Index Selection in Relational Databases

Kyu-Young Whang

IBM T.J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598

ABSTRACT: An index selection algorithm for relational data-
bases is presented. The problem concerns finding an optimal
set of indexes that minimizes the average cost of processing
transactions.

I/O accesses.

This cost is measured in terms of the number of

The algorithm presented employs a heuwuristic
approach called DROP heuristic. In an extensive test to deler-
mine the ﬂptimﬂlilﬁJf the algorithm, it found optimal solutions
in all cases. The time complexity of the algorithm shows a
substantial improvement when compared with the approach of
This
algorithm is further extended to incorporate the clustering
property (the relation is stored in a sorted order) and also is
extended for application to multiple-file databases.

exbaustively searching through all possible alternatives.

1. Introduction

We consider the problem of selecting a set of indexes that
minimizes the transaction-processing cost in relational databas-

es. The cost of a !

transaction 1s measured in terms of the

number of 1/0O accesses.

The index selection problem has been studied extensively
by many researchers. A pioneering work based on a simple
cost model appeared in [1]. A more detailed model incorporat-
Ing index storage cost as well as retrieval and index mainte-

nance cost was developed in [2]. Some approaches [3], [4]

attempted to formalize the problem to obtain analytic results in
certain restricted cases. In a more theoretical approach, Comer
[5] proved that a simplified version of the index selection prob-
lem is NP-complete. Thus, the best existina algorithm for
-finding an optimal solution would have an exponential time
complexity. In an effort to devise a more efficient algorithm,
Schkolnick [6] discovered that, if the cost function satisfies a
property called regularity, the complexity of the optimal index-

selection algorithm can be reduced to one that is less than

t The term rransaction used here should not be confused with
the atomic transaction as a unit of consistency and recovery.
Here, it is used as a generic term for both queries and up-
date activities against the database.

exponential. Hammer and Chan [7] took a somewhat different
approach and developed a heuristic algorithm that drastically
reduced the time complexity. However, no attempt has yet

been made to establish the validity of this algorithm.

Although considerable effort has been devoted to develop-
ing algorithms for index selection, most past research has con-
centrated on single-file cases. Furthermore, the problem of
how to incorporate the primary structure (Lhe clustering proper-
ty) of a file is still awaiting a solution. The purpose of this
paper is to introduce an index selection algorithm with a rea-
sonable efficiency and accuracy, which is subsequently extend-
ed to include multiple-file cases as well as 1o incorporate the
clustering property.

The approach presented in this paper bears some resem-
blance to the one introduced by Hammer and Chan [7]; but
there is one major modification: the DROP heuristic [8] is
employed instead of the ADD heuristic [9]. The DROP heuris-
tic attempts to obtain an optimal solution by dropping indexes
incrementally, starting from a full index set. On the other
hand, the ADD heuristic adds indexes incrementally, starting
from an initial configuration without any index, to reach an

optimal solution.

Since we are pursuing a heuristic approach for index selec-
tion, the actual result is slubnplinml. However, in an extensive
test performed for validation, the DROP heuristic found opti-
(On the other hand, the ADD heuris-
tic found suboptimal solutions on several occasions.)

mal solutions in all cases.

In determining optimality, we consider only the cost of
accessing and maintaining the database and iIndexes; i.e., the
cost of storing indexes in the storage medium is not considered.
If desired, however, the index storage cost can be incorporated
by making it part of the index maintenance cost (or, equivalent-
ly, the two costs can be combined to constitute the overhead
cost as defined in [2]), so that it can fit in the framework of the
algorithms to be presented. Thus, the general validity of our

approach should remain intact.

Proceedings of the International Conference

May 21-24, 1985, Kyoto, Japan
on Foundations of Data Organization

369

We first present the index selection algorithm for single-
file databases without the clustering property. This algorithm is
tested for validation with 24 randomly penerated input silua-
tions, and the result compared with the optimal solutions gener-
ated by searching exbhaustively through all possible index sets.
The algorithm is then extended to incorporate the clustering
property.
quently.

Extension to multiple-file cuses is considered subse-

Section 2 introduces assumptions regarding the cost model
and a simple index structure, while Section 3 describes the
classes of transactions we consider and their cost formulas.
Next, in Section 4, we present the index selection algorithm and
its time complexity. In Section 5, we discuss the result of the
test performed for the validation of the algorithm. Extension of
the algorithm to incorporate the clustering property is the prin-
cipal topic of Section 6. Finally, in Section 7, we discuss an
extension of the algorithm for application to multiple-file data-

bases.

2. Assumptions

We assume that the relation is stored in a secondary stor-
age medium, which is divided into fixed-size units called blocks
[10].
single file, an attribute to a column, and a tuple to a record.

For simplicity, we assume that a relation is mapped into a

Accordingly, we shall use the terms file and relarion inter-
changeably.

In processing a transaction the number of I/O accesses
necessary to bring the blocks into the main memory depends on
the specific buffer strategy. We assume, however, the following
simple strategy: no block access will be necessary if the next
tuple (or index entry) to be accessed resides the the same block
as that of the current tuple (or index entry); otherwise, a new
block access is necessary. We also assume that all TID (tuple
identifier) manipulations can be performed in the main memory
without any need for 1/0 accesses.

We consider only conjunctive predicates consisting of
simple equality predicates (e.2., Column A = 'a'). The selectiv-
ity of each simple predicate is estimated as the inverse of the
corresponding column cardinality (the number of unique values
in a column). If a predicate is a conjunction of simple predi-
cates, 1ts selectivily 1s obtained by multiplying the individual
selectivilies of those simple predicates. More general predicates
can be incorporated if a more elaborate scheme for estimating

selectivity [11] is employed.

We assume that a BT -tree index [12] can be defined for a

column of a relation. The leaf level of the index consists of

370

key-TID pairs for every tuple in that relation and the leaf-leve]
blocks are chained so that the index can be scanned withoy
traversing the index tree. Entnies having the same key valye
are ordered by TID. When index entries are inserted or delet-
ed, we assume that splits or concatenations of index blocks are
rather infrequent, so that modifications are done mainly op

leaf-level blocks.

A simple model of the storage structure has been chosen
Although
detailed models must be dependent on different implementa-
tions, we believe it is unlikely that the validity of the aleorithms

for the purpose of illustration and implementation.

to be presented is influenced by these variations. In support of
this argument, the validity of the DROP heuristic (in a form
slightly different than presented here) has been well established
in reference [8] in relation with the Warehouse Location Prob-
lem which involves a significantly different cost model.

3. Transaction Model

We consider four types of transactions: query, update,

deletion, and insertion. The classes subsumed under these

types are shown in Figures 1 1o 4.

SELECT <«list of columns>
FROM R
WHERE P

Iigure 1. General class of queries considered.

UPDATE R
SET R.A = < new value , >,
SET R.B = < new valuey >,
WHERE P

Ficure 2. General class of update transactions considered.

DELETE R
WHERE P

Figure 3. General class of deletion transactions considered.

INSERT INTO R: <list of column values>

Figure 4.General class of insertion transactions considered.

In figures 1 to 4, "P" stands for the restriction predicate
that selects the relevant tuples. We call the columns appearing
in P restriction columns.

Cost formulas for those transactions are now introduced in
the form of functions. In calculating the cost of a query we do
not include the cost of writing the result, since that cost is
independent of the index set and accordingly irrelevant for
optimization purposes. We also assume that, in resolving predi-
cates, all the available indexes are utilized even if some of them
might increase the processing cost because of their own access

cosl.

We define the following notation:

A column.
n Number of tuples 1in the relation
(cardinality).
P Blocking factor of the relation.
L. Blocking factor of the index for column C.
Fe Selectivity of Column C or of its index.
m Number of blocks in the relation, which is

equal to n/p.
t A transaction
Restricted Set Set of tuples that satisfy all the restriction
predicates. Equivalent to

ch I Fg)xn

all restriction columns}

Partially Restricted Set
Set of tuples that satisfy the restriction
predicates that can be resolved via indexes.

Equivalent to Nl F.)xn
Ce {all restriction columns having indexcs}

e [unction b(m,p,k): cost of accessing k randomly selected
tuples in TID order

n—p n
b(m,pk) =m| 1- () /’() (1)
k k

=m[1= ((n—p)l{n—k))/((n—p—k)n})]

k
=m[1-—_ﬂ1[n—p-i+ D/ (n—i+ 1)]

when k<n-p, and
b(m.p,k) =m

when k>n —p.

The function is approximately linear when k<<n and

approaches m as k becomes large. Equation 1 is an exact for-
mula derived by Yao {13]. Variations of this function and
approximation formulas for faster evaluation are summarized in

[14].

e function JA(C,mode): cost of accessing a Bt -tree index
from the root

A. mode = Query mode
IA=T log Lcn'l + (I Fexn/Le1-1) (2)

B. mode = Insertion mode
IA=1T log LcIﬂ

C. mode = Update mode
IA =T log LC“1 + (I 0.5xF-xn/Ls1-1)

The function IA has three modes, depending on the pur-
pose of accessing the index. In query mode, all the index en-
tries with the same key value are retrieved. The first term in
Equation 2 is the height of the index tree, while the second is
the number of leaf-level index blocks accessed. One block
access 1s subtracted from the second term since the cost of
accessing the first leaf node is already included in the first term.
In msertion mode, an index entry corresponding to the inserted
tuple is placed after the last entry that has the same key value.
Thus, only one leaf-level block will be accessed. This cost,
however, is inciuded in the first term. In update mode, the
index entries containing the old value have to be searched to
find the one with the TID of the updated tuple; thus, on the
average, about half of the index entries will be searched.

e function Query(t): cost of processing a query

Query = b(m,p, | partially restricted set|)
+ 2 JA(C.query mode) (3)
Ce {all restriction columns having indexes)

Queries are processed as follows. Indexes of all restriction
columns are accessed in query mode to obtain the sets of TIDs
that satisfy the corresponding simple restriction predicates. The
intersection of these TID sets is formed subsequently to locate
tuples in the partially restricted set. These tuples are retrieved
and produced as output after the remaining restriction predi-
cates are resolved. The first term in Equation 3 represents the
cost of accessing data tuples, the second the cost of accessing
indexes.

e function Update(l): cost of processing an updale transac-
tion

Update = Query(t) (4)
+ b(m,p, | restricted set])
+ | restricted set| x2
X > [TA(C,update mode) + 1]

Ce{all updated columns having indexes}

The update cost consists of three parts: the first term of
Equation 4 represents the cost of reading in blocks containing
the tuples to be deleted, the second term the cost of writing out
modified blocks, and the third term the cost of updating corre-
sponding indexes. The third term is again divided into two
par®® (he cost of deleting index entries for old values and that
of inserting index entries for pew values. Since these two parts
have the same value, a2 factor of two is introduced. In either
part, one block access is added for each index entry modified to
account for writing out the updated block. Let us note that,
even for insertion of new index entries, the update mode is
specified for function IA because index entries having the same
key value must be ordered according to their TIDs.

e function Delete(t): cost of processing a deletion transaction

Delete = Query(t)

+ b(m,p, | restricted set|)

+ | restricted set|

x Z [IA(C,update mode) + 1]

Ce{all columns having indexes}

The deletion cost is the same as the update cost except
that the third term of the cost function represents the cost of
deleting index entries for all existing indexes.

e function Insert(t,Ntuples inserted): cost of processing an
insertion transaction

Insert = Ntuples__inserted
x(1 + 1
+ 2 [IA(C,insertion mode) + 1])

Ce{all columns having indexes}

372

Three different mechanisms contribute to the insertign
cost: locating the place to insert a new tuple (one I/O access):
writing out the modified block access (ome 1/0 access); and
modifying all existing indexes accordingly. In the third, func.
tion 1A is called in insertion mode since the new index entry js
always added at the end of the list of index entries that haye
the same key value.

4. Index Selection Algorithm (DROP Heuristic)

Input:

< Usage information: A set of various query, update, inser-

tion, and deletion transactions with their relative frequen-
cies.

e Data characteristics: Relation cardinality, blocking factor,
selectivities, and index blocking factors of all columns.

Output:
e A near-optimal index set.

Algorithm 1:
1. Start with a full index set.

2. Try to drop one index at a time and, applying the cost
evaluator, obtain the total transaction-processing cost to
find the index that yields the maximum cost benefit when
dropped.

3. Drop that index.

4. Repeat Steps 2 and 3 until there is no further reduction in
the cost.

5. Try to drop two indexes at a time and, applying the cost
evaluator, obtain the total transaction-processing cost to
find the index pair that yields the maximum cost benefit
when dropped.

6. Drop that pair.

7. Repeat Steps 5 and 6 until there is no further reduction n
the cost.

8. Repeat Steps 5, 6, and 7 with three indexes, four indexes,
..., (up to kK+1 indexes at a time) until there is no further
improvement.

The wvariable k is the maximum number of indexes that
produce incremental cost benefits when dropped together at a
time. (Dropping K+1 indexes at a time provides no improve-
ment; thus, the algorithm will terminate.) We need to consider
dropping more than one index tocether because the presence of
an index may have influence on the benefit of having other

indexes. This interaction occurs when more than one column

appears in the predicate specified in a transaction. For example,
in processing a query having a predicate, (Column A = 'a’
AND Column B = 'b'), the selectivity of either conjunct may
not significantly reduce the number of blocks to be accessed;
nevertheless, the joint selectivity of the two might. Let us note
that this situation can occur because of nonlinearity of function
b(m,p.k), which returns the number of blocks to be accessed to
retrieve a given number of tuples. When this happens, drop-
ping either index alone may cause a heavy penalty m cost be-
cause the other index alone is not very useful, whereas dropping
both together may produce benefit because maintenance costs
of bolh indexes are eliminated for the same amount of loss in

benefit.

Initively, if only one predicate is involved, the set of
indexes that must be considered together are those specified
together in a predicate. In a typical input situation, however,
there are many predicates with different combinations of col-
umns; thus, the presence of an index can affect process of
dropping other indexes indirectly through more than one predi-
cate. For example, suppose an index for Column A has an
influence on an index for Column B via predicate P, while the
index for Column B has an influence on an index for Column C
via predicate P, Then, naturally, the index for Column A has
an influence on the index for Column C indirectly via predi-
cates P, and P,. Thus, in principle, the variable k may have any
value from one to the total number of columns in the relation.
Nevertheless, we believe that, in most practical cases, k=2 is
sufficient to find optimal or near-optimal solutions. In fact, in
all the tests performed to validale the index selection algor-

ithms. the maximum value of k we encountered was 2.

The time complexity of the algorithm is O(ng“l), where
g is the number of transactions specified in the usage informa-
tion, v the number of columns in the relation, and k the maxi-
mum number of columns considered together in the algorithin.
The time complexity is estimated in terms of the number of
calls to the cost evaluator, which is the costliest operation in
the design process. In the algorithm, the cost evaluator is
called for every k-combination of columns of the relation and
for every transaction in the usage information. This contribules
the order of ngk. The procedure is repeated until there is no

Since the number of iterations is
k+1
).

further reduction in the cost.
proportional to v, the overall ime complexity 1s O(gx v

9. Validation of the Algorithm

An important task in developing heuristic algorithms is
their validation. In this section the result of an extensive test
performed to validate the index selection algorithm (DROP
heuristic) will be presented. In particular, we try to measure
the deviations of the heuristic solutions from the optimal ones

for various input situations generated by using different param-

373

eters. (These parameters are chosen from Lhe ranges that are
important in practical applications.) For a relation with many
columns, it is a difficult, often impossible, task to identify the
optimal solution itself. Therefore, the number of columns in a
relation is restricted to ten in the sets. Optimal solutions are
then obtained by searching exhaustively through all possible

: 10 . 5
alternatives (2 combinations).

The input situations are generated as follows:

1) Two sets of the relation cardinality and column

cardinalities are used: in the first set the relation
is 1000; in the second it is 100,000.
The column cardinalities are randomly generated

cardinality

between 1 and the relation cardinality, with a

logarithmically uniform distribution.

2) Two sets of blocking factor and index blocking
1) 10 and 100; 2) 100 and
1000. The index blocking factors are assumed to

factors are used:

be identical for all columns in a particular input
situation.
3) An input situation includes 3() transactions and
their relative frequencies. Among them are 21
queries, 4 0o 5 update transactions, 3 to 4 dele-
and 1 Insertion transaction.

Using this template, three different sets of trans-

tion transactions,

actions are created to provide different mixture
of transactions. For each set, transactions are
randomly generated as follows: for queries and
deletion transactions, 1 to 3 (this number is ran-
domly selected for each transaction) columns are
randomly selected as restriction columns; for up-
date transactions, 1 to 3 (this number is also ran-
domly selected) columns are randomly selecled as
updated columns, and another randomly selected
set of columns as restriction columns.

4) Two sets of relative frequencies are used. In the
first set all transactions initially have identical
frequencies. Later, the frequencies of deletion

and insertion transactions are multiplied by an

adjustment factor to keep the number of indexes
in the result between 3 and 7. This adjustment is
made to avoid extreme cases in which a full index
set or an emply index set is the optimal solution.

For the second, the relative frequencies of trans-

actions are randomly generated between 100 and

500, with an interval of 50 between adjacent val-

ues.

The scheme described above generates 24 different input
situations with varying statistics of the datubase and usage

information as well as random mixtures of An

transactions.

example sitvuation is shown in Figure 5 in an abbreviated form.
The test results for both DROP and ADD heuristics are summa-
rized in Table 1. In the first column of Table 1, the first cligit
of the input situation number represents the set of the relational
cardinality, the second the set of the main-file blocking factor
and the index blocking factor, the third the set of transactions,
and the last the set of relative frequencies of transactions. The
second column of the table shows the number of indexes pres-
et in the optimal solution. The CPU time shows the perform-
ance of the algorithms when run on a DECSYSTEM-2060.
Percentage deviations are shown for the situations in which any
deviation occurred. Marked by "opt" are the situations in
which optimal solutions were found.

tInput Situvation 2132]

Schema
Relations
Relation R
Relcard 100000
Kblocks 10000
Blkfac 10
Column C1
Colcard 409
Niblk 1000
Iblkfac 100
Calumn c2
Colcard 1333
Niblk 1000
Ib1kfac 100
Column Ci0
Colcard 328
Niblk 1000
Iblkfac 100
Usage
Transaction 1
Type SQ FREQ 500
Select R.C1
From R
Where R.CT ="a" AND
R.Ci0="b"
Transaction 2
Tyge SQ FREQ 100
Select R.C1
From R
Where R.CE& ="a" AND
R.C&§ ="b" AND
R.CY ="c"
Transaction 3
Type 5Q FREQ 200
Select R.C1
From R
Where R.C3 ="a" AND
R.C4 ="p" AND
R.C9 ="¢"
Transaction 4
Type sSQ FREQ 100
Select R.C1
From R
Where R.C6 ="a"

Transaction 24

Type sU FREQ 300

Update R

Set R.C3 ="a",

Set R.C& ="h"

Where R.C8 ="c" AND
R.C5 ="d"

Transaction 29

Type SD FREQ 200

Delete R

Where R.C? ="f" AND
R.C4 =g~

Transaction 30

Type INS FREQ 150

Insert INTO R:
{"El".'az'.'aa"."34"."iﬁ".'aﬁ"."ﬂ?".'ﬂﬂ'."lg‘"*'alﬂ"}

Figure 5. An input situation.

Table 1. Accuracy and Performance of the
Index Selection Algorithm.

'-----“h—----*-------'—--—-—*-——-*------——----—-------'-F-'---h--*‘--

| Input {Number of | CPU time(seconds) / Deviation(%) [
{Situation]Indexes |erreswrscctnrerrmrrrininessrEEsdEeSE————— l
| | | DROP Heuristic | ADD Heuristic | Ex. Search|
|=======-=======- B e e A S e e S R G e A

| 1111] 7 | 2.3 Jopt | 2.0 | 0.21 | 36 I
| 1112) & | 2.2 | opt | 2.3 |opt | 36 {
] 1121 | 6 | 2.4 | opt | 2.0 |} 1.23 | 37 |
| 1122 | & | 2.3 |opt | 2.1 | 1.17] 37 I
| 1131 |] | 2.5 | opt] 2.1 | opt | 39 |
| 1132 j 7 | 2.5 | opt | 2.1 | 11.17 | 39 |
e s rudimataiinas Ay aeneRa B e o
1211	5	3.1	opt i 1.7	opt	32
1212] 3 i 1.9	opt	1.6	opt	31	
1221 I 4	2.1	opt	1.7	opt	32
1222	5	2.0	opt	1.7	opt
1231 1 4	2.3	opt	1.7	opt	35]
f 1232	5	2.2	opt	1.7	opt
= 2111	4	2.4	opt	2.1	16.71] 38 {
] 2112	5	2.8	opt	2.1	21.17
2121	6	2.3	opt	2.0	opt ! 38 I
2122	7	2.5	ept	2.0	opt
2131	6	2.6	opt	2.2	opt
2132 i 6	2.7 Jept	2.2	opt	40 l	
" M e e S i e e e S e g e					
2211	L] 2.6	opt	2.0	opt
2212] 4	2.4	opt	1.9	opt	36
2221	6	2.4	opt	1.9	opt
2222	8	2.3	opt	1.9	opt
2231] 6	2.4	opt	2.0	opt	3B l
223z	5	2.4	Jopt	2.0	opt

% F E E EE . E TR EE. T FEF R B EF R E R E _E N R _NE N N CE N CNE_E NN _CE CE R R N N R R LR U

In all situations tested, the DROP bheuristic found optimal
solutions. Although the test is by no means exbhaustive, the
result is a good indication that the DROP heuristic will perform
well in many practical situations. In comparison, the ADD
heuristic produced suboptimal solutions in six cases; the maxi-
mum deviation encountered was 21.179%.

The reason why the ADD heuristic does not perform as
well as the DROP heuristic is the following. With the ADD
heuristic, a potentially most important index is selected first.
Since the presence of an index affects selection of other indexes
in such a way as to maximize its benefit, selection of the first
index is tantamount to dictating the solution finally to be gener-
ated. Thus, a possible suboptimal decision made at the begin-
ning may well persist in the result. On the other hand, in the
DROP heuristic, the least significant index is dropped first.
Accordingly, even if the decision made at the beginning is not
optimal, it is unlikely that the resulting solution is significantly
affected. Example 1 illustrates this point further.

Example 1: Ficure 6 shows intermediate index sels at each
step of the ADD heuristic and the DROP heuristic. For con-
venience, we chose a relation with only four columns. The
symbol '1' in the figure indicates the presence of an index, and
'X' its absence. Only the first two iterations of the design
process are shown since there is no more improvement in the
third.

In this example, the DROP heuristic found the optimal
solution. The ADD heuristic, however, resulted in a slight
deviation from the optimal. Compared with the optimal solu-
tion, the solution that the ADD heuristic produced has an index
on Column 1, but lacks one on column 4. Column 1 was as-
sitzned an index during the first iteration because the index set
(1 X X X) was less costly than (X X X 1); this index subse-
quently stayed until the algorithm terininated. The index on
Column 1 is absent in the optimal solution, however, since the

presence of indexes on columns 3 and 4 renders it less signifi-

cant than 1t would be without them.

| Aleorithm | ADD heuristic | DROP heuristic |

| Column] 1 2 3 4 | 1 2 3 4 |
Initial] X X X X 1 1 1 1
fteration1 | 1 X X X } X1]
Iteration2 | 1 X 1 X X X1 1

—

Figure 6. Intermediate index sets during a design process.

This example shows the error caused by selecting an insig-
nificant index that looks as if it were important at the initial
stage of the design using the ADD heuristic because the inter-
action among indexes on different columns has not been well
established. In contrast, since all indexes are initially present in
the DROP heuristic, the influence of an index on others is
taken into account from the beginning, thereby reducing the

probability of reaching an incorrect solution.

As we can see in Table 1, an exhaustive search takes ex-
cessive computation time; in comparison, the DROP heuristic is
far more efficient without significant loss of accuracy. Obvi-

ously, for larger input situations, the exhaustive-search method
will become prohibitively time-consuming. In these cases,
heuristic algorithms such as the DROP heuristic may be the

only ones applicable.

6. Index Selection when there is a Clustering
Column

In this section we extend the index selection algorithm to
incorporate the clustering property. We present two algorithms

for this exlension.

Algorithm 2:

1. For each possible clustering column in the relation, per-
form index selection.

2. Save the best configuration.

375

Algorithm 3:

1. Perform index selection with the clustering column deter-
mined in Step 2 of the last iteration. (During the first
iteration it is assumed that there is no clustering column.)

2. Perform clustering design with the index set determined in
Step 1. The clustering property is assigned to each column
in turn, and then the best clustering column is selected.

3. Steps 1 and 2 are iterated until the improvement in cost

through one loop cycle is less than a predefined value (e.g.,
196).

Algorithm 2 is a pseudoenumeration since index selection
is repeated for every possible clustering-column position. Natu-
rally, Alcorithm 2 has a higher time complexity than Algorithm
Both
algorithms have been implemented and tested as a part of Phys-

3, but has a better chance of finding an optimal solution.

ical Database Design Optimizer—-an experimental system for
developing various heuristics for the multiple-file physical data-
base design [15].
optimal solutions.

In most cases tested the algorithms found
(The validation of these algorithins is com-
bined with those of Algorithms 4, 5, and 6 in Section 7.) Let us
note that the cost formulus have to be modified to take the
clustering column into account. A complete set of cost formu-
las for multiple-file relational databases with the clustering
property can be found in [16].

7. Index Selection for Multiple-File Databases

We present, in this section, an extension of the index
selection algorithm for application to multiple-file databases.
The extended alzorithm (Algorithm 4) is almost identical to
Alcorithm 1 except for the following:

1) The entire database is designed all together. This
is done by treating all columns in the database
uniformly, as if they were all in a single relation.

2) Clustering columns are incorporated by a tech-
nique similar to the one employed in Algorithm 3.
In addition, multiple clustering columns are al-
lowed with the restriction that at most one can be
assigned to a relation. Accordingly, clustering
design is repeated until as many clustering col-
umns as are beneficial in reducing the overall cost

are assigned (o the database.

Let us note that. when considering a transaction involving
more than one relation, the optimizer [17].[18] has to be in-

voked to find the optimal sequence of access operations as well

as to determine the cost of evaluating the transaction.

Algorithm 4 has also been implemented and tested as a
part of the Physical Database Design Optimizer. For the pur-
pose of comparison, we now briefly introduce other multiple-
file physical database design algorithms (Algorithms 5 and 6),
which are based on the property of separability. The results of
the tests for their validation are then compared with those for

Algorithm 4.

The separability approach was proposed by Whang, Wied-
erhold, and Sagalowicz in [19] and, subsequently, in [20] and
[21]. Other work based on this approach appeared in [22].
The separability-based approach enables the physical design of
the entire database to be performed relation by relation inde-
pendently of one another (we call this phase of design Phase I
}—if certain conditions are met. Features that violate these
conditions can be incorporated by adding an adjustment step
Thus, Phase 1
of Algorithm 5 is identical to Algorithm 2, and that of Algor-

ithm 6 to Algorithm 3. The description of Phase 2, however, is

(which we call Phase 2) during each iteration.

beyond the scope of this paper and will not be discussed fur-

ther. Interested readers are referred to the reference [15].

The three mulliple-file design algorithms were tested with
21 different input situations. The input situations tested con-
sisted of seven schemas, each of which was accompanied by
three variations of usage specification generated as follows.
First, the transactions and their frequencies were defined In
such a way that by intuition they looked most 'natural". Sec-
ond, according to the test results from the first usage specifica-
tion, the frequencies were modified so that the costs of individ-
val transactions were of the same order. This modification
prevented a few most costly transactions from dominating the
results of the design. Third, all the queries were eliminated
from the usage specification leaving only update, insertion, and
deletion transactions. This modification simulated a situation in

which there was a high frequency of updates.

The test schemas were selected with various statistics.
Among them, four of them were arbitrarily chosen, while the
remaining three were extracted from the Ships-Monitoring-
Database—a research vehicle for the Knowledge-Base Manage-
ment Systems (KBMS) Project [23], [24] at Stanford Universi-
ty. Two schemas were defined as small subsets with the third
encompassine the entire KBMS database. The skeleton of the
KBMS schema is shown in Figure 7, using the notation defined
in the Structural Model [25].

represents a many-to-one relationship between relations, and

In Figure 7, the symbol -->

--* a one-to-many relationship with different structural const-

raints.

The results of the tests thus obtained are summarized n

Table 2. In the first column the first digit of the input situalion

376

number represents the schema, and the second the usage inpyt,
In the description, r stands for the number of relations, ¢ the
number of columns in the database, and t the number of traps.
acuons in the usage input. The CPU ume shows the perform.
ance of the algorithms when run in a DECSYSTEM-2060.
Marked by "*" are the situations in which any deviation occur-

red.

SCHEMA KBMS DATABASE

110 ATTRIBUTES IN 16 RELATIONS

o m—

LSH if‘j’YFES

FUELTYPES

SHIPCLASSES

CDUNTF?]E
'
-DDGKS -

—
4 SHIPCLASS-CARGOCLASS
—

HH GOCLASSES

VOYAGES WAREHQOUSES

STOPS
LEGS LOADEDUNLOADEDCARGOES
TRACKS CARGOESONBQOARD

Figure 7. The KBMS schema.

Table 2. Accuracy and Performance of
Multiple-File Design Algorithms

i
jtion |} | Algorithm4| Algorithmg] Algorithmg| Ex.Search]
R === mmm e S |=ommmmemm e m e noeeaes |
10	2r. Bc, 7t] 1.83s		1.25s		0.B6s		26.91s
20	4r, 9c,10t] 6.41s		1.48s		1.23s		36.75m
30	4r, 12c.12t]10.51s		3.44s		2.09s		13.83n
40	4ar, 11c,13t	6.62s		2.73s		2.04s	
60	&r, 32c.12t]12.51s		4.89s		2.32s	*	25.85h
60	4r, 11c,35t13.93s		3.54s		2.63s		B.52h,
70	16r.110c.81t	2.00n		4.80m		1.83m	
R B i s R E	===] -==mmceees						
11	2r, B¢, 7t] 1.8B1s		1.26s		0.84s		26.46s
21	4r, ©c.10t] 5.91s		1.67s		1.35s		42.83m
31	4r, 12c,12t]10.67s		3.43s		2.17s		14.00h
41	4r, 11c,13t] 9.90s {	1.88s		1.42s		3.62h	
51	6r, 12c,12t	13.13s		5.00s		3.54s	
61	4r, 11¢,1561	21.51s		3.745		2.71s	
71	16r,110c.81t	2.02h		4.60m		2.13m	
e B	-=m-=-e	=- [memee-	=== == ne e				
12	2r. 6c, 5t) 1.23s		0.86s		0.57s	f 17.23s	
22	4r, ©c, 5t	1.50s		0.55s		0.43s	
32	4r, 12c, 6t	4.655		1.73s		1.08s	
42	4r, 11c, 6t] 0.95s	*	0.43s		0.25s	*	29.95m
2	6r, 12c, Bt] 6.04s		2.41s		1.49s		9.95h
62	4r, 11c, 6t]	3.72s		1.Bis		1.23s	
72	16r,110c,38t	24.40m		1.77m	[21.76s		10%% T
t Values are estimated,
L]

Situations that produced nonoptimal solutions,

Optimal solutions

exhaustive-search algorithm.

were obtained by running the
For Sitwations 70, 71, and 72,
where exhaustive search was nearly impossible, however, the
results of three design algorithms were compared; if they prod-
uced the same result, it was considered Lo be optimal. Accord-
ing to this criterion, in most situations tested, all three algor-
ithms produced optimal solutions. Even in the situations that
produced suboptimal solutions, the deviations were far from
being significant. (Algorithm 4 yielded 6.69 in Situation 42;
Algorithm 1 yielded 3.1% of deviation in Situation 50 and
6.6% in Situation 42.

[15].)

These situations are fully analyzed in

As we can see in Table 2, Algorithm 4 performs well with
reasonable efficiency. Compared with the exhaustive search
algorithin, it takes a negligible amount of time to complete the
design without a ggnificant loss of accuracy. For a very large
database (for example, one consisting of 250 relations and
5000 columns), however, even Algorithm 4 can beconie intoler-
ably time-consuming. In these cases, Algorithms 5 and 6,
which are based on the separability property, are the only al-

gorithms applicable. Indeed, when a very large database is

involved, the entire database design somehow has to be parti-
tioned to achieve a reasonable performance in the desion proc-
€sS.

Nevertheless, Be-

cause it does not require that the database management system

Algorithm 4 has its own advantages.

satisfy the conditions for separability, it can be easily imple-
mented on top of any relational system that supports indexes
and clustering columns, although, for the other algorithms, the
system should satisfy these conditions as closely as possible to
achieve better accuracy, and any violations of the conditions
should be explicitly identified through analysis. Besides, it is
worth mentioning once again that the performance of Algorithm
4 falls into a practically feasible range, especially when small to

moderate-sized databases are considered.

8. Summary and Conclusion

Algorithms for the optimal index selection in relational
databases have been presented. Algorithm 1, which employs
the DROP heuristic, has been introduced for single-file databas-
es and 'compured with the ADD heuristic. In an extensive test
performed for its validation, the DROP heuristic has found
optimal solutions in all cases. In comparison, the ADD heuris-

tic has found suboptimal solutions in several occasions.

The index selection algorithm using the DROP heuristic
has been extended to incorporate the clustering property
(Alzorithms 2 and 3) and to include cases for multiple-file
databases (Algorithm 4).
multiple-file desien algorithms based on the separability proper-

Further, it has been embedded in

377

ty (Alcorithims 5 and 6).
tested for validation and compared with Algorithms S and 6 as

Aleorithm 4 has subsequently been
well as the exhaustive-search aleorithm. The result shows that
Algorithm 4 takes a neclicible amount of time with no signifi-
cant loss of accuracy in comparison with exhaustive search;
furthermore, although it is not as fast as the other two algor-

ithims, its performance is in a practically usable range.

Index selection has long been a subject of intensive re-
search. Nevertheless, no successfully validated and reasonably
efficient algorithm has been reported. We believe that our
approach provides useful, easy-to-implement, and reliable algor-

ithms for practical applications.

Acknowledgments

Most of the work presented in this paper was done as part
of the author’s dissertation research at Stanford University,
Stanford, California. The research was supported by the De-
fense Advanced Research Project Agency under the KBMS

project, Contract N39-82-C-0250.

The author wish to thank Ravi Krishnamurthy and Steve
Morgan for reading earlier versions of this paper and providing

many thoughtful comments.

References

[1] Lum, V.Y. and Ling, H., "An optimization problem of
the selection of secondary keys," in ACM Natl. Conf.,

ACM, 1971, pp.349-356.

[2] Anderson, H.D. and Berra, P.B., "Minimum cost selec-
tion of secondary indexes for formatted files,"" ACAM
Trans. Database Systems, Vol. 2, No. 1, March 1977, pp.
683-90.

[3] King, W.F.,, "On the selection of indices for a file," IBM

Research Report RJ1341, IBM, San Jose, Calif., 1974.

[4] Stonebraker, M., "The choice of partial inversions and
combined indices,” Intl. Journal of Computer Information
Sciences. Vol. 3, No. 2, 1974, pp.167-188.

[S] Comer, D., "The difficulty of optimum index selection,"
ACM Trans. Database Systems, Vol. 3, No. 4, Dec. 1978,
pp.-440-445.

[6] Schkolnick, M., "The optimal selection of secondary

indices for files," Information Systems, Vol. 1. March
1975, pp.141-146.

(7]

[8]

[9]

[10]

[11]

[12]

{13]

[14]

[15]

[16]

(17]

[18]

Hammer, M. and Chan, A., "Index selection in a self-
adaptive database management system," Proc. Intl. Conf.
on Management of Data, Washington, D.C., ACM SIG-
MOD, June 1976, pp. 1-8.

Feldman, E., et al, "Warehouse location under continu-
ous economies of scale," Management Science, Vol. 12,
No. 9, July 1966, pp-670-684.

Kuehn, A.A. and Hamburger, M.J., "A heuristic program
for locating warehouses," Management Science, Vol. 10,
July 1963, pp. 643-657.

Wiederhold, G., Database Design, McGraw-Hill Book
Company, New York, 1983.

Demolombe, R., "Estimation of the number of tuples
satisfying a query expressed in predicate calculus lan-
guage,”" in Proc. Intl. Conf on Very Large Databases,
Montreal, Canada, 1980, pp. 55-63.

Comer, D., "The ubiquitous B-tree," ACM Trans. Data-
base Systems, Vol. 11, No. 2, June 1979, pp.121-137.

Yao, S.B., "Approximating block accesses in database
organizations, Commun. ACM, Vol. 20, No. 4, 1977,
pp. 260-261.

Whang, K., Wiederhold, G., and Sagalowicz, D.,
"Estimating block accesses in database organizations—a
closed noniterative formula,” Commun. ACM, Vol. 26,
No. 11, Nov. 1983, pp. 940-944.

Whang, K., "A physical database design methodology
using the property of separability,”" Ph.D. dissertation,
Stanford University, Stanford, Calif., 1983, Rep. No.
STAN-CS-83-968.

Whang, K., "Transaction-processing costs in relational
database systems," IBM Res. Rep. RC 10952, Jan. 1985.

Selinger, P.G. et al,, "Access path selection in a relation-
al database management system," in Proc. Intl. Conf. on
Management of Dara, Boston, Mass.,, May 1979, pp.23-
34,

Kooi, R. and Frankforth, D., "Query optimization in
INGRES," IEEE Database Engineering Bulletin, Vol. 5,
No. 3, Sept. 1982, pp. 2-5.

378

[19]

[20]

[21]

(22]

(23]

(24]

[25]

Whang, K., Wiederhold, G., and Sagalowicz,
"Separability—an approach to physical database de.;
in Proc. Intl. Conf. on Very Large Data Bases, Car
France, 1EEE, Sept. 1981, pp. 320-332.

Whang, K., Wiederhold, G., and Sagalowicz,
"Separability-an approach to physical database desit
IEEE Transactions on Computers, Vol. C-33, No. 3,)
1984, pp. 209-222.

Whang, K., Wiederhold, G., and Sagalowicz, D., "
property of separability in physical design of netw:
model databases,”" Information Systems, Vol. 9, No.
1984.

Bonfatti, F., Maio, D., and Tiberio, P., "A separabil,
based method for secondary index selection in physi
database design,” in Methodology and tools for data ¢
design, Chapter 6, North-Holland, 1983.

Wiederhold, G., Kaplan, S.J., Sagalowicz, D., "Physi
database research at Stanford," IEEE Database Engine
ing Bulletin, Vol. 5, No. 1, Mar. 1982.

Wiederhold, G. and Milton, J., "Knowledge-based mz
agement dystems project,” JEEE Database Engineer:
Bulletin, Vol. 6, No. 4, Dec. 1983.

Wiederhold, G. and El-Masri, R., ""The Structural Maoc
for database design,” In Proc. Intl. Conf. on Entity Re

tionship Approach, Los Angeles, Calif., Dec. 1979, p
247-267.

