. (13) gives an incorrect result where m = 1 (cor- 
rect results is b(m, p, k) = 1 if k > 0). He further suggested Eq. 
(14) as an alternative formula. Later, Waters [3] announced 
that Eq. (13) and the above derivation were incorrect and 
instead suggested Eq. (15} as an alternative formula. 

We note, however, that the derivation of Eq. (13} is correct 
if we make the independence assumption in calculating the 
probability that any particular block will not be hit. More 
rigorous derivation should use conditional probability, since 
the events of each record's being hit are not mutually proba- 
bilistically independent. 
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Note that if we interchange p and k, Eq. (12) bears the same 
relationship with Eq. (13) as Eq. (3) does with Eq. (14). In this 
sense, Eq. (12) and Eq. (13) are a dual of Eq. (3) and Eq. (14). 

It was observed that Eq. (14) yields a good approximation 
when k << n(K << 1) or p >> 1 [17]. Hence, Eq. (13) will give a 
good approximation when p << n(m >> 1) or k >> 1 by duality. 
This means that one formula will result in a good approxima- 
tion when its counterpart yields a poor one, and vice versa. 
Therefore, an obvious alternative approach to the one pre- 
sented in this paper is to combine these two formulas in such 
a way as to get a good approximation over the entire range. 
As an example, we suggest here the following formula: 

bw2(m, p, k) = max{bwarl(m, p, k), bwaT2(m, p, k)} (16) 

= max{m[1 - (1 - k/n)P], 

m[1 - (1 - p/n)k]} 

where 'max'  represents the maximum of the two arguments. 
This equation will be a good approximation, since either for- 
mula always produces a value smaller than the exact for- 
mula. {This can be easily understood by examining the un- 
derlying assumptions.) 

6. APPLICATION 
An implicit assumption made throughout the development of 
all the formulas is that a block is accessed no more than once. 
We encounter this situation in practice when the records 
selected are accessed in TID (tuple identifier or database key) 
order. 

Two typical applications of these formulas are in query 
optimization [18] and physical-database design [5, 14]. The 
formulas are used to estimate the number of block accesses, 
which is an important measure of cost. They are also used to 
estimate the number of logical groups of records selected [14}. 
A logical group is a set of records grouped according to certain 
criteria--for example, common possession of the same value 
on a certain field. Close estimation of the number of logical 
groups selected is necessary in analyzing the interactions 
among relations in the design of a physical database. In this 
application, we are very likely to have low grouping factors 
(number of records in a group) that correspond to the blocking 
factors of a block (physical group). For example, we have a 
grouping factor of I when the records are grouped according 
to the values of a key field. 

Although Cardenas's formula, currently used in System R 
[1], gives a reasonable approximation in many cases, it is 
especially prone to failure at low blocking factors (particularly 
when p < 10). Eq. (7) proves to be very useful in these 
situations. 

7. CONCLUSION 
A closed, noniterative formula for estimating the number of 
block accesses was introduced. It improves Yao's exact for- 
mula in the sense that it significantly reduces the computa- 
tion time by eliminating the iterative loop, while providing a 
practically negligible deviation (maximum error = 3.7%) from 
the exact formula over the entire range of variables involved. 
The computational error due to the machine's limited preci- 
sion has been greatly reduced as compared with a method 
using the gamma function based on Yao's formula. It signifi- 
cantly improves Cardenas's earlier formula, which has a max- 
imum error of e -1 = 36.8% (at p = 1). 
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