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Separability An Approach to
Physical Database Design
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Abstract-A theoretical approach to the optimal design of a
large multifile'physical database is presented. The design algo-
rithm is based on the theory that, given a set ofjoin methods that
satisfy a certain property called separability, the problem of opti-
mal assignment of access structures to the whole database can be
reduced to the subproblem of optimizing individual relations
independently of one another. Coupling factors are defined to
represent all the interactions among the relations. This approach
not only reduces the complexity of the problem significantly, but
also provides a better understanding of underlying mechanisms.

Index Terms -Block accesses, index selection, join methods,
physical database design, query optimization, selectivity.

I. INTRODUCTION

PROBLEMS of access path selection in large integrated
databases can be approached from two standpoints.

Query optimization seeks the optimal selection of access
paths for a specific query being processed, given a certain
structure of the underlying physical database [1]-[6]. On
the other hand, design of a physical database is concerned
with the optimal configuration of physical file and access
structures, given the logical access paths that represent the
interconnections among objects in the data model, the usage
patterns of those paths, the organizational characteristics of
the data stored in the files, the various features of the par-
ticular database management system (DBMS) [7]-[13].
Throughout this paper we use the term access structures as
the features that a particular DBMS provides for the physical
database design. For instance, access structures can be
indexes, hashed organizations, links, clustering of records,
etc. We also use the term access configuration to mean the
aggregate of access structures assigned to a relation or to
the whole database.
Most past research directed toward optimal design of

physical databases has concentrated on single-file cases. This
research must be extended to the design of the access con-
figuration of multifile databases. Although some efforts have
been devoted to multifile cases [7], [14], [15], the approaches
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employed fall far short of accomplishing automatic design of
optimal physical databases.
A typical approach to the multifile physical database de-

sign has been to develop a cost evaluator that produces the
total cost of processing queries and updates acting upon a
specific access configuration. In this approach, however,
selection of an optimal access configuration remained de-
pendent on the designer's intuition or an exhaustive search
through all possible configurations. Although, an exhaustive
search guarantees finding an optimal solution, it is practically
impossible even with a small-sized database. This point is
illustrated in Example 1.
Example 1: We look into a very simplified design process

of a small database based on an exhaustive-search algorithm.
We assume that the only access structure available is the
clustering property. A column is said to have the clustering
property if a relation is stored according to the order of the
column values. Although the clustering property can be as-
signed to a combination of multiple columns, we assume for
simplicity that it can be assigned only to a single column.

Using this access structure, for a given set of queries as
input information, we want to find an optimal access configu-
ration for the database consisting of relations RI and R2, each
of which owns two columns. We have nine possible access
configurations as in Fig. 1, in which dashed lines show
the position of the clustering column. The optimal access
configuration can be found as follows:

1) For each of the nine configurations
a) find the best join method for each query,
b) obtain the total processing cost;

2) select the configuration that yields the minimum pro-
cessing cost.

In this simple design example, we have only nine possible
access configurations, but the number of access configu-
rations is explosive if we have more relations, more columns
in a relation, and various kinds of access structures.
For instance, if we have five relations having five columns
each, with indexes and the clustering property as available
access structures, the number of possible access configu-
rations becomes

(6 x 6 x 6 x 6 x 6) x (2' x 25 x 25 x 25 x 25)
= 2.6 x 1011

since we have six possible clustering columns (including the
case in which the clustering column does not exist) and 2'
possible index configurations for each relation.
As we see in Example' 1, the cost of the exhaustive-search

method becomes intolerably high even with a very small

0018-9340/84/0300-0209$01.00 C 1984 IEEE

209

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on February 16,2010 at 22:21:45 EST from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON COMPUTERS, VOL. c-33, NO. 3, MARCH 1984

A2 A1

I/
R,

A2 A1

LII

A2 Al

RL

A2 Al
Ri

A2 Al

wR

B1 B2

I/I

2
BL B21 82

R2

BI B2

R8 2

Bi B2

R2

B, B2

RZ

A2 Al

R,
A2 Al

R/I
R1

A2 Al
LIZ

A2 Al
R1

A2 A1

p1

B1 B2

2I/
LffiJ

R2
B, B2

R2

PI B2
R2

LIZB

Fig. 1. Nine access configurations.

database. As pointed out in [16], a relevant partitioning of the
entire design is necessary to make the optimal design of
physical databases a practical matter. For instance, in
Example 1, the number of possible alternatives would be
reduced to 5 x 6 x 25 = 960 if the optimal access configu-
ration could be obtained by finding the optimal access con-

figurations of individual relations independently.
In this paper we shall develop a methodology for the design

of multifile physical databases that takes advantage of this
partitioning effect. In particular, we discuss the issues in-
volved in designing the access configuration of a physical
database so as to minimize the total processing cost of input
queries and updates. In calculating the processing cost, we

only consider the number of I/O accesses; the cost due to the
CPU time is not included. Our approach is somewhat formal
and mathematical, deliberately avoiding excessive reliance
on heuristics. Our purpose is to render the whole design
phase manageable and to facilitate understanding of the un-

derlying mechanisms.
By analyzing an important set of join methods possessing

the property we call separability, we shall prove that, under
certain constraints, optimal design of the access configu-
ration of a multifile database can be reduced to the collective
optimal designs of individual relations. In this paper we re-

strict the available join methods to this set to make the whole
approach formally manageable. Extensions to other join
methods will be mentioned briefly. The main idea is to set up
a basic design methodology in accordance with a formal
method that includes a large subset of practically important
join methods, and then, using some straightforward heuris-
tics, extend this basic design methodology to include other
join methods as well.

Section II introduces several key assumptions, while
Section III describes applicable joinr methods of interest. In

Section V, the design theory will be developed by using the
simple cost model introduced for the examples in Section IV.
A design algorithm based on the theory will be introduced
in Section VI. Extensions of our approach are mentioned
briefly in Section VII.

II. APPROACHES AND ASSUMPTIONS

The design of an optimal physical database is complex for
a number of reasons, two of which we shall discuss here.
First, we may have several types of access structures avail-
able as options. Although some generalized formulas for
determining access cost have been devised for certain kinds
of file structures [7], [10], [12], [13], it is generally difficult
to use them for the selection of optimal file structures without
an exhaustive search among all possible alternatives. It there-
fore becomes necessary to accomplish a judicious separation
of design steps and to develop interfaces that will minimize
interactions among those steps.
The second source of complexity addressed is the inter-

action among the access structures assigned to different re-
lations. There are various techniques available, especially
join mnethods, for processing a query, and the choice fre-
quently depends on the access structures available on more
than one relation. Therefore, the processing cost of a query
associated with one relation depends upon other interact-
ing relations. It is the purpose of this paper to provide a
mechanism for coping with these interactions during the
design phase.
We choose a relational DBMS and start with the indexes

and the clustering property of a single relation as the initially
available access structures. The link structure [4] will be
included as an extension of the, basic result by using heuris-
tics. Clustering of two or more relations, as in many hier-
archical organizations, is not considered. For simplicity, we
only consider the indexes and the clustering property defined
for single columns. Multicolumn indexes and clustering
property can be incorporated by defining virtual columns and
treating them as separate columns having certain de-
pendencies in the physical database design process [17].We
also assume that all TID (tuple identifier) manipulations can
be performed in the main memory without any need to per-
form I/O accesses.
The database is assumed to reside on disk-like devices.

Physical storage space for the database is divided into units
of fixed size called blocks [ 18]. The block is not only the unit
of disk allocation, but is also the unit of transfer between
main memory and disk. We assume that a block that contains
tuples of a relation contains only the tuples of that relation.
Furthermore, we assume that the blocks containing tuples of
a relation, which comprises a file, can be accessed serially.
However, the blocks do not have to be contiguous on the disk.

In principle, we assume that a relation is mapped into a
single file. Accordingly, from now on, we shall use the terms
file and relation interchangeably; nor shall we make any
distinction between an attribute and a column or between a
tuple and a record. This does not mean, however, that we
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exclude the possibility of storing prejoined forms of relations
directly in the physical database. We believe this can be
considered in a separate refining phase after the basic design
has been obtained.
We shall develop a simple cost model of the storage struc-

ture in Section IV, and shall use various cost formulas based
on this model. For convenience, we assume that the size of
the available buffer is one block. However, the theory we
develop is not dependent on the buffer size if we ignore the
contention among many transactions in the buffer pool at
query processing time. Not incorporated in our theory is
either the effect of the contention in the buffer pool or the
scheduling algorithm.

Relations can have various relationships (not necessarily
semantically meaningful ones) depending on the character-
istics of the domains of the attributes that are related. For
example, if we relate a key attribute (or a set of attributes) in
relation R1 and a nonkey attribute (or a set of attributes)
in relation R2, then R1 and R2 have a one-to-many relation-
ship with respect to these attributes. In this paper, we con-
sider only one-to-many (including one-to-one) relationships
between relations since we believe that many-to-many re-
lationships between relations are less important for the opti-
mization. Let us note that a many-to-many relationship
among entity sets is extremely important in representing the
semantics of the data [19], but is different from a many-
to-many relationship between relations. A many-to-many
relationship among entity sets at the conceptual level is often
structured with an additional intermediate relation (called
an association in [19]) representing the many-to-many
relationship; in this case, however, the relationships between
relations still remains to be either one-to-many or many-to-
one. In contrast, a many-to-many relationship between
relations may be relatively trivial; it is shown in [20] that,
for a relation scheme R any of whose relation instances
is a join of two relation instances whose relation schemes
have a many-to-many relationship with respect to a set of
attributes A, a multivalued dependency (MVD) [21] holds. We
assume here that the only connection relating these two re-
lations is the join based on A. Intuitively, if an MVD A > > B
(accordingly, A A U B and A >- R - B) holds for re-
lation scheme R, where A and B are sets of attributes in R, then
in a specific relation instance r of R, given a specific value of
A, the values of R - B are completely replicated for every
distinct value of A U B. Because of this replication, sets of
attributes A U B and R - B tend not to have a meaningful
relationship, and thus it does not make much sense to have both
sets of attributes together in a single relation (say, in the result
of a query involving a join).

Finally, we consider only one-variable or two-variable
queries and update transactions1 in this paper. Consideration
of transactions of more than two variables needs a more
complex treatment. In principle, however, a heuristic ap-

'The term transaction used here should not be confused with the transaction
as a unit of consistency and recovery. Here, it is used as a generic term for both

proach can be employed to decompose those transactions into
sequences of two-variable transactions. A preliminary heu-
ristic and its justifications can be found in [17].

III. TRANSACTION EVALUATION

A. Queries

The class of queries we consider is shown in Fig. 2. The
conceptual meaning of this class of queries is as follows.
Tuples in relation R1 are restricted by restriction predicate P1.
Similarly, tuples in relation R2 are restricted by predicate P2.
The resulting tuples from each relation are joined according
to the join predicate R1.A = R2.B, and the result projected
over the columns specified by (list of attributes). We call the
columns that are involved in the restriction predicates
restriction columns, and those in the join predicate join
columns. The actual implementation of this class of queries
does not have to follow the order specified above as long as
it produces the same result.
Query evaluation algorithms, especially for two-variable

queries, have been studied in [4] and [5]. The algorithms for
evaluating queries differ significantly in the way they use join
methods. Before discussing the various join methods, let us
define some terminology. Given a query, an index is called a
join index if it is defined for the join column of a relation.
Likewise, an index is called a restriction index if it is defined
for a restriction column. We use the term subtuple for a tuple
that has been projected over some columns. The restriction
predicate in a query for each relation is decomposed into the
form Ql AND Q2, where Q1 is a predicate that can be processed
by using indexes, while Q2 cannot. Q2 must be resolved by
accessing individual records. We shall call Qi the index-
processible predicate and Q2 the residual predicate.

Some algorithms for processing joins that are of practical
importance are summarized below (see also [4], [6]).

* Join Index Method: This method presupposes the exis-
tence of join indexes. For each relation, the TID's of tuples
that satisfy the index processible predicates are obtained by
manipulating the TID's from each index involved; the re-
sultant TID's are stored in temporary relations R1' and R'. TID
pairs with the same join column values are found by scanning
the join column indexes according to the order of the join
column values. As they are found, each TID pair (TID1,
TID2) is checked to determine whether TID1 is present in R'
and TID2 in R'. If they are, the corresponding tuple in one
relation, say R1, is retrieved. When this tuple satisfies the
residual predicate for R1, the corresponding tuple in the other
relation R2 is retrieved and the residual predicate for R2 is
checked. If qualified, the tuples are concatenated and the
subtuple of interest is constructed. (We say that the direction
of the join is from R1 to R2.)

* Sort-Merge Method: The relations R1 and R2 are
scanned either by using restriction indexes, if there is an
index-processible predicate in the query, or by scanning the
relation directly. Restrictions, partial projections, and the
initial step of sorting are performed while the relations are

21

quenes and update activities against the database.

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on February 16,2010 at 22:21:45 EST from IEEE Xplore.  Restrictions apply. 



EEE TRANSACTIONS ON COMPUTERS, VOL. c-33, NO. 3, MARCH 1984

SELECT (list of attributes)
FROM R1, R2
WHERE R1.A = R2.1B AND

P1 AND

P2

Fig. 2. General class of queries considered.

being initially scanned and stored in temporary relations T,
and T2. T1 and T2 are sorted by the join column values. The
resulting relations are scanned in parallel and the join is
completed by merging matching tuples.

* Combination of the Join Index Method and the
Sort-Merge Method: One relation, say R1, is sorted as in the
sort-merge method and stored in T1. Relation R2 is processed
as in the join index method, storing the TID's of the tuples
that satisfy the index processible predicates in R§. T1 and the
join column index of R2 are scanned according to the join
column values. As matching join column values are found,
each TID from the join index of R2 is checked against R2'. If
it is in R', the corresponding tuple in R2 is retrieved and the
residual predicate for R2 is checked. If qualified, the tuples
are concatenated and the subtuple is constructed.

* Inner/Outer-Loop Join Method: In the two join methods
described above, the join is performed by scanning relations
in the order of the join column values. In the inner/outer-loop
join, one of the relations, say RI, is scanned without regard
to order, either by using restriction indexes or by scanning the
relation directly. For each tuple of RI that satisfies predicate
P1, all tuples of relation R2 that satisfy predicate P2 and the
join predicate are retrieved and concatenated with the tuple of
R1. The subtuples of interest are then projected upon the
result. (We say the direction of the join is from R1 to R2.)

* Multiple-Pass Method: One of the relations partici-
pating in the join, say R1, is scanned, the tuples are obtained,
restricted, projected, and inserted into a data structure T1,
whose size is constrained to fit in the available main store. If
space in main store is available to insert the resulting subtuple
r, this is done. If space is not available, but the join column
value in r is less than the current highest join column value
in TI, the subtuples with the highest join column value in T1
are then deleted and r is inserted. Otherwise, r is not inserted
at all. After T1 has been formed, R2 is scanned by using an

appropriate access path, and every tuple of R2 that satisfies
the predicate is concatenated (if possible) with the appropri-
ate subtuples in T, and the result projected. If there are more

qualified tuples in R1 than can fit in the main store for T1,
another scan of RI is done to form a new T1 consisting of
subtuples with join column values greater than the current
highest. R2 is also scanned again and the whole process re-

peated. This method is very fast if only one pass is needed.
But processing time increases rapidly when more passes

are performed.
* Link-Based Join Method: This is conceptually similar

to the inner/outer-loop join method, but it takes advantage
of existing links [4] between the two relations. The use of
links will be mentioned briefly as an extension of our basic
methodology.
Let us note that, in the combination of the join index

method and the sort-merge method, the operation performed

on either relation is identical to that performed on one re-
lation in the join index method or in the sort-merge method.
We call the operations performed on each relation join
index method (partial) or sort-merge method (partial),
respectively; whenever no confusion arises, we call these
operations simply join index method or sort-merge
method. According to these definitions, the complete join
index method actually consists of two join index methods
(partial) and, similarly, the complete sort-merge method
consists of two sort-merge methods (partial).

B. Update Transactions

We assume that the updates are performed only on indi-
vidual relations, although the qualification part (WHERE
clause) may involve more than one relation. Thus, updates
are not performed on the join of two or more relations. (If
they are, certain ambiguity arises on which relations to up-
date [22].) The class of update transactions we consider is
shown in Fig. 3.
The conceptual meaning of this class of transactions is as

follows. Tuples in relation R2 are restricted by restriction
predicate P2. Let us call the set of resulting tuples T2. Then,
the value for column C of each tuple in RI is changed to (new
value) if the tuple satisfies the restriction predicate PI and has
a matching tuple in T2 according to the join predicate. In a
more familiar syntax [23], the class of update transactions
can be represented as in Fig. 4. The equivalence of the two
representations has been shown for queries in [24].

Deletion transactions are spec'ified in an analogous way. It
is assumed that insertion transactions refer only to single
relations. From now on, unless any confusion arises, we shall
refer to update, deletion or insertion transactions simply as
update transactions.
The update transaction in Fig. 3 can be processed just like

queries except that an update operation is performed instead
of concatenating and projecting out the subtuples after rele-
vant tuples are identified. In particular, all the join methods
described in Section 111-A can be used for update trans-
actions as well as to resolve the join predicates (ones that relate
the two relations) that they have. But there are two con-
straints: 1) The sort-merge method cannot be used for the
relation to be updated since it is meaningless to create a
temporary sorted file to update the original relation. 2) When
the inner/outer-loop join method is used, the direction of the
join must be from the relation to be updated (R1) to the other
relation (R2) because if the direction were reversed, the same
tuple might be updated more than once.

IV. COST MODEL OF THE STORAGE STRUCTURE

To calculate the cost of evaluating a query, we need a
proper model of the underlying storage structure and its cor-
responding cost formula. Although the theory does not de-
pend on the specifics of cost models, it is helpful to have a
simple cost model for illustrative purposes.
We assume that a B-tree index [25] can be defined for a

column or for a set of columns of a relation. The leaf-level of
the index consists of pairs (key and TID) for every tuple in
that relation. The leaf-level blocks are chained according to
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Fig. 3. General class of update transactions considered.

UPDATE Ri
SET R1.C = <new value>
WHERE Pi AND

R1.A IN
(SELECT? R2B
FROM R2
WHERE P2

Fig. 4. An equivalent form of the general class of update transactions.

the order of indexed column values, so that the index can be
scanned without traversing the index tree. Entries having the
same key value are ordered by TID.
An index is called a clustering index if the column for

which this index is defined has the clustering property as

defined in Example 1. With a clustering index, we assume

that no block is fetched more than once when tuples with
consecutive values of the indexed column are retrieved. Ex-
cept for this ordering property, no other difference in the
structure is assumed between a clustering and a nonclustering
index. The clustering property can greatly reduce the access

cost, especially when a join column has a clustering index.
Unfortunately, only one column of a relation can have the
clustering property since clustering requires a specific order
of records in the physical file. One of the objectives of de-
signing optimal physical databases is to determine which
column will be assigned the clustering property.
The access cost will be measured in terms of the number of

I/O accesses. The following notation will be used throughout
this paper:

nR: number of tuples in relation R (cardinality)
PR: blocking factor of a block containing tuples of

relation R
LI: blocking factor of an index block containing index I
Fc: selectivity of the column used or the index thereof
mR: number of blocks in relation R, which is equal to

nR/PR-

By using the simplified model above, the cost of various
operations can be obtained as follows:

* Relation Scan Cost-cost for serially accessing all the
blocks containing the tuples of a relation

RS(R) = nR/pR = mR.

* Index Scan Cost-cost for serially accessing the leaf-
level blocks of an entire index

IS(I,R) = FnR/LIl.

* Index Access Cost -cost for one access of the index tree
from the root

IA(I, R) = FlogL, nR] + (FF, x nR/L,I - 1).

Here the first term represents the cost of traversing the index
tree from the root to a leaf node; the second the cost of scanning

the remaining leaf nodes that contain the index entries having
the key value.

* Sorting Cost -cost for sorting a relation, or a part there-
of, according to the values of the columns of interest

SORT(NB) = 2 x NB + 2 x NB x log,rNB ] .

Here we assume that a z-way sort-merge is used for the
external sort [26]. NB is the number of blocks in the tempo-
rary relation containing the subtuples to be sorted after re-
striction and projection have been resolved. It will be noted
that SORT(NB) does not include the initial scanning time to
bring in the original relation, while it does include the time
to scan the temporary relation for the actual join after sorting
(see [4]).

V. DESIGN THEORY

In this section we develop a theory for the design of opti-
mal physical databases. We shall seek to facilitate compre-
hension through a series of examples and by case analysis,
using the cost model developed in Section IV. Observations
resulting from this procedure are formalized and proved in
Section V-D.
Our approach to physical database design is based on the

premise that at execution time the query processor will
choose the best processing method for a given query. We call
this processor an optimizer. Since the behavior of the opti-
mizer at execution time affects the physical database design
critically, we investigate this issue and discuss how it is
related to the design.

Since the set of join methods consisting of the join index
method, the sort-merge method, and the combination of the
two possesses the special property, called separability which
we shall define later, we regard only those methods as being
available for the design theory (the inner/outer-loop join
method, the multiple-pass method, and the link-based
method are nonseparable join methods with respect to this
separable set).
We define the influence of the restriction on one relation to

the number of tuples to be retrieved in the other relation the
coupling effect (which is similar in concept to thefeedback
mentioned in [5]). Starting with a case in which coupling
effects between relations are not considered, we then proceed
to those cases in which they are included.

A. Cases Without Coupling Effects

Example 2: Fig. 5 describes two relations RI and R2 with
their access configurations. Dashed lines (/) represent
clustering indexes, the dotted lines (:) nonclustering in-
dexes. Columns without either type of line have no indexes
defined for them. We would like to find the best method of
evaluation, which the optimizer would choose at query
processing time, for the following query:

SELECT A1, A3, B3
FROM R1, R2
WHERE R1.A2 = 'a2' AND

R2.B2 = 'b2' AND
Rl.Al = R2.Bl.

UPDA'IF R
SET R .C = <new value>
FROM R1, R2
WHERE R1.A = R2.B AND

P1 AND

P2
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A3 A2 A1 B1 B2 B3

JOIN

Rl R2

Fig. 5. Relations R, and R2.

For this example only, it is also assumed that
in each relation participate in the join.
Given these assumptions, the optimizer cou

possible combinations of the join methods, eva]
of each, and then select the one that costs the le
here the following combinations:

RI
1. Join index method

(partial)
2. Sort-merge method

(partial)
3. Join index method

(partial)
4. Sort-merge method

(partial)

Join index
(partial)

Sort-merg
(partial)

Sort-merg
(partial)

Join inde:
(partial).

Using the cost model developed in Section IV
ing formulas give the cost (number of block

each of the four cases above. In each formula

second bracketed expressions represent the cost

relations R1 and R2, respectively. Bracketed ev
the formulas are given arbitrary values for illu
poses. Those expressions whose form is identi

the same value.

Cost = [IA(IA2,Rl) + IS(IA1,RI) + FA2 X nRl]

+ [IA(lB2,R2) + IS(IB1,R2)

b(mR2,PR2,,FB2 nR2)]

Cost [IA(1A2,RI) + FA2 x MRI

+ SORT(FA2 X HRI X mRl)]

+ [IA(1fI2,R2) + b(mR2,PR2,FB2 X nR2)

+ SORT(FB2 X HR2 X MR2)]

Cost = [IA(IA2,RI) + IS(IAI,R1) + FA2 X nRl]

+ [IA(1B2,R2) + b(mR2,PR2,FB2 X nR2)

+ SORT(FB2 X HR2 xmRi)]

Cost = [IA(IA2,R) + FA2 X mRl

+ SORT(FA2 x HRI X MRl)]

+ [IA(1B2,R2) + IS(IBl,R2)

+ b(mR2,PR2, FB2 X nR2)]

Here b(m, p, k) is a function that provides thl

block accesses, where m is the total number of

the blocking factor, and k is the number of

retrieved in TID order. An exact form of t]

and various approximation formulas are summarized
in [27]. The function is approximately linear in k when
k << n, and approaches m as k becomes large. A familiar
approximation suggested by Cardenas [8] is b(m,p, k) =
m[l - (1 - 1/m)k]. FA2 and FB2 are the selectivities of the
columns R1.A2 and R2.B2, respectively. In (1), FA2 x nR1 and
b(mR2, PR2, FB2 x nR2) represent the numbers of blocks acces-
sed that contain data tuples of relation R1 and R2, re-

all the tuples spectively. Since retrieving tuples by scanning a non-
clustering join index will access the tuples randomly, the

ld try all the same block will be accessed repeatedly if it contains more
luate the cost than one tuple. Therefore, it is very likely that one block
ast. We have access is needed to retrieve each tuple. Hence, we get

FA2 x nRl for the number of data blocks fetched from relation
R1. Note that in this case the tuples cannot be accessed in TID

2 order. For relation R2, however, the join index is clustering
method and thus the tuples will be retrieved in TID order, even

though they are selected randomly by the restriction. There-
;e method fore, even though a block contains more than one tuple, each

relevant block of R2 will be fetched only once. We thus get
,e method b(mR2, PR2, FB2 x nR2) for the number of data blocks fetched

from R2, where FB2 x nR2 is the number of tuples selected by
x method the restriction.

In (2), FA2 X mRl and b(MR2,pR2,FB2 X nR2) represent
the numbers of blocks accessed during the initial scan of

r, the follow- the relation prior to sorting. Since the restriction index is
accesses) for clustering in relation R1, the initial scan through this re-
the first and striction index will access FA2 x mRl blocks. In relation R2, a
of accessing nonclustering restriction index is used to access the relation
rpressions in initially. This restriction results in random distribution of
istrative pur- TID's of the qualified tuples over the blocks. Since these
cal are given tuples are then accessed in TID order, the access cost is

b(MR2, PR2, FB2 x nR2)-
The factor HR2 used in (3) represents the projection effect

:100+ upon relation R2. Since the projection selects only part of the
attributes from the relations, the tuple is usually smaller
after projection. The time required to write the final result

20 (1) is not included since it is the same regardless of the join
method used.
With the specific values of the access cost given, (4) gives

:60+ the minimum access cost. We note that the access costs for
each relation do not depend on any parameter of any other

50 (2) relation, and that each part of the cost of (4) becomes the local
minimum. That is, the first part of the cost incurred by

:100+ accessing relation R1 is the minimum of the costs of the join
methods used for R1, while the second part is the minimum of

: 50 (3) those for R2. This implies that the optimizer can determine the
optimal join method on one relation without regard to any
properties of other relations. *

* 60+ The foregoing observation is extremely important because
if we can determine the optimal join method for one relation
without regard to other relations, we can also use the follow-

: 20. (4) ing method to determine the optimal access configuration for
the relation without regard to other relations:

e number of 1) Try every possible access configuration for a relation
blocks, p is in tum
tuples to be 2) for a given access configuration, find the best evalua-
his function tion method, which the optimizer would choose at query
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processing time, for each given query (this corresponds to the
query optimization problem)

3) then calculate the total cost for processing the queries,
using their expected frequency of occurrence

4) repeat this procedure for all other possible access con-

figurations, finally selecting the one that yields the minimal
total cost.
The result of this will be to reduce designing an optimal

access configuration of a database to that of a single relation.
Local optimal solutions for individual relations constitute an

optimal solution for the entire database. However, the fore-
going procedure of making an exhaustive search of all the
possible access configurations could yet prove too costly.
Therefore, in Section VI we divide the design procedure into
two parts: choice of the clustering column and index selection.
We shall provide a clean interface between the two steps and
discuss deviations from the true optimum.

It should be pointed out here that, despite our assumption
that there is no coupling effect between the two relations and
despite the fact that the above argument appears to follow
directly from that assumption, it will be shown in the follow-
ing discussion that the problem is similarly reduced even

when coupling effects are actually present. Before further
discussion, we need the following definition and example.

Definition 1: The join selectivity J(R, JP) of a relation R
with respect to a join path JP is the ratio of the number of
distinct join column values of the tuples participating in the
unconditional join to the total number of the distinct join
column values of R. A join path is a set (R1, R1.A, R2, R2.B),
where R, and R2 are relations participating in the join and R1 .A
and R2.B are the join columns of R1 and R2, respectively. An
unconditional join is a join in which the restrictions on either
relation are not considered.

Join selectivity is the same as the ratio of the number of
tuples participating in the unconditional join to the total num-
ber of tuples in the relation (cardinality of the relation). Join
selectivity is generally different in R1 and R2 with respect to a

join path, as shown in the following example.
Example 3: Let us assume that the two relations in Fig. 6

have a 1-to-N partial dependency relationship. Partial de-
pendency means that every tuple in the relation R2 that is on
the N-side of the relationship has a corresponding tuple in R1,
but not vice versa [28]. Let us assume that 50 percent of the
employees have at least one child each so that the tuples
representing those employees participate in the unconditional
join. Every tuple in the children relation R2 is assumed to
have only one corresponding tuple in R1 and all of them
participate in the unconditional join according to the partial
dependency. The join selectivity of the employees relation is
then 0.5, while that of the children relation is 1.0.

B. Cases With Coupling Effects

Let us investigate the four cases shown in Example 2,
using the same query, join methods, and access configuration
defined as in Fig. 5, but now with coupling effects. In fact,
we shall consider coupling effects throughout our subsequent
discussions. We shall also assume that R1 and R2 have a

1-to-N relationship (1 for R1 and N for R2).

1: Employees(E#, Job, Age, Salary)
R2: Cbildren(E#, Name, Hair-color, Sex)

Fig. 6. Employees and children relations.

Case 1: The join index method is applied to both relations
RI and R2. With coupling effect, the join will be performed as
follows. If a tuple of relation R1 does not satisfy the re-
striction predicate for R1, the corresponding tuples of R2 that
have the same join column values are not accessed. Hence,
we have the coupling effect from R1 to R2. If there are only
index-processible predicates in the query to be evaluated, the
situation is then symmetric in the sense that, for the tuples in
relation R2 that do not satisfy the restriction predicate for R2,
the corresponding tuples of R1 are not accessed either. We
have this symmetry because we can resolve all index-
processible predicates by using TID's only, without any need
to access the data tuples themselves.

Since both R1.A2 and R2.B2 have indexes defined for them,
the restriction predicates in the WHERE clause are index
processible. Therefore, the cost of evaluating this query,
including the coupling effect, will be as follows:

Cost = [IA(1A2,RI) + IS(IAl,Rl)
+ {(J1 x b(1/FBi,FBi, X nR2,FB2 X NR2)

/(1/FB1)) X FA2 X nRl}]
+ [IA(1B2,R2) + IS(IB1,R2)

+ b(mR2, PR2, {(J2 X FA2) X FB2 x nR2})]X
Here J1 and J2 represent the join selectivity of relations R1 and
R2, respectively, for the join path considered. Expressions in
the braces represent the numbers of data tuples accessed
in relations RI and R2, respectively. In the first part of the
formula, the expression in the braces simultaneously repre-
sents the number of blocks accessed in relation R1. This
follows the argument shown in Example 2.

FBI is the selectivity of column R2.B1 and 1/FBI represents
the number of groups of tuples that have the same join column
values in relation R2, which is essentially the same as the
number of distinct join column values.
The expression b(l/FBl, FBI X nR2,FB2 X nR2) represents

the number of groups selected by restriction FB2. Although
the b function estimates the number of block accesses
in which a certain number of tuples are randomly selected,
the same function is used for estimating the number of
logical groups selected, if the latter are assumed to be of
uniform size. Note that the clustering or nonclustering
of tuples in a group is irrelevant. FBI X nR2, the number of
tuples in one logical group, plays a role similar to that of the
blocking factor.
The expression b(1/FBI,FBI x nR2,FB2 x nR2)/(/IFBI)

represents the ratio of the number of groups selected by
restriction FB2 to the total number of groups in relation R2.
Since every tuple participating in the unconditional join in R1
has a unique join column value and, accordingly, exactly one
corresponding group in R2 (let us recall thatR1 is on the 1-side
of the 1-to-N relationship), this ratio correctly represents a
special restriction upon R1 caused by the coupling effect
originating in R2.
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In the second part of the cost formula, we simply use FA2
to represent the coupling effect directed from R1 to R2. Since
in RI every tuple has a unique join column value, if a tuple is
selected according to the restriction, the corresponding group
in R2 that has the same join column value (if it exists) will be
selected on the basis of this special restriction resulting from
the coupling effect. Hence, FA2 represents the ratio of the
number of groups selected as a consequence of the coupling
effect to the total number of groups in R2 participating in the
unconditional join. That ratio, in turn, has the same value as
the ratio of tuples, selected according to the coupling effect,
to the total number of tuples participating in the uncon-
ditional join in R2
The coupling effect is formally defined as follows.
Definition 2: The coupling effect from relation R1 to re-

lation R2, with respect to a type of query, is the ratio of the
number of distinct join column values of the records of R1,
selected according to the restriction predicate for R1, to the
total number of distinct join column values in R1. U

If we assume that the join column values are randomly
selected, the coupling effect from R1 to R2 is the same as the
ratio of the number of distinct join column values of R2
selected by the effect of the restriction predicate for R1 to the
number of distinct join column values in R2 participating in
the unconditional join.

Definition 3: A coupling factor Cfi2 from relation R1 to
relation R2, with respect to a type of query, is the ratio of the
number of distinct join column values of R2, selected by both
the coupling effect from R1 (through the restriction predicate
for R1) and the join selectivity of R2, to the total number of
distinct join column values in R2. U

According to the definition, a coupling factor can be ob-
tained by multiplying the coupling effect from R1 to R2 by the
join selectivity of R2. 'This coupling factor contains all the
consequences of the interactions of relations in the join
operation since it includes both coupling and joining filtering
effects. Let us note that, although the coupling factor can be
obtained in any case, it does not always contribute to the
reduction of the tuples to be retrieved. We will see an ex-
ample of this in Case 2, below. A coupling factor is said to
be effective if the coupling effect actually contributes to the
reduction of the tuples to be retrieved. In Case 1, the expres-
sions in angle brackets represent the coupling factors from
R2 to R1 and from R1 to R2, respectively, for the type of
query considered. By definition, different queries are' of the
same type if they are identical e'xcept for their literal values.
The same applies to update transactions. For example,
INSERT INTO RI(a, b) is of the same type as INSERT
INTO R1(c, d). Hence,

Cf12 = J2 X FA2,
Cf2i J1 X b(1/FB1, FBI X nR2, FB2 X nR2)A(1/FB1)

One important observation here is that the coupling factors
do not depend on the specific access structures present in
either relation, nor on the specific join method selected, but
rather (and solely) depend on the restriction and the data
characteristics. Such characteristics include the side the re-
lation is on in the 1-to-N relationship, the average number of

tuples in one group, and the join selectivity, which will be
known before we start the design phase.

Note that the coupling factors differ according to the spe-
cific type of query being considered. Different types of que-
ries have different join paths and different combinations of
columns in the restriction predicate, with consequently dif-
ferent selectivities for the calculation of coupling factors.
Now let us investigate the remaining cases in which cou-

pling effects are present between relations.
Case 2: The sort-merge join'method is applied to both

relations, in the same situation as in Fig. 5. The cost formula
is then as follows:

Cost = [IA(1A2, RI) + FA2 X mRI
+ SORT(FA2 X HRI X mRl)]

+ [IA(IB2,R2) + b(mR2,PR2,FB2 X nR2)
+ SORT(FB2 X HR2 X mR2)]

It will be noted that the coupling factors do not appear in
the cost formula. This is because when the sort-merge join
method is used, an initial scan and the sort are performed
before the join is resolved; indexes are not used any more
while the join is being actually resolved since the relation
scan is performed upon the sorted temporary relations. The
coupling effect can arise only when the join is being actually
resolved and only when the join index is used. Thus, the
coupling factor is not effective in this case.

Case 3: The sort-merge join method is used for R1, the
join index method for R2, in the same situation as in Fig. 5.
The join will be performed as described in Section JII, under
the heading "Combi-nation of the Join Index Method
and Sort-Merge Method." Note that the coupling factor is
effective from R1 to R2. Thus, we obtain the following cost
formula:

Cost = [IA(IA2,RI) + FA2 X MRI
+ SORT(FA2 X HRI X mRl)]

+ [IA(IB2,R2) + IS(IB, R2)
+ b(mR2,PR2, Cf12 X FB2 X nR2)].

Case 4: The join index method is used on R1, the
sort-merge method on R2, in the same situation as in Fig. 5.
We obtain the following cost formula:

Cost = [IA(IA2,RI) + IS(IAl,Rl) + Cf21 X FA2 x nRl]
+ [IA(1B2, R2) + b(mR2,PR2, FB2 X nR2)
+ SORT(FB2 X HR2 X mR2)].

C. Cases When Restriction Indexes are Absent
on One Relation

All four cases that have been discussed so far assume the
same situation as in Example 2, except for inclusion of the
coupling effect. We still have to consider more general cases
in which restriction indexes are absent for the columns speci-
fied in the predicate of the query for one relation. The case
in which the restriction indexes are absent in both relations
will be treated in Section V-D. For clarity of presentation, let
us define a shorthand notation for the cost formula.
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Definition 4: Cost(Rk, Cfjk, type-of-join) is the cost of a
join operation associated with relation Rk when Rk has a cou-
pling factor Cfjk from Rj to Rk, with respect to the query of
interest, and the type-of-join is the join method used between
Rkand Rj. U

Although costs differ for different access configurations,
this shorthand notation for the cost function does not show
that difference explicitly because it is irrelevant to our sub-
sequent discussions. Using this definition, cost formulas for
the previous cases can be restated as

Case 1: Cost(RI, Cf21, Join-index)
+ Cost(R2, Cfi2, Join-index)

Case 2: Cost(RI, Cf2j, Sort-merge)
+ Cost(R2, Cfi2, Sort-merge)

Case 3: Cost(RI, Cf21, Sort-merge)
+ Cost(R2, Cfi2, Join-index)

Case 4: Cost(RI, Cf2j, Join-index)

(5)

(6)

+ Cost(R2, Cf12, Sort-merge). (8)

If there is no coupling effect between the two relations, as

in the case of a query that does not impose a restriction on a

relation, say R2, then the coupling factor Cf21 simply becomes
the join selectivity J1 if the join index method is used for RI.
The cost, in this case, will be Cost(R1, JI, type-of-join).
When the sort-merge join method is used for relation Rk the
cost becomes Cost(Rk, 1, sort-merge). But it is identical to
Cost(Rk,,Cfjk, sort-merge) because, as we observed in
Case 2, the coupling factor is not used in the cost formula.
According to the same argument, we conclude that the cost
of the sort-merge join method can always be written as

Cost(Rk, Cfjk, sort-merge).
Case 1-A: Let us assume that the join index method is

used for both R1 and R2, in the same situation as in Fig. 5,
except that the restriction index for column R1 .A2 is missing.
The join will be performed as follows. First the TID set R' of
the tuples that satisfy the restriction on R2 is obtained by using
the restriction on column R2.B2. TID pairs that have the same
join column values are found by scanning the join column
indexes according to the order of join column values. As it is
found, each TID pair (TIDI, TID2) is checked to see if TID2
is present in R'. If it is, the corresponding tuple in relation RI
is retrieved. If this tuple satisfies the restriction upon RI, the
corresponding tuple in R2 is also retrieved and concatenated,
and the result is projected. Note that the coupling factors are
effective in both directions. Thus, the cost of evaluating the
query will be

Cost = [IS(IAl, RI) + Cf21 x nRll

+ [IA(IB2,R2) + IS(IB1,R2)

b(mR2,PR2, Cf12 FB2 nR2)]

Cost(RI, Cf2l, join-index)

+ Cost(R2, Cf12, join-index) .

Note that since the restriction index on column R1.A2 is

missing, the first part of the cost formula is different from
that of Case 1, but the coupling factors remain the same.
The case in which R2.B2 is absent instead of R1.A2 is treated
similarly and will result in the same formula in the short-
hand notation.

Case 2-A: The sort-merge method is used for both R1 and
R2 in the same situation as in Fig. 5, except that the re-
striction index on the column R1.A2 is missing. The cost
formula becomes

Cost = [mRI + SORT(FA2 x HRI X mRI)]
+ [IA(IB2,R2) + b(mR2,PR2,FB2 X nR2)
+ SORT(FB2 X HR2 X mR2)]

= Cost(R1, Cf2i, sort-merge)
+ Cost(R2, Cf12, sort-merge) .

The case in which the index on R2.B2 is missing (rather than
R1.A2) is treated similarly and will result in the same formula
in the shorthand notation.

Cases 3-A and 4-A: The sort-merge method is used for R1
and the join index method for R2, in the same situation as in
Fig. 5, except that the restriction index for the column R2.B2
is missing. In this case, the join is performed as in Case 3.
The only difference is that since indexes are now absent for
the restriction columns of R2, the restriction predicate for R2
can be resolved only after the tuples are retrieved. The cost
of evaluating the query becomes

Cost = [IA(IA2,RI) + FA2 X MRI
+ Sort(FA2 X HRI X mRI)1
+ [IS(IA1,Rl) + b(mR2,pR2, Cf21 x nR2)]

= Cost(R1, Cf21, sort-merge)
+ Cost(R2, Cf12, join-index).

In the case in which RI.A2 is missing (rather than R2.B2), it
will change the first part of the cost formula we obtained in
Case 3, but will result in the same shorthand form. The case
in which the join index method is used on R1 and the
sort-merge method on R2, as in Case 4, is treated similarly.

D. Formalization

In all the cost formulas so far, the coupling factors have
been used in both directions, i.e., both bracketed expressions
in a formula were of the form Cost(Rk, Cfjk, type-of-join). We
shall call the form of these formulas symmetric.

Join costs can be written in this form only when the cou-
pling factors are known to be effective for the join method
used (as when the join index method was used in the previous
cases), or when the cost can be determined regardless of the
coupling factors (as when the sort-merge method is used).
The reason is that the only ambiguity in determining the cost
of a join is whether or not the coupling factor will be included
in the calculation since all other information needed is local
and is not affected by interaction with other relations. If we
know at design phase that coupling factors are effective or
that the cost is independent of the coupling factor, we can
determine at design phase the costs of various possible joins
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on each relation and, using only local information and the
coupling factors without ambiguity, accordingly determine
the best join method and its cost. There are, however, some
cases in which we cannot determine whether the coupling
factors are effective at design phase. These will be introduced
in Example 4.

If the best join method can be determined with only the
local information (the access configuration of the relation and
the type of join method used) and coupling factors, without
any regard to other relations, the clear implication is that we
can design an optimal access configuration of a relation by
using only local information and the coupling factors inde-
pendently of the other relations. The design could be per-
formed by the following procedure:

1) consider each possible access configuration of a relation
in turn

2) find the best join method and its cost for the particular
configuration

3) repeat this procedure for other access configurations
4) find the one that gives the minimum join cost.
The only nonlocal information used here is furnished by

coupling factors. Lumped within them are all the interactions
from other relations. We have already observed that the
coupling factors do not depend on access configurations of
the other relations, nor do they depend on the join methods
chosen; they depend exclusively on the properties of given
queries and the data characteristics of the relation. Further-
more, these properties can be determined before we start
designing any access configuration in the database.
We conclude here that we can design the access configu-

ration of the entire database optimally by designing the
optimal access configurations of individual relations one by
one, regardless of the remaining relations, when all the infor-
mation needed is known at design time. The optimal configu-
rations of individual relations will collectively comprise the
globally optimal configuration.
To formalize the foregoing observation, we need the fol-

lowing definitions and theorems.
Definition 5: A partial-join cost is that part of the join cost

that represents the accessing of only one relation, as well as
the auxiliary access structures defined for that relation. U

In the examples above, each expression in square brackets
represents a partial-join cost.

Definition 6: A partial-join algorithm is a conceptual di-
vision of the algorithm of a join method whose processing
cost is a partial-join cost. U

Definition 7: A join method is symmetric under certain
constraints if, under these constraints, both partial-join costs
can be determined with only local information of the perti-
nent relation and the coupling factor,; regardless of the
partial-join algorithm used and the access configuration de-
fined for the relation on the other side of the join. U

Definition 8: A set of join methods is separable under
certain constraints, if under these constraints

oany partial-join algorithm of a join method in the set
can be combined with any partial-join algorilthm of any join

method in the set, and
* any combination of partial-join algorithms of the join

methods in the set produces a symmetric join method. 0

From the discussion at the beginning of Section V-D, we
have the following lemma.
Lemma 1: A join method is symmetric if and only if its

cost has a symmetric form. U
Theorem 2: The problem of designing the optimal access

configuration of a database can be decomposed into the tasks
of designing the optimal access configurations of individual
relations independent of one another if the set ofjoin methods
used by the optimizer is separable with respect to the con-
straints imposed upon the database system.

Proof: Since the set of join algorithms used is sepa-
rable, we can choose an arbitrary combination of partial-join
algorithms within the set. Thus, we can choose any partial-
join algorithm to be used for one relation without regard to
the partial-join algorithm used for the other relation. Further-
more, since a join method consisting of any combination of
partial-join algorithmns is symmetric, the partial-join cost of
a partial-join algorithm can be evaluated independently of the
partial-join algorithm used and the access configuration de-
fined on the other side of the join. As a result, the specific
access methods assigned to and the partial-join algorithm
used for one relation cannot affect any design parameters for
the other relations. It is therefore guaranteed that there will
be no interference among the designs of individual relations.

Q.E.D.
Theorem 2 is a generalization of the observation made

from Example 2, except that it now includes the coupling
effects between relations.
Theorem 3: The set of join algorithms consisting of the

join index method and the sort-merge method is separable
under the constraint that every column in every relation in the
database must have an index defined for it.

Proof: Part 1 of Definition 8 is obvious from previous
examples and cases. When the join index method is used for
both relations, all predicates are index processible since ev-
ery column has an index. Hence, all predicates are resolved
with TID's before the relations themselves are accessed; cou-
pling factors are effective in both directions; and the cost
formula has symmetric forms. When the sort-tnerge method
is used for one relation and the join index method for the
other, then, by the same reasoning as in Case 3, the cost
formula has symmetric forms. If only the sort-merge method
is used, the cost formula is always symmetric. Therefore,
from Lemma 1, the theorem holds. Q.E. D.

Only symmetric joins have been used in the example and
cases presented so far. There are, however, instances of non-
symmetric joins.
Example 4: Let us assunme that the join index method is

used for both Ri and R2, in the same situation as in Fig. 5, but
that now restriction indexes for both R1 and R2 are missing.
In this situation, since there are no restriction indexes, there
is no way of resolving the restriction predicate without
accessing the tuples themselves. Therefore, if we access
relation R1 first, the access cost would be
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Costl = [IS(IAl, RI) + J1 x nRf]
+ [IS(II5R2) + b(mR2, pR2, Cfi2 X nA)]

= Cost(R1, J1 ,join-index)
+ Cost(R2, Cf12, join-index).

On the other hand, if we access relation R2 first, the access cost
would then be

Cost2 = [IS(IAJ,RI) + Cf21 x nRl]
+ [IS(IB1,R2) + b(mR2,PR2, J2 X nR2)]

= Cost(R1, Cf2l, join-index)
+ Cost(R2, J2, join-index).

Therefore, we have two expressions each for the partial-
join cost of each relation and we cannot determine at the
design stage which of them is cheaper. Hence, this join
method is not symmetric. The coupling factor is ineffective
in one direction in each formula since the join selectivity is
used in its place. The cost formula is now also asymmetric
relative to the coupling factors. *
We can still determine which of the two expressions is

cheaper at query processing time, but we do not have this
knowledge when the physical database is being designed. If
we want to ascertain the cheaper expression at design time,
we have to analyze simultaneously the relation on the other
side of the join, but this violates the definition of symmetry.
The design of access configuration for one relation is no
longer independent of the other relations. The theory
presented in this paper depends entirely on the property of
separability, which in turn depends on that of symmetry. The
situation depicted in Example 4 is an apparent exception to
our theory. However, in our discussion of the index selection
problem in Section VI, the justification on the validity of our
approach will be amply reinforced.
Theorem 4: The set of join methods consisting of the join

index method and the sort-merge method is separable under
the constraint that whenever the join index method is used for
both relations, at least one relation must have indexes for all
restriction columns.

Proof: When both relations have indexes on all re-
striction columns, this theorem reduces to Theorem 3. As
before when the sort-merge method is used for both re-
lations, the cost formulas are always symmetric. When the
join index method is used for one relation and the sort-merge
method for the other, then, by a reasoning similar to
Case 3-A, we obtain symmetric cost formulas. If only the
join index method is used and one of the relations, say R1, has
incomplete restriction indexes, the join is performed as in
Case I-A except that the restriction on R1 is now partially
resolved by using TID's before accessing the tuples in R1. We
thus get symmetric cost formulas. By Lemma 1, we prove
this theorem. Q.E.D.

E. Update Cost

We assumed in Section III-B that the updates are per-

fication part (WHERE clause) may involve more than one

relation. Imagine that the qualification part, which can be
treated as a query, is segregated. Then, the remaining part
(update operation) depends only on the local parameters of
the relation to be updated and on the coupling factor because
the update operation should only occur after all the predicates
are resolved. When processing the qualification part, there
are some restrictions as explained in Section III-B. The re-

striction, however, is independent of the access structures or

partial-join algorithms of other relations. Thus, separability
can also be applied to the update transactions as well.

VI. DESIGN ALGORITHM

In this section, an algorithm for the design of optimal
access configuration of the database will be presented.

A. Design Step I

Based mainly on the result of Theorems 2 and 3, the first
step of our algorithm is as follows.

Inputs:
* Usage information: A set of various types of queries and

update transactions with their respective frequencies.
* Data characteristics (for every relation in the database):

Size, blocking factor, selectivities of all columns, re-

lationships with other relations with respect to join paths,
join selectivity with respect to join paths.

Outputs:
* Optimal position of the clustering column for each

relation.
* Optimal combination of partial-joins for each type of

two-variable query.
Condition Assumed:
* Every column of each relation in the database has an

index defined for it. Some of these indexes will be dropped
in the subsequent index selection step.

Algorithm 1:
1) Segregate the usage information in such a way that

if-there is a subquery involving more than one relation in the
qualification part of an update transaction, it is separated and
its frequency is included with that of the same type of query.
Thereupon, all the remaining parts of the update transactions
will refer to only one relation.

2) Calculate the coupling factors with respect to individ-
ual two-variable queries for every relation in the database
using the given data characteristics.

3) Pick one relation and determine the optimal position of
the clustering column as follows:

a) Assign the clustering property to one column of
the relation.

b) Given that position of the clustering column, iden-
tify the best partial-join algorithm and calculate its partial-
join cost for every two-variable query that refers to this
relation, using the given data characteristics and the
coupling factors.

formed only on individual relations, although the quali-
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step b), calculate the total cost associated with this relation.
This is done by summing up all the partial-join costs identi-
fied in step b), multiplied by their respective frequencies,
and all costs incurred by one-variable queries and update
transactions acting upon this relation.

d) Shift the clustering property to another column of
the relation and repeat steps b) and c).

e) Repeat step d) until all the columns of the relation
have been considered. The case in which there is no clus-
tering column is also considered. Then determine the one that
gives the minimal cost as the clustering column (or none).

4) Step 3) is repeated for every relation in the data-
base. The aggregate of results for all relations comprises the
global optimum.
A join path can often have a multiple column as the join

column on either relation. In such cases, we consider the
multiple join column as a single effective column, indepen-
dent of its component columns. Therefore, according to the
condition in the above algorithm, this effective column is
considered to have a multiple-column index defined for it
(we do not consider here additional problems involved in the
handling of multiple-column indexes).

Although in some cases improvement can be obtained by
an adjustment in ordering among the effective column's com-
ponent columns and by the deletion of overlapping indexes,
this is not being considered here. It will be noted that, under
the assumptions given, the Design Step 1 algorithm yields a
mathematically true optimum.

B. Design Step 2-Index Selection

In the algorithm for Design Step 1, we imposed the re-
striction that every column of the relations in the database
must have an index defined for it. However, not every index
is beneficial. Some indexes can increase the total access cost
because of their own access and update costs.
The index selection problem has been extensively studied

by [9], [11], [29]-[3 1]. It concerns the method of selecting a
set of indexes that will minimize the processing cost in a
single-relation environment. The index selection algorithm
presented here bears some resemblance to the one introduced
by Hammer and Chan [9], but it uses the DROP heuristic [32]
instead of the ADD heuristic [33]. The DROP heuristic attempts
to obtain an optimal solution by incrementally dropping in-
dexes starting with a full index set. On the other hand, the
ADD heuristic adds indexes incrementally starting from an
initial configuration without any index to reach an optimal
solution. An extensive test performed for the validation of
index selection heuristics shows that the DROP heuristic per-
forms better than the ADD heuristic [17]. In all the cases
tested, the DROP heuristic found optimal solutions. In com-
parison, the ADD heuristic produced nonoptimal solutions in
about one quarter of those cases. One possible reason the ADD
heuristic does not perform well is the following. In the ADD
heuristic, when the first index is added, the cost changes
drastically effecting an abrupt change in the design process.
In the DROP heuristic, however, the dropping of indexes in-
duces a smooth transition in the design process; the reason for

this is that, with the other indexes present that compensate for
one another, the dropping of an index has a relatively small
effect on cost.

Following is the algorithm for Design Step 2. This algo-
rithm is mainly based on the above discussion, and on Theo-
rems 2 and 4.

Inputs:
* Outputs from Design Step 1: Optimal position of the

clustering column for each relation and optimal combination
of partial-joins for each type of two-variable query.

* Set of types of one-variable queries and update trans-
actions of interest with their respective frequencies. Here
each type of one-variable query represents any Boolean com-
bination of simple predicates. A simple predicate is one that
refers to only one column of the relation.

* Data characteristics similar to the ones used in Design
Step 1, but only those parameters that pertain to single re-
lations are relevant.

Outputs:
* Set of indexes of each relation that gives the minimum

processing time.
Algorithm 2:
1) Select one relation and start with an access configu-

ration with the full index set.
2) Try to drop one index at a time, get the total cost,

and find the index that yields the maximum cost benefit
when dropped.

3) Drop that index.
4) Repeat-steps 2) and 3) until there is no further reduction

of the cost.
5) Try to drop two indexes at a time, get the total cost,

and find the index pair that yields the maximum cost benefit
when dropped.

6) Drop that pair.
7) Repeat steps 5) and 6) until there is no further reduction

of the cost.
8) Repeat steps 5), 6), and 7) with three indexes, four

indexes, * * *, up to k indexes at a time. (The variable k must
be provided beforehand and can be adjusted to obtain a
desired accuracy.)

C. Separability in Design Step 2

The implicit meaning of the index selection is that those
indexes that do not compensate for their own maintenance
and access cost should be dropped. In Design Step 2 we again
considered relations singly and independently of one another.
This was based on the separability theory of Theorem 2, i.e.,
that the access structures assigned to one relation do not
affect cost calculations for other relations. However, since,
in contrast to Design Step 1, we are eliminating some in-
dexes, we can encounter situations that were excluded as
exceptions in Example 4 and Theorem 4. In these situations,
calculation of cost is no longer separable. Nevertheless, it
turns out the calculation error caused by the assumption
of separability, even in these exceptional situations, is not
significant.

If we look at Example 4 again, the actual cost at query
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processing time will be

Cost = min(Costl, Cost2)
= min[{Cost(R, J1, join-index)

+ Cost(R2, Cf12, join-index)},

{Cost(RI, Cf21, join-index)
+ Cost(R2, J2, join-index)}].

But because we assumed symmetry, the sum of the costs we
used implicitly in Design Step 2 is

Cost' = Cost(RI, Cfi2, join-index)
+ Cost(R2, Cf2i, join-index) .

Thus, the total error in cost estimation will be

Error= g x (Cost - Cost')
- g x min[{Cost(R1,J1,join-index)

-Cost(R1, Cf2l, join-index)}
{Cost(R2, J2, join-index)
-Cost(R2, Cf12,join-index)}] (9)

where g is the frequency of this join.
Remember, however, that the restriction indexes for both

relations had been dropped because their benefits did not
compensate for their update and access cost. Hence, it must
be either that the frequency of access to the column is not
significant, or that the effect of selectivity is small. There-
fore, either the frequency of the join we are concerned with
is insignificant or the coupling factor approaches the join
selectivity, making the error insignificant [see (9)]. It is true
that because of an unusually high update cost, an index can
be dropped despite that the column has an effective selec-
tivity, or the frequency of access to the column is high. We
believe, however, that this situation does not frequently oc-
cur on both sides of a join in practice, and that the effect of
this peculiarity to the overall design may not be significant.
This argument has been supported in part by an extensive test
performed for the validation of design algorithms based on
the theory [ 17]. Following this argument, we claim that sepa-
rability can be applied to all the cases of concern without
causing any significant error. Similar situations arise when,
on both relations, only some of the restriction columns speci-
fied in a query have indexes assigned, while others do not. A
similar argument holds for such cases.

VII. EXTENSIONS AND FURTHER STUDY

An extension of nonseparable joins, for instance, the
inner/outer-loop join method and the multiple-pass method
described in Section III, could be made by means of the
following heuristic method. After Design Step 1, each type
of two-variable query is considered in turn and its join cost,
as determined in Design Step 1, is compared to possible
nonseparable joins. If a nonseparable join is cheaper, that
query type should be marked to note that this nonseparable
join must be used. For a possible shift of the clustering col-
umn, after completion of this step, Design Step 1 should be

repeated, with the join method for a marked query type fixed
to be the nonseparable join method assigned previously. This
whole procedure (Design Step 1 and the refinement step with
nonseparable join methods) is repeated until the refinement
becomes insignificant.
The link structure [4] can be considered next. For every

join path, the total cost of all queries using this join path is
compared to the cost based on a hypothetical link. If the latter
is less, a link is assigned to that join path. If the join column
on the N-side relation of the 1-to-N relationship is a clustering
column, the link is endowed with the clustering property;
otherwise not.
The most attractive prospects for the inner/outer-loop join

methods are those queries that use the sort-merge method for
the relation on the 1-side of the 1-to-N relationship, but use
the join index method for the other side. Use of the
inner/outer loop join method in these cases has the advantage
of saving sorting time on one relation and index-searching
time on the other (if it has a strong coupling factor). On the
other hand, join paths that support many queries using the
inner/outer-loop join method would be the most promising
prospects for the link structure. Index selection could be done
at the conclusion of these steps.

Finally, although we have developed our theory in terms of
the relational system, it should be pointed out that the basic
concept of separability is applicable to network database sys-
tems as well (Theorem 2 holds for any system, while
Theorems 3 and 4 are relevant only for relational systems).

VIII. CONCLUSION

It has been observed and proven that with a separable set of
join methods, the problem of designing the optimal physi-
cal database can be reduced to one of designing optimal
individual relations. This can be done independently of one
another by using the coupling factors that represent all inter-
actions among the relations. This substantially diminishes
the complexity of the problem by partitioning it into disjoint
subproblems. The task is made even more manageable by
dividing the procedure into two steps -one for determining
the optimal positions of clustering columns, the other for
index selection. A proper interface between the two steps
was introduced.

Design Step 1 results in a true mathematical optimum.
Although because of the heuristics used in Design Step 2 and
for the interface between the two steps the overall design does
not provide a true optimum, it was argued that the deviation
would be insignificant.
The key objective of this paper is to propose a formal

approach to the design of physical databases that simplifies
the problem considerably, and at the same time provides
better insight into underlying mechanisms. We believe that
this novel approach can enable substantial progress to be
made in the optimal design of multifile physical databases.
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