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1. INTRODUCTION 

Office automation is an application of computer and communication technology 
that helps people working with various types of information. Its prime purpose 
is to help people work more efficiently and effectively. Recently, owing to rapid 
advances in computer technology and a sharp decline of hardware costs, the 
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trend in office automation has been converging toward integration, the combining 
of different types of information, functions, and hardware devices. The term 
integrated office system has been used quite commonly during the last few years. 
Although its concept has not yet been clearly defined, it is certain that an 
integrated office system should promise improvements in communication among 
people, among different systems, and among different applications. 

We classify integrated office systems into four categories on the basis of their 
levels of integration. The first category includes an office system, called a window 
system, that allows users to run different application programs together in the 
same environment, but in separate windows. Such a system runs on top of an 
operating system with its own interface to each application program. An example 
of a system in this category is IBM’s TopView [26]. In some sense, this type of 
system is not truly integrated because it is merely a collection of application 
programs. 

The second category involves a system that loosely integrates different appli- 
cations by providing the means of exchanging information. Such an exchange, 
however, requires translation between different data formats and possibly inter- 
actions with the file system. IBM’s DISOSS [21] and PROFS [22] fall into this 
category. 

The third category is characterized by a tightly integrated system that supports 
common data structures for information exchange, as well as a common operating 
environment. Information can be exchanged between different applications by 
simply copying it, but without the need for changing contexts. (We call this type 
of integration surface integration.) Xerox’s Star [37], Apple’s Macintosh [2], 
Lotus’s Symphony [33], and Lotus’s l-2-3 [32] belong to this category. 

The last category encompasses tightly integrated systems that achieve integra- 
tion through a database management system rather than through simple common 
data structures that enable surface integration. In such systems, different appli- 
cations can exchange information by using the full expressive power of the 
database language supported by the database management system. Thus, a system 
in this category is no longer a collection of individual applications. Instead, 
it provides a set of primitives, upon which many applications can be built. In 
this sense, the language supported by the system characterizes general office 
applications. 

Office-by-Example (OBE), an integrated office system that has been under 
development at IBM Research, belongs to the last category. OBE extends the 
concept of Query-by-Example (QBE) [43], a relationally complete database 
language [8, 91. It supports various features needed in a typical office environ- 
ment: database tables, text processing, electronic mail, menus, forms,l graphics, 
and images. More features may be added without much difficulty. Moreover, 
OBE integrates these seemingly heterogeneous features through a language 
feature called example elements. In applications involving example elements, 
different features are mapped and processed by the database manager, which is 
an integrated part of the OBE system. 

’ Currently, OBE provides only hard-wired forms. Interactive form specification facilities such as in 
[36] and [42] are not provided. 
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The database manager constitutes the backbone of the entire OBE system, 
providing all processing needs for complex applications. Since the database 
manager provides most of the computational power, its performance directly 
determines the entire system’s performance. Our design of the database manager 
is based on the concept of memory-residency of data. We discuss how the 
assumption of memory-residency can be reasonably approximated in a practical 
environment. A practical system does not allow a large amount of real memory 
for each user all the time in a time-sharing environment. Therefore, we emphasize 
the importance of proper coupling of the memory-residency idea to the operating 
system’s scheduling algorithm. We shall also present the results of tests on OBE’s 
performance. OBE uses the VM/CMS operating system [20]. 

The idea of memory-residency of data has also been investigated in [lo], [13], 
[30], [31], and [38]. Dewitt et al. [lo] compare performance of conventional data 
structures when a large amount of real memory is available. Garcia-Molina et al. 
[ 131 present a new logging/recovery scheme with specialized hardware in a (real) 
memory-resident database system. Lehman and Carey [30, 311 introduce a new 
indexing structure called T-tree and present join algorithms based on the 
T-trees. Shapiro [38] introduces a hash-based join algorithm that can be applied 
efficiently when there is a main-memory buffer whose size is equivalent to the 
square root of the size of the table processed. In [lo] and [38] the large main 
memory is considered as the buffer for the disk-resident databases. On the other 
hand, in [13], [30], and [31] main memory is regarded as the main depository of 
data. Here, disks are used only for permanent storage of data and backup. Our 
approach belongs to the latter group, in which different sets of data structures 
and algorithms have to be devised to take full advantage of the memory-residency 
of data. 

The purpose of this paper is to introduce the facilities of OBE and the 
architecture of the current implementation. In doing so, we describe the design 
decisions made to enhance performance and usability. In particular, we emphasize 
the following three aspects: (1) a fast, powerful database system for performance, 
(2) an implementation technique for integrating heterogeneous objects, and (3) 
user-friendly features with a rich set of color-graphics presentation facilities. The 
major contributions of this paper are summarized as follows: 

-Integration of heterogeneous office objects through a database system using a 
powerful relational database language. 

-A complete implementation of a memory-resident database system. To the 
authors’ knowledge, there is no other systematic implementation of such a 
system except for some Prolog systems. However, Prolog systems mainly 
emphasize language issues rather than database management system (DBMS) 
issues. 

-Development of many implementation techniques that make the memory- 
resident DBMS a practical system. We note that a memory-resident system 
has an environment vastly different from those of conventional disk-based 
systems. Therefore, we need a cost model, an indexing technique, algorithms, 
and data structures that differ from those of disk-based systems. 
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The paper is organized as follows: In Section 2 we present the features and 
facilities that are available to the OBE users. In particular, we discuss the OBE 
language, including database manipulation, screen manipulation, business graph- 
ics, text processing, electronic mail, authorization, and on-line help with an 
emphasis on integration of heterogeneous objects through example elements. In 
Section 3 we present details on system implementation issues. In particular, we 
cover screen management, two-dimensional parsing, object storage, query proc- 
essing, query optimization, performance, integration of heterogeneous objects, 
concurrency control, recovery, and authorization. Finally, Section 4 briefly re- 
views the status of the system and concludes the paper. 

2. FEATURES AND FACILITIES FOR THE OBE USER 

In this section we present the OBE language and other features that are available 
to OBE users. An earlier version of the OBE language and features is described 
in detail in [46]. 

2.1 Objects 

OBE supports manipulation of types of objects such as 

Database table: A set of tuples of data in which each tuple contains a data item 
for each column. 

Text box: A block of text (e.g., a memo), which OBE formats according 
to the user’s specifications. 

Window: A unit of execution. It contains OBE objects, operators, and 
commands. It can be stored in a database. 

Menu: A set of alternatives that the user can select for OBE’s next 
action. 

Image object: A picture. 
Graphic object: An object for graphic presentation on the terminal. For exam- 

ple, a bar chart might present the result of a database query. 

Each object (except a window) is associated with a window. Each object has a 
header (an area for the object’s name). 

2.2 Operators 

OBE supports activities such as word processing, data retrieval and writing, 
electronic mail, and graphics. OBE treats different types of objects and activities 
as consistently as possible. For example, an OBE user can type certain operators 
(e.g., “P.” for Present and “U.” for Update) in different contexts (parts of objects) 
without using different syntaxes. An operator’s meaning in one context resembles 
the operator’s meaning in a different context, but details of the meanings can 
differ. For example, a “P.” in the header of a text box means “present the names 
of all stored text boxes,” whereas a “P.” in the row of a table’s skeleton means 
“present all tuples that satisfy a specified condition.” Such context-dependent 
semantics let OBE implement a variety of functions with a limited set of syntactic 
symbols. 
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OBE provides these operators: 

P. Present (display) an object, data from a table, or the names of all objects of 
a specified type. 

I. Insert an object or data into a table. 
D. Delete an object or data from a table. 
U. Update an object or data in a table. 
G. Group data according to the values of the column or example element for 

which G. is specified. 
S. Send a text box to a user via electronic mail. 
X. Execute a window. 

Operators that write need not take effect immediately in the database on disk.2 
A saue command writes to the database the results of all write operators that 
have taken place since the previous save. Additional operators that are specific 
to database manipulation appear in Section 2.6. 

An example element is a construct that lets the user match data values (e.g., 
an “item” column in a “sales” table and an “item” column in a “supply” table). 
An example element can also integrate different activities (e.g., text processing 
and data retrieval), as we explain in Section 2.7. Usually the presence of the 
same example element in two or more positions means that the data instances 
that correspond to those positions should have the same value. An example 
element’s syntax is an underline followed by any alphanumeric string. 

2.3 Screen Manipulation 

OBE provides these commands (and a few others) for manipulation of objects on 
the screen: 

Add box, 
add table, 
add window, etc.: Add the specified type of object (e.g., a text box) at the 

position that the cursor selects. 
Erase: Erase or shorten the object or part of an object (e.g., row of 

a text box) that the cursor selects. 
Expand: Expand the part of an object (e.g., width of a table column) 

that the cursor selects. 
Move: Move the object that the cursor selects to another position. 
copy: Copy the object that the cursor selects to another position. 
Locate: Locate the next object after the one that the cursor selects. 
Push down: Push the object that the cursor selects to the bottom of the 

list of objects to display. 
Zoom: Zoom out to give the user a view of all the objects in a 

window. 

The user usually invokes these commands by pressing function keys. The user 
can change the assignment of function keys to commands. 

2 We use write as a generic term for insert, delete, and update. 
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OBE can display one or more windows to the user. They are positioned within 
a coordinate system called the field of windows. The field of windows is three 
dimensional, in the sense that one window may overlay all or part of another 
window. The display screen is a viewport showing a portion of the field of 
windows. Similarly, a window opening is a viewport over the field of objects 
associated with a window. An object associated with a window is not necessarily 
visible within the window opening, and one object may overlay another object 
within the same window. The user can move the display screen over the field of 
windows to show different portions of the field and can move each window 
individually with respect to the other windows. Similarly, the user can move a 
window opening over the window’s field of objects and can move each object with 
respect to the other objects in that window. 

2.4 Text Processing 

The user can type text into a text box. When the user has been modifying a text 
box, OBE formats it after every press of the ENTER key (i.e., what you see is 
what you get). The user can also print a hard copy of any object. 

The user positions the cursor and presses function keys to invoke the following 
functions for manipulating text in a text box: 

-Scroll the text within the text box. 
-Add a line of text by pushing down all text starting at the cursor, even if it is 

in the middle of a line. 
-Erase a block of text, starting at the cursor’s current position and ending at 

its position when the user presses the function key a second time. 
-Move a block of text. The block starts at the cursor’s current position and 

ends at the position it is in when then user presses the function key a second 
time. The destination is its position when the user presses the function key a 
third time. 

-Copy a block of text. The interactions resemble those for moving text. 
-Locate and optionally change a specified string of text. 
-Move the cursor to a tab stop. 

A function that involves multiple interactions (e.g., move) provides prompting 
and allows cancellation of the function between interactions. 

The user can select any number of the following formatting options any number 
of times within a text box: 

-Change the left and right margins and the tab stops. 
-Suspend or resume justification (alignment of text to the right margin). 
-Suspend or resume concatenation of each line to the next line. 
-Suppress such concatenation for a particular pair of lines. 
-Center a particular line. 

2.5 Electronic Mail 
The “S.” command invokes electronic mail to send a text box to one or more 
users (receivers) at the same site or at different sites. The sender specifies the 
box by naming it or by selecting it with the cursor. The sender specifies the 
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receivers by naming them or by using an example element that matches an 
example element in a table that names the receivers. 

When mail arrives at a receiver, OBE stores the mail as a text box in a window 
named MAIL and notifies the receiver. The receiver views mail simply by 
displaying the MAIL window, which contains the mail items in reverse chrono- 
logical order of reception. 

2.6 Database Manipulation 

A user manipulates tables by typing operations in a skeleton of a table (at the 
beginning of a table’s row and/or inside a table’s row). The operations resemble 
those of Query-by-Example [ 431. 

The following operations can appear at the beginning of a table’s row: 

P. Present all columns of any number of the table’s tuples. The entries inside 
this row can contain expressions that specify which tuples to present; the 
default is all tuples. 

I. Insert any number of tuples into the table. The entries inside this row 
contain expressions that represent the data to be inserted. 

D. Delete any number of tuples from the table. The entries inside this row can 
contain expressions that specify which tuples to delete; the default is all 
tuples. 

1 Apply a specified query or write only where the table does not contain a 
tuple that matches the expressions in the entries inside this row. We call 
the 1 operator row negation. 

The following operations (and a few others) can appear in entries inside a 
table’s row: - 

An expression Apply a specified query or write only to tuples whose 
value in this column matches the expression. An expres- 
sion can include example elements, constants, null, and 
arithmetic expressions. 

P. 

U.expression 

An aggregate operator 

ALL. or UNQ. 

Present this column of any number of the table’s tuples. 
Entries inside this row can contain expressions that 
specify which tuples to present; the default is all tuples. 
Update this column (replace the old value by the expres- 
sion’s value) in any number of the table’s tuples. Entries 
inside this row can contain other expressions that spec- 
ify which tuples to update; the default is all tuples. 
Apply the aggregate operator to the selected tuples. 
Possible operators include CNT. (count), SUM. (sum), 
AVG. (average), MAX. (maximum), and MIN. (mini- 
mum). 
Include duplicate data values in performing the opera- 
tion (if ALL.) or remove duplicates before performing it 
(if UNQ.). Inclusion is the default when using an aggre- 
gate operator, whereas removal is the default when not 
using an aggregate operator. 
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Fig. 1. An OBE program with a user-created output table. 

A user can also create a condition box to specify any number of conditions 
(constraints on operations). Each condition contains at least one example ele- 
ment. The query or write applies only to tuples that satisfy all applicable 
conditions in the condition box and all applicable expressions in the table rows. 
A condition in a condition box is a Boolean combination of comparisons (e.g., 
“>” or “=“) of expressions. 

2.7 Integration of Objects 

QBE uses example elements to map data among database tables. OBE extends 
this concept of mapping to integrate different types of objects. We illustrate 
integration in the following examples. 

Mapping data into a user-created output table. Consider two database tables: 
Sales and Supply. Suppose we want a table of departments and suppliers who 
supply items sold by each department. A QBE (also OBE) program to do this is 
shown in Figure 1[ 231. 

In Figure 1 the symbol “&” in the table name indicates that the table is a user- 
created output table. A user-created output table does not represent a table stored 
in the database; instead, it only presents output results. 

Mapping data into text. This example illustrates the use of example elements 
to map data from a database table to text. Suppose manager Lee wishes to send 
a letter to each of her employees to inform them of her impending vacation. 
The EMP table contains the names, locations, managers, and electronic mail 
user ids of the employees. An OBE program for sending the letters is shown in 
Figure 2 [45]. 

In this example the S. command sends the object named by the command 
(Note) to the persons listed after the TO keyword of the command. OBE sends 
to each of Lee’s employees a separate copy of Note, personally addressed with 
that employee’s name and location. 
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Note 

NAME: -n 
LOCATION: I 
Subject: Vacation Plans 

This is to inform you tbat I’ll be going on 
vacation from S/5/79 to and including 
s/15/79. David Jones will be acting manager 
in my absence, and all questions should be 
directed to him. 

Rose Lee 

Fig. 2. An OBE program that maps data into text. 

Mapping data into a graph. This example illustrates the use of example 
elements to map data from a database table to a business graph. Suppose we 
want a horizontal bar graph showing hardware and software sales for the year 
1983. Further, suppose that we have a database table containing hardware and 
software sales for each state and calendar quarter. An OBE program for gener- 
ating the result in a graphical form is illustrated in Figure 3. 

In Figure 3 the query specifies that the sums of the hardware and software 
sales in the year 1983 be plotted in a horizontal bar graph grouped by states. The 
G.-S example element expression in the horizontal bar graph specifies the 
variable for the vertical axis. In this example, two horizontal bars (one for 
hardware sales and one for software sales) are drawn for each state spread along 
the vertical axis. The expressions SUM.-HW and SUMSW specify the variables 
corresponding to the bar lengths. 

2.8 Business Graphics and Images 
2.8.1 Direct Manipulation. Two important concepts of the QBE language that 

have been carried over to the design of the graphic query interface are direct 
manipulation of objects and the use of example elements to map data from 
database tables, which we just described in Section 2.7. In QBE the database 
tables are the objects for direct manipulation. Similarly, for queries involving 
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SALES STATE REGION QUARTER YEAR HARDWARE SOFTWARE 

-s 1983 ,HW -SW 

P. 

UM. 
SW 

.i”“’ 

Fig. 3. A query for generating a horizontal bar graph. 

business graphs, different types of business graphs are the objects for direct 
manipulation. Also, in creating a query, example elements can be used to link 
database tables and graphic objects. 

In this section we first describe the visual interface of graphic objects and the 
concept of direct manipulation in composing a query. Then, we show the flexi- 
bility and ease of creating different graphic queries. 

2.8.2 Business Graphic Objects. A graphic programming environment allows a 
person to converse with a computer rapidly through the power of a graphic 
interface. The idea of depicting abstractions graphically has been applied to 
many areas, such as general programming environments, computer-aided design, 
computer-aided instruction, and so forth. 

Similarly, in an OBE program, business graphic objects are used for creating 
queries. Within each graphic object, a specific type of business graph is shown 
along with colored fields in which the user places example elements to specify 
data linkage. The colored fields of the graphic object allow the user to specify 
directly the color of the output data associated with an example element and 
the spatial relationship among output data associated with different example 
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elements. An input graphic object looks similar to its corresponding output 
object. The use of the similar objects as both input and output entities is an 
important feature for satisfying the user’s intuition. 

Figure 3 shows an example horizontal bar graph as the input and output object. 
All the colored fields of both vertical and horizontal bar areas (shown as sequences 
of squares) in the input object are used as the input programming area. If the 
user specifies example elements side by side in the horizontal bar area, the result 
will be a stacked bar graph with corresponding colors. On the other hand, if the 
user puts example elements in the vertical bar area, the result will be a parallel 
bar graph. 

The system supports nine types of business graphs [18]: line graph; surface 
graph; scatter graph with optional linear, logarithmic, or exponential regression; 
pie graph; vertical bar graph; horizontal bar graph; cur*-e graph; histogram with 
normal curve fitting; and statistical graph. In addition, the system has a graph 
menu object that allows the user to select a specific type of graph. 

2.8.3 Creating and Modifying Queries by Using Business Graphs. Figure 3 
shows how easily a user can create a query using business graphs. Modifying a 
query is also easy because the OBE user can compose a query related to an 
existing one by revising the latter only slightly. The example in Figure 3 is a 
query for generating the horizontal bar graph of both hardware and software 
sales in 1983 grouped by states. Now, suppose the user also wants to generate 
the horizontal bar graph of both hardware and software sales in 1983 grouped by 
regions. The two graphs use the same data and differ only in a variable of a base 
axis. However, many existing integrated software packages require the user to go 
through a sequence of menus to generate the new query. In OBE, to generate 
such a new graph, the user simply moves the example element-S in the column 
STATE to the column REGION and reprocesses the query. We have such a 
tremendous saving of effort owing mainly to our mechanism of integrating graphic 
objects with the database. Graphic queries can include all other OBE query 
language capabilities, such as the condition box to specify constraints, arithmetic 
operators to create formulas for derived data, and so forth. 

2.8.4 Interactive Graphic Editing. Having generated the output graph on the 
screen, the user can edit it interactively in a very flexible manner. Examples of 
editing functions for graphic objects are (1) modifying the width or spacing of all 
bars in a bar graph by pressing a single function key; (2) expanding or shrinking 
the vertical scale by pressing a function key; (3) modifying the bar colors by 
changing the color areas in the legend, (4) adding the headings, footings, and 
comments by typing text strings into the object directly; (5) highlighting a 
segment of a pie graph by moving it slightly apart from the whole pie, and so 
forth. The edited graphic objects can be stored in the database for future use, or 
they can be superimposed into text or image objects. 

All the operations are normally assigned to function keys. Their behaviors 
depend on the cursor position and r;he content of the selected object. Readers are 
referred to [ 181 and [ 191 for the details of the graphics facility in the OBE system. 

2.8.5 Facilities for Image Objects. Image is one of the objects that OBE sup- 
ports. The system provides image viewing and editing facilities through the image 
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object. Currently, image objects are not used in conjunction with database tables 
for creating queries. The system only supports the functions for viewing and 
editing stored images. The functions include shrink, expand, copy, move, scroll, 
zoom in, zoom out, annotate, and so forth. Images can be created using a scanner 
and are stored as CMS files or OBE objects in a compressed form. In the current 
implementation, only monochrome images are supported. The CMS file type for 
image objects is restricted to MONOIMG for a black and white image. 

To view an image on the screen, the user has to get an image object into the 
window by issuing the ADD IMAGE command. To display an image stored in a 
CMS file, the user moves the cursor to the object header and types 

P. CMS (name) MONOIMG (mode), 

where (name) is the name of an image already stored, and (mode) identifies the 
disk containing the image. On the other hand, to display an image stored in the 
OBE’s object storage system, the user types “P. object-name” in the header of 
the image object. 

2.9 Authorization 

OBE is primarily intended to provide a single-user environment, in which 
individual users keep their private data in their own databases. Nonetheless, 
since information must often be shared, OBE also supports sharing. We define 
these two modes as private mode and shared mode. OBE accommodates both 
modes in a unified framework by delegating the decision on the mode of operation 
to the users of the system. Thus, in a private mode, users own their own databases 
in which they define their own objects. On the other hand, in a shared mode, a 
group of users establishes a shared database in which different users can create 
their own objects. These objects can be shared by other users. OBE also allows 
users to share their private objects in private databases. 

The flexibility in sharing is accomplished by an authorization scheme having 
the following characteristics: 

(1) The scheme allows users to share objects (or parts of objects) selectively. 
(2) The scheme minimizes the traditional role of the database administrator 

(DBA) to allow maximum independence to individual users. 

In this scheme the DBA, who is defined as the database creator, receives no 
authoritarian power to override individual users’ rights to their own objects. The 
DBA has only two types of authorities. The first is the authority to browse (i.e., 
only read) the database’s directory. It provides an essential service to the user 
community when certain difficulties arise. For instance, suppose that an employee 
leaves after creating objects in the shared database. These objects may never be 
detected without the DBA’s ability to browse the entire directory. The second is 
the authority to choose members of a user community who can share the database. 
The DBA chooses members by having the creation authority allow them to create 
objects in the shared database. In OBE, users are the sole owners of their 
own objects-even in a shared database. A database is owned by the users, not 
by the DBA. 
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OBE uses the following syntax for specifying and manipulating the authority 
statements. This syntax is an extension of the one defined in QBE [44]. 

I. 
D. 

{I 

U A UTH( (list of authorities )) Grantee Object 

P: 

Here, (list of authorities) is a list of individual authorities, Grantee is a user or a 
group of users who receives the authorities, and Object is the object be&g 
authorized. The authorization information can be inserted (I., grant), deleted 
(D., revoke), updated (Il.), or presented (P.). An authority statement is specified 
in the header of an object, except for a table, where it is specified in the data 
area under the table header. 

OBE supports the P., I., D., U., X., -* authorities for most OBE objects and 
the creation authority for the database. The symbol -* implies all the authorities 
applicable to the object being authorized. In general, applicable authorities vary, 
depending on the type of an object. For example, the I. authority applies only to 
insertion of tuples in database tables. Insertion (via I.) of objects (including 
database tables) requires the creation authority. 

The syntax as described above allows only data-independent authorization, 
which can be enforced without examining the data. In general, data-dependent 
authorization, which can be enforced only by examining the data, can be specified 
by replacing Object in the syntax by an associated query. Implementing data- 
dependent authorization this way, however, poses some difficulties. First, in the 
presence of multiple, different authorizations on the same database table, the 
union of different sets of authorized tuples may not convey meaningful semantics. 
This problem is aggravated if the union of different sets of tuples cannot be 
formed because of different projection requirements of the associated queries. A 
simple union of sets of columns in associated queries would not be a solution 
because it will reveal some data that would not be shown when individual 
authorizations are considered. Second, managing (i.e., storing and retrieving) 
associated queries and their relationships with the objects they authorize could 
be troublesome. 

To solve these problems, we decided to use views to implement data-dependent 
authorization [15]. This approach has several advantages. First, a view may be 
regarded as a named query. By using the name of a view in place of Object in the 
authorization statement, the same syntax can be used. Second, even in the 
presence of multiple authorizations on the same table, a user deals with only one 
set of authorized tuples at one time by designating a view by its name. Third, by 
using names, we can easily manage views. Further, we can explicitly establish 
the relationship between an authorization statement and its associated query 
(i.e., view). The view facility has not been implemented in OBE, although it has 
been planned. We believe, once the view facility is available, that data-dependent 
authorization can be easily incorporated in a way similar to the one discussed 
above. 

2.10 On-Line Help 
OBE’s on-line help facility lets a user obtain information on using OBE without 
always having to consult a manual. The help information describes actions that 
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the user can perform in the context that the cursor selects. For example, for the 
header of a text box, the actions include inserting or deleting the text box, moving 
the text box, and so forth. Pressing the function key for HELP displays a 
scrollable help box that contains the context’s name and the help information. 
OBE displays the box in one half of the screen so that it does not overlap the 
selected context. Thus the user can simultaneously see the help information and 
manipulate the context. This ability is particularly useful for tasks that involve 

, multiple interactions (such as moving an object). The help box remains on the 
screen until the user erases it by pressing HELP again. 

3. SYSTEM ARCHITECTURE 

In this section we present issues in implementing our integrated office system 
and database manager. 

3.1 Implementation of Integration 

The OBE system maps example elements among heterogeneous objects by using 
preprocessing and postprocessing steps. The preprocessor creates a user-created 
output table and associates it with each nontable object containing example 
elements. This user-created output table is added to the query. Then, the query 
processor (described in Section 3.4) evaluates this modified query and creates 
result tables containing the output data for the user-created output tables in the 
query. Finally, the postprocessor scans the result tables to map the data to the 
associated objects. 

For example, when the program in Figure 2 is processed, the preprocessor 
modifies the query by adding the user-created output table in Figure 4. 

The query processor executes the query and creates an output table consisting 
of (name, location, userid) tuples. For each tuple in the output table, the 
postprocessor replaces the example elements in the text box with the name and 
location values and sends the text box with these substitutions to the electronic 
mail recipient specified by the userid value. 

We choose this technique of integrating heterogeneous objects because the 
only information in the object to be related with the database is that associated 
with example elements. The purpose of using a user-created output as an 
intermediary is exactly to extract this essential information. In addition to 
simplicity, this technique provides modularity. Thus it is easy to integrate new 
object types to be added to the system. Currently, this extendability is the system 
programmer’s responsibility in our system. However, providing the extendability 
(i.e., adding new object types) as a user task should not be very difficult to 
achieve. 

3.2 Parsing and Translation 

The parsing and translation component of OBE translates between the screen 
manager’s data structures and those recognized by the query processor. During 
this process, the query being translated is checked for syntactic correctness. 
Parsing in OBE is significantly more complex than in a conventional compiler. 
This results from both OBE’s two-dimensional nature and the tailoring of its 
behavior to the needs of nonprogrammers. 
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Fig. 4. User-created output table added to query in Figure 2. 

The parsing phase produces a parse tree containing a parsed version of the 
screen objects handled by the query processor, that is, tables and condition boxes. 
A translation system translates the parse tree to an internal form for the query 
processor. 

3.2.1 Lexical Analysis. The lexical analysis component of OBE recognizes the 
basic tokens of the language: constant elements, example elements, and operators. 
Since OBE is designed to minimize the syntax its users must know, complications 
sometimes arise in recognizing the language. For example, in conventional 
programming languages, and in most database query languages, literal strings 
must be explicitly quoted. In OBE, the user can type in the (unquoted) value. 
Thus, a user simply types JONES rather than “JONES”. (Of course, constants 
that have the same structure as keywords, like “P.“, must be quoted. However, 
this happens infrequently.) This requires the lexical analyzer to have an indefinite 
look ahead to resolve tokens (up to the length of the field being scanned). In 
practice, the lexical analyzer must occasionally backtrack to the last previous 
blax=k within the token currently being formed. 

A further complication is that keywords are context dependent. So although 
“AND” is a keyword in the condition box, it is not a keyword in other contexts. 
This leaves the user free to use it as a constant or the name of a table column in 
other contexts. This problem is resolved by keeping a table of keywords and the 
contexts in which they actually are keywords. A token can be a keyword only if 
the table associates it with the current context. 

3.2.2 Parsing Two-Dimensional Objects. Whereas a program in a linear lan- 
guage like PASCAL is (formally) a single long string, OBE objects are data 
structures with an internal structure. Unlike a conventional programming lan- 
guage, this structure must be recorded in the parse tree for the subsequent 
translation step. For example, a “P.” as a row operator must be translated 
differently from a “P.” inside a row. Whereas a linear language’s parser simply 
ignores empty lines, OBE’s parser must preserve this structure to preserve the 
relative positioning of subsequent fields. Thus, there are two problems: (1) the 
complications of maintaining a position within a structured object and 
(2) “wiring” this structure into the grammar so that an expression’s context 
within an object is represented within the parse tree. 

Like a conventional linear language, the context-free part of OBE is handled 
by a parser generator [29]. However, as in lexical analysis, OBE is structurally 
more complex than a linear language. Since the input to a programming lan- 
guage’s compiler is a sequence of lines, it can maintain its state as a 1-tuple: 
(buffer-pos ), its position in the current line buffer. An OBE program consists of 
the data structures for a window and its objects. Each object consists of an array 
of rows, with each row consisting of one or more fields. Thus, a screen object is 
OBE’s version of a line buffer. The parser’s state is then a 3-tuple: (row-number, 
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column-number, field-pos), where row-number and column-number are the row 
and column of the current field, and field-pos is the position within the field 
being examined. These are incremented in reverse order: After the contents 
of the current field have been examined (field-pos), the columns within the 
current row are parsed (column-number), and then successive rows are parsed 
(row-number). 

Each type of object is represented by a nonterminal symbol in the grammar, 
with the symbol deriving the information parsed for the object. An object’s rows 
and fields are represented by nonterminals in the same fashion. So the symbol 
for an object derives the information parsed for its rows, and the symbol for each 
of its rows derives the contents parsed for the fields in that row, etc. For example, 
condition boxes are represented by the nonterminal “(CND-BOX)“, and a row 
in the box is represented by “(CND-ROW)“. Syntactically, each row can be a 
boolean OR expression (“(OR-EXP)“), so in the grammar we have (in BNF): 

(CND-BOX) ::= (CONDITIONS). 
(CONDITIONS) ::= (CONDITIONS) (CND-ROW). 
(CONDITIONS) ::= (CND-ROW). 

(CND-ROW) ::= (CND-ROW-EDGE) (OREXP). 

The beginning of an object, a row in an object, or a field in an object is 
represented in the grammar by edge symbols, terminal symbols ending 
in “-EDGE)“. (The edge symbol for a condition box row is 
“(CND-ROW-EDGE)“.) Edge symbols are emitted when the lexical analyzer 
begins scanning a new object, row, or field. They signal the beginning of a 
new syntactic unit in OBE the same way in which semicolons end statements 
in PL/I. 

3.2.3 Translation to Internal Form. The parse tree is translated to an internal 
form for query processing by code generated by a program transformation system. 
Our transformation system differs from other systems in that it provides for both 
negative and recursive patterns, a capability that existing systems seem to lack. 
(Cameron and Ito [7] critique the limitations of existing program transformation 
systems in the course of describing a manual methodology for programming such 
translations. Partsch and Steinbrueggen [34] survey the literature on program 
transformation systems. Freytag and Goodman [12] apply program transforma- 
tion technology to translating relational query languages.) In addition, the system 
generates its translation into a conventional programming language for compi- 
lation (with a highly optimizing compiler), whereas most such systems are 
interpretive, often implemented on top of LISP. 

The program transformation system is given an abstract statement of the 
problem as pattern matching and replacement against parse trees in units called 
patterns. A pattern is a procedure with a match condition that must be satisfied 
for the pattern to produce a result (a section of the result tree). If the match 
condition is satisfied, further tests are performed to select the pattern’s result. 
Although quite different in syntax and semantics, the concepts of the pattern 
matching apparatus are loosely modeled after those of SNOBOL4 [16]. 

Once the translation has been stated, the transformation system compiles the 
patterns into PL.8 procedures as an off-line operation. (PL.8 is a PL/I-like 
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system programming language [3].) Thus, the translation system treats PL.8 as 
its machine language. These procedures are, in turn, compiled using the PL.8 
compiler and incorporated into OBE. The translation system also provides 
debugging facilities to monitor the progress of the translation as it is performed. 
These and the translation system’s other capabilities will be described in more 
detail in a future paper. 

3.3 Object Storage 
Since OBE is intended for use in an office environment, its storage system has 
design goals different from those of conventional database systems. We list below 
some of the important design goals: 

-A variety of objects, not just tables, must be stored. 
-The system is streamlined either for private usage for single users or for 

sharing with low contention. 
-Good response time for small ad-hoc queries is essential, even if it requires a 

sacrifice of database capacity. Roughly speaking, the response time must be 
competitive with text editors for similar functions, such as searching for a 
specific data value. 

-There must be no complex installation requirements like those typical for a 
large database system. For this reason, we rely on the host operating system 
(VM/CMS) for file management. 

-The system must be small in size. 

There are two components in the object storage system. The first is the lower 
level storage manager, which is independent of object types and deals primarily 
with the transfer and control of data between disk and main memory. It is 
described under the heading of memory-resident database management. The 
second, higher level component is a hierarchical relational memory system 
(HRMS), which implements additional storage management for relational data- 
base objects on top of the primitive functions provided by the first component. 
We do not describe the hierarchical portion of the system, since the current 
implementation does not support hierarchies among tables. See [l] for more 
details on the object storage system. 

3.3.1 Memory-Resident Database Management. All objects in OBE are col- 
lected into databases. A database consists of a directory and a set of objects. 
Each object or directory is stored in one operating system (CMS) file. Multiple 
databases can be stored in a given mini&k (a logical disk unit in the CMS 
operating system), but a particular database must reside entirely on one minidisk. 
When a minidisk is accessed, all the database directories are read into main 
memory. Individual objects are read into main memory as they are referenced. 
Directories and objects remain in main memory throughout an OBE session. 
Changes to objects are accumulated in main memory until a save operation forces 
a committal to disk. 

Typically, in OBE, we assume information is organized into small independent 
databases. Accordingly, we maintain separate directories for different databases. 
This assumption matches closely the office organization, in which individual 
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users keep their private data in their own databases and occasionally share them 
with others. It also matches our implementation strategy that keeps the directory 
in main memory. Clearly, it would be undesirable to keep in main memory the 
entire directory of a large centralized database, most of which would not be 
referenced in a given session. 

A directory consists of (directory) entries, along with an indexing structure for 
efficient search. One directory entry is associated with each object in the database. 
It contains, among other things, the name and size of the CMS file that stores 
the object. An object is read into main memory in its entirety upon its first 
reference. It is read into its own area allocated according to the size information 
in the directory entry. We henceforth call an area containing an object a segment. 
Area is a primitive data type of the PL.8 language. All the memory references 
inside an area are based on offsets from the starting address of the area and 
therefore are relocatable. The property of relocatability is essential in performance 
because it obviates address transformations when the segment is loaded from 
disk, written to disk, or copied between different locations in main memory. 
Storage within a segment is managed in a stacklike fashion from either end. 
When storage within a segment is exceeded, a larger area is allocated, and the 
contents of the segment are transferred. 

Once a change has been made to a segment, it is marked as modified. When 
changes are to be saved, an attempt is made to write all modified segments back 
to disk. For a save operation to succeed, all modified segments must be committed. 
Thus, the user has the view that the entire database is saved as a unit. Should 
committal of changes to disk fail, all changes made to segments since the last 
successful save are lost. Detailed discussion on concurrency control and recovery 
appears in Sections 3.7 and 3.8. 

3.3.2 HRMS. HRMS is a higher level storage management system for rela- 
tional database objects, built on top of memory-resident database management. 
Specifically, it provides data structure and access functions for tables and indexes. 
Each table is stored in a segment of the memory-resident database, along with 
associated indexes and table definition (schema) information. 

A table is represented as a doubly linked list of tuples. A tuple is an array of 
pointers to column values. Thus, the size of the array is the number of columns 
of the table. The special null value is represented as a null pointer. This 
representation has the advantage of not wasting extra space in column data to 
distinguish the null value from ordinary values. In a given column, data values 
are shared whenever possible; that is, tuples having the same value for a particular 
column will have equal pointers. The sharing of column values can be maintained 
easily when an index is defined for that column. 

All data are stored as variable-length strings. HRMS supports four data types: 
character, numeric, date, and time. Data of type character are interpreted as 
character strings. Numeric data are interpreted as a form of floating decimal, 
which consists of a l-byte binary exponent followed by as many packed decimal 
digits as necessary. Date is retained as the number of days since some arbitrarily 
chosen origin. Last, time is kept as the number of seconds since midnight. These 
representations permit simple numeric comparison of dates or times with no 
further conversion. 
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To support associative accesses, HRMS provides two types of indexes: the 
single-column and the multiple-column index. A single-column index is an index 
defined for a column of a table, and it can be permanently stored in the database. 
A multiple-column index is an index defined for a list of columns, but it cannot 
be permanently stored in the database. In Section 3.5 we discuss how a multiple- 
column index is constructed. We note here, however, that a multiple-column 
index is always constructed to be specific to a query, using the information given 
by the optimizer. Hence, it is not relevant to store the index permanently in the 
database. 

An index (of either type) is implemented as an array of tuple identifiers (TIDs), 
which are pointers to tuples. Accordingly, accessing an index requires a binary 
search. This scheme contrasts with the conventional method of implementing an 
index for main-memory data access as a binary search tree such as the AVL tree 
[27]. Since our scheme does not store the tree structure explicitly, it requires less 
memory space for storing indexes. Specifically, our implementation requires one- 
sixth to one-third the memory space of our earlier implementation, which used 
the AVL tree. The scheme achieves further reduction in memory space by storing 
only pointers to tuples (TIDs) in the index; the key values can be found easily 
(by two pointer references) from the tuples to which they point. In comparison, 
in some conventional disk-based database systems, index storage cost is a major 
problem because the index must store original key values. 

Updating an index is straightforward. For example, when an index entry is 
inserted, the upper part of the index is block-copied to a new memory location, 
and a new entry is inserted, then, the lower part of the index is block-copied next 
to the new entry. For block-copying we use the instruction MOVE LONG 
(meaning moue a long character string) in the 370 architecture [25]. This instruc- 
tion is a very efficient operation in IBM mainframes. Experiments show that 
copying 1 megabyte of memory using this instruction takes a small fraction of a 
second in a 3081 processor. For this reason, updating indexes is hardly a problem 
in our system. 

In addition to tables permanently stored in the database, HRMS also supports 
temporary tables for composing output results of queries. Since OBE does not 
allow duplicate tuples in the output (unless the ALL. operator is specified), the 
system automatically eliminates those duplicates. We use an efficient method 
based on hashing for this purpose. 

3.4 Query Processing 

The query processor evaluates a query in three steps. First, it translates the 
query into an internal data structure. Second, it calls the query optimizer to 
obtain the access plan. Finally, it executes the query according to the directives 
specified in the access plan. In the following subsections we discuss important 
design considerations in the first and the last steps. The query optimizer is 
discussed in detail in Section 3.5. 

3.4.1 Query Translation. In the translation step the query processor receives 
from the parser a syntactically correct query in an internal form. From this 
representation the query processor composes an efficient global data structure 
capturing all the semantics of the query. Typically, this process carries out the 
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following two tasks: 

(1) various types of binding that can be determined statically (i.e., independently 
of data), 

(2) semantic error checking. 

The purpose of static binding is to avoid the excessive run-time overhead of 
repeating costly computation. Static binding lets this computation be done once 
and for all by storing the result in the data structure that the run-time modules 
subsequently use. The simplest type of binding is the resolution of names of 
example elements, tables, and columns. These names are recognized and trans- 
lated into an internal representation. For example, tables are given unique integer 
identifiers, and the column names are converted to their corresponding positions 
as defined in the table schema. This conversion requires database accesses to 
obtain such information. 

Another type of binding is what we call operator binclirzg. The OBE language 
allows a symbol to play different roles according to the context. For example, 
when an expression-X = 5/g/85 occurs in a condition box, the operator “/,, is a 
division operator. When 5/-X/85 occurs in a column of a table, the meaning of 
the operator “/” is determined by the context; that is, depending on the type of 
the column, it may either be a division operator or a date operator. The query 
processor keeps track of the context and determines the correct meaning when- 
ever there is potential ambiguity. Let us note that, although the parser itself 
keeps track of certain context information during parsing, this type of ambiguity 
cannot be resolved solely by syntax. 

There are other types of bindings like cross references and query graphs. Cross 
references give all the occurrences of an example element in expressions. They 
are extensively used in semantic error checking and query optimization. The 
query graph is a representation of the query showing the tables, columns, and 
their relationships defined through the example elements. The query graph is 
vital information for the query optimizer. 

Semantic error checking is interleaved with various steps of the translation. 
Numerous cases of semantic errors are detected. Owing to the two-dimensional 
nature of OBE, these errors are highly dependent on the context and therefore 
very difficult to detect during the parsing phase. For example, a query consisting 
of one row with example elements and row negation is erroneous because there 
is no way of binding these example elements. Capturing this error syntactically 
would significantly and unnecessarily complicate the syntax. 

3.4.2 Query Execution. Executing a query consists of retrieving the data, 
checking for satisfaction of the conditions, computing aggregation if necessary, 
and constructing the output result. In conventional database systems, retrieval 
of data (especially disk I/OS) was given the main emphasis when considering the 
performance. Since the data are memory resident in OBE, however, trimming 
any other operations can notably improve the performance. In this subsection 
we discuss the central query execution algorithm, with an emphasis on perform- 
ance aspects. 

In executing a query, the query processor takes several steps. First, it computes 
the subset of the tuples from each table that satisfies all the selection and join 
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conditions. It then performs aggregation operations. Finally, it carries out pro- 
jection operations. If an aggregation operator appears in the condition box, often 
subunits of the query must be processed in a partial order. We call these subunits 
subqueries. If subqueries are involved, the next higher level subquery follows the 
aggregation operations, delaying projection operations until after the highest 
level subquery is evaluated. This general structure of execution can be modified 
through peephole optimization-merging and commuting some steps-whenever 
feasible. 

Computing the subset of the tuples satisfying all the conditions involves a join 
algorithm. There can be numerous join algorithms but we choose here the nested- 
loop join strategy, which is also called the inner/outer loop join strategy. An 
abstract version of the algorithm is given in Figure 5. 

An important feature of this algorithm is that it need not create temporary 
tables. Creating temporary tables could be harmful in our system because it takes 
not only CPU time but also a significant amount of main memory space. In 
memory-resident databases, main memory is a scarce resource. Thus, the space 
taken up by temporary tables could sometimes be a threat to our memory- 
residency assumption. 

Yet a more important feature of the nested-loop join strategy is its performance. 
We believe that the nested-loop join (with proper usage of indexes)3 alone is 
adequate in memory-resident databases. Typically, two join algorithms are used 
in many database systems: the nested-loop and sort-merge join strategies [41]. 

In disk-based database systems the sort-merge join strategy has an advantage 
over the nested-loop join strategy when a majority of tuples in the tables are 
accessed. Since it processes all the tuples in a block sequentially, it avoids a 
pathological situation in which accessing one tuple requires one block access. On 
the other hand, the nested-loop join strategy is advantageous when only a small 
fraction of tuples needs to be processed. Since it accesses the tuples in a random 
fashion, it is very likely to incur one block access per tuple. However, sorting is 
not needed in this strategy. Since only a small fraction of tuples is considered, 
the saving of the sorting cost can easily compensate for the disadvantage of 
random access. Clearly, the sort-merge join strategy should be used only when 
the benefit of sequential access exceeds the cost of sorting the tuples in the 
tables. 

In OBE we choose to implement only the nested-loop join strategy. Basically, 
we argue that an index (a single-column or multiple-column index) can be built 
in time equivalent to that for sorting a table, both on the order of n log n, where 
n is the number of tuples satisfying restriction predicates. Once the table is 
sorted or an index created, since there is no concept of blocking in a memory- 
resident database, most of the benefit of using the sort-merge join strategy can 
no longer be achieved. In fact, a table can be viewed as a set of blocks each 
containing only one tuple. Thus, we conclude that, in a memory-resident data- 
base, the nested-loop join strategy is as good as or better than the sort-merge 
join strategy in most cases. 

‘Readers are warned that some authors [30] define the nested-loop join as a method that does not 
use (or create and use) any indexes. Clearly, the nested-loop join by this definition would have an 
unacceptable performance. 
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/* using indexes as designated by the optimizer */ 
for each tuple tl E RI do; 

if (tl) satisfies the conditions then 
for each tuple t2 E R, do; 

Fig. 5. Nested-loop join strategy for if ( tl, tz) satisfy the conditions then 
tables R,, Rz, Rs, . . . Rk. for each tuple t3 E R3 do; 

If 01, t2, t3, . . . , th) satisfy the conditions then 
project the answer. 

Notice that many variations of hash join methods [lo, 301 are, by our definition, 
nested-loop join methods, but they use hash indexes. Such indexes are created 
on the fly and are not permanently stored. One of our access structures defined 
in Section 3.5 considers creating an index on the fly for a specific query. However, 
we did not implement hash indexes because we decided to use the same index 
structure for both permanent and temporary indexes. 

We also have incorporated some modifications to the nested-loop join strategy 
to avoid wasted work. For instance, let table RI join with tables Rz and R3 in a 
query. Further, let the strategy choose tuples from RI first, Rz next, and RB last. 
If no tuples of R3 satisfy the conditions for particular tuples in RI and R2, the 
algorithm in Figure 5 will attempt to choose the next tuple from Rz. From the 
query, however, we know that table R3 joins with RI but not with Rz. Thus, any 
new choice of a tuple from Rz is futile. Instead, the algorithm should choose a 
new tuple from RI to make any meaningful changes in the outcome of the 
conditions. In general, if no tuple from a table is found to satisfy the conditions, 
the algorithm should choose a new tuple from the parent of the table in the 
query. The parent of a table is defined to be the one connected to the table by a 
join condition (i.e., sharing an example element) that is the closest predecessor 
of the table in the join sequence (i.e., ordering of tables that are joined). 

In summary, we have implemented the query processor using the modified 
nested-loop join strategy. We have argued that using this strategy alone is 
adequate for performance in memory-resident database systems. Let us note that 
this argument views the data as being in main memory, whereas the data are 
really in virtual memory. In Section 3.6 we discuss how well virtual memory 
approximates the real memory when used in conjunction with a specific operating 
system scheduling algorithm. 

3.5 Query Optimization 
The query optimizer is a component of the database manager that finds an 
optimal sequence of access operations for processing a query. The optimizer’s 
results are recorded in a data structure called the access plan. The access plan is 
subsequently interpreted by various components of the query processor to eval- 
uate a query. In this section we discuss the query optimizer’s algorithm, cost 
model, and data structures. 

Before proceeding we define some terminology. A node is a table appearing in 
the query with associated predicates specified in the columns of the table. We 
use the term node to distinguish different instantiations of the same table. For 
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example, if a table appears twice in a query, we treat the two instances of the 
table as separate nodes. A join loop is the looping structure in the query processor 
implementing the nested-loop join strategy. A restriction predicate is a predicate 
that contains only literal values. A join predicate is a predicate that contains an 
example element. It is called a bound join predicate if all of its example elements 
have been assigned specific values (i.e., bound); otherwise, it is called an unbound 
join predicate. We define a restriction column as a column of a table associated 
with a restriction predicate, and a join column as a column associated with a join 
predicate. We call a node with row negation a negated node, and a node without 
row negation an ordinary node. Finally, we define access structures as the methods 
of accessing data that the optimizer can select in the process of optimization. 

3.5.1 Optimization Algorithm. The optimizer determines the optimal order of 
processing nodes in the join loop and specific access structures to be used in 
processing individual nodes. It finds an optimal solution by exploring the search 
space using a branch-and-bound algorithm [ 171. 

A branch-and-bound algorithm can be characterized by three rules: (1) a rule 
for finding a lower bound for a subtree of the search tree, (2) a branching rule, 
(3) a rule for resolving a tie among candidate subtrees to be explored. In the 
query optimizer we define the accumulated cost of processing nodes up to (but 
not including) the root of a subtree as the lower bound for the subtree. We 
employ the newest bound branching rule, which selects the most recently created 
subtree that has not been pruned, as the branching rule, and we use a fixed 
priority scheme to resolve a tie. We define the order of priority among nodes as 
follows: 

(1) an ordinary node with a bound equality restriction or join predicate, 
(2) a negated node with all its join predicates bound, 
(3) an ordinary node with a bound inequality restriction or join predicate (i.e., a 

range or not-equal predicate), 
(4) an ordinary node without any bound predicate. 

A negated node having an unbound join predicate should never be given a priority 
because it can be evaluated only when all the predicates are bound. 

3.5.2 Access Structures. On the basis of the features that HRMS and the query 
processor provide, the optimizer defines four access structures: 

-Table Scan, 
-Single-Colu 
-Single-Co1 t 

n Index (existing), 
mn Index (created), 

-Multiple-Column Index. 

For Table Scan, every tuple in the table is sequentially accessed. For Single- 
Column Index (existing), tuples are accessed associatively through an existing 
single-column index. The specific index to be used is designated by the optimizer. 
For Single-Column Index (created), tuples are accessed through a single-column 
index, but the index must be created for each query and dropped at the completion 
of the query. Finally, for Multiple-Column Index, tuples are accessed through a 
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multiple-column index, for which the optimizer designates a list of restriction 
columns and a list of bound join columns having equality predicates. The index 
is created for each query as follows: First, the tuples of the table that satisfy the 
restriction predicates are selected; then, an index is constructed for the list of 
columns having bound equality join predicates. The multiple-column index has 
an advantage of reducing the size of the table because it selects only those tuples 
that satisfy restriction predicates. Because of this reduction, the cost of both 
creating the index and accessing tuples using this index can be reduced. 

3.5.3 Cost Model. We define minimum query processing cost as the criterion 
for optimality. Since the query processing cost must be determined before actual 
execution of the query, we need a proper model for estimating this cost. Since we 
assume that the data are resident in main memory, ideally the only cost incurred 
in processing a query will be CPU computation cost and there will be no I/O 
cost. For this reason, the cost model incorporates only CPU cost. 

Modeling CPU computation cost is not as straightforward as counting the 
number of I/O accesses, as is done in many conventional disk-based systems. In 
particular, analyzing the entire program code for computation cost would be next 
to impossible. As a solution to this problem we propose an approach using both 
experimental and analytic methods: We first identify the system’s bottlenecks 
and then build a cost model on the unit costs of these bottlenecks. 

In OBE the bottlenecks have been identified with the aid of the PLEA8 
execution analyzer [35]. We have found, by experiments, that most cost is 
incurred in evaluation of various predicates specified in the columns of tables or 
in condition boxes. Thus, roughly, the optimization criterion becomes the mini- 
mum total number of predicates to be evaluated. To provide a better resolution, 
however, we classify the costs into two categories: 

(1) the number of evaluations of the expressions involved in predicates (unit 
cost = Cl), 

(2) the number of comparison operations needed to finally determine the out- 
come of predicates (unit cost = C,). 

We also define three other basic costs: 

(1) the cost of retrieving a tuple from a (memory-resident) table (unit cost = 
GA 

(2) the cost of unit operation in creating an index (unit cost = C,: note that 
there are n log2n unit operations in creating an index, where n is the number 
of tuples in the table), 

(3) the cost of unit operation in the sorting used to prepare a multiple-column 
index (unit cost = C,). 

Thus, the five parameters Cl, CZ, C3, C4, and Cs constitute a complete set of unit 
costs that defines the cost model. Further details in constructing the complete 
cost model on the basis of these unit costs appear in [40]. The values of the five 
parameters have been determined by experiments and proved to be stable for a 
long period of program development. Currently, in our system, expression eval- 
uation (unit cost = C!,) proves to be the costliest operation. 
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3.6 Performance 
The OBE database manager has been designed with a rather unconventional 
assumption that data reside in main memory. Naturally, one important question 
is to what extent this assumption would be satisfied in a real environment. 
Obviously, a steady tendency toward cheaper memory hardware is encouraging. 
Yet, it will not solve all the problems because the cheaper the memory becomes, 
the larger the data requirement will be. Thus, we need other means of satisfying 
the memory-residency _assumption. 

3.6.1 Operating System Environment. In OBE the memory-residency assump- 
tion is approximated by virtual memory and the scheduling algorithm of VM/ 
370 [24], a working-set algorithm. If a pure demand paging algorithm were used, 
OBE might suffer from serious performance degradation due to potential thrash- 
ing when many users share the system. However, in conjunction with the working- 
set algorithm, VM/370’s virtual memory provides an excellent approximation of 
real memory. 

We describe below a very simplified version of the scheduling algorithm to 
investigate its effect on the memory-residency assumption. The scheduling al- 
gorithm uses two types of time units: time slice and dispatch time slice. For 
convenience, let us call them a long time slice and a short time slice. In addition, 
there are two types of queues for virtual machines: dispatch list and eligible list. 
The short time slice is the unit time for allocating CPU among members in the 
dispatch list. A long time slice is a fixed multiple of short time slices during 
which a virtual machine is entitled to stay in the dispatch list. If there are other 
virtual machines with higher priorities when the long time slice expires, a virtual 
machine may be relocated to the eligible list to wait for another long time slice 
to be assigned to it. 

The scheduler puts virtual machines in the dispatch list only to the extent 
that the total memory requirement of the virtual machines does not exceed the 
size of real memory. The memory requirement of a virtual machine (working set) 
is first estimated as the average number of memory-resident pages for that virtual 
machine while in the dispatch list. The number thus obtained is adjusted 
according to some formula that provides a feedback mechanism to stabilize the 
performance toward the system’s global goal for paging activities. Once the set 
of virtual machines on the dispatch list is determined, paging is controlled on a 
demand basis. 

Ideally, if the access patterns of virtual machines are constant, the virtual 
machines must get sufficient memory with which to work. Of course, there is 
paging due to contention among virtual machines, but, since the amount of real 
memory always exceeds the total expected demand, the amount of paging should 
be minimal. 

Let us summarize the ramifications of the scheduling algorithm: 

-As long as an OBE query is evaluated within one long time slice, there will be 
no additional I/OS, except for the initial loading of data (one access for each 
page). 

-Even when a query spans multiple long time slices, provided that a long time 
slice is long enough to dominate the cost of initial loading, the I/O time will 
be negligible compared with the CPU time. 
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Table I. Performance Results of Test Set 1 

Degree of join Number of tests 

1 4 
2 7 
3 5 
4 4 
5 1 

Virtual CPU time Elapsed time 
(ms) (seconds) 

176 3.8 
247 4.6 
328 4.2 
223 4.3 
222 4.0 

-There will be no significant thrashing because the memory requirement of a 
virtual machine is satisfied while the machine is on the dispatch list. 

-The system’s feedback mechanism, imbedded in the estimation of the working 
set, tends to stabilize the overall paging activity. 

We have informally argued the advantages of the working-set scheduling 
algorithm, the detailed analysis of which is beyond the scope of this paper. 
Nevertheless, we believe that virtual memory, in conjunction with the working- 
set algorithm, would serve as a reasonable approximation to real memory in 
practical environments. 

3.6.2 Test Results. Extensive tests have been made on the performance of 
OBE; some of the results are presented here. Specifically, we present two sets of 
tests using IBM’s 3081 and 4341 processors. Across all the queries tested, we 
found that 4341 figures are approximately 7 times as large as 3081 figures. Thus, 
in Table I we transformed 4341 figures to an equivalent 3081 figures by dividing 
them by 7. 

Table I shows the results of the first set of tests, which were made under the 
following conditions. The system was shared by a number of users, but it was 
not CPU bound. The queries tested were arbitrarily chosen from a large pool of 
test queries used for debugging purposes. Each table in the query contained 
approximately 500 tuples, with each tuple occupying about 100 bytes. Each table 
had one index on the key column. The sizes of the output results of the queries 
ranged from 0 to 50 tuples. 

In Table I, degree of join is the number of tables joined in a query, number of 
tests the number of queries tested having the same degree of join, virtual CPU 
time the total CPU time the virtual machine consumed in processing a query, 
and elapsed time the real time measured from the start of a query to its end. 
Virtual CPU time and elapsed time were averaged over the test queries of the 
same degree. Let us note that queries of degrees 4 and 5 took less time than those 
of smaller queries. This happened because these queries produced, on the average, 
a smaller number of output tuples owing to more selective predicates in the 
queries. 

Table II shows the results of the second set of tests. The tests were made under 
two different load conditions: First, the machine was used by a single user; 
second, it was shared by a moderate number of users. The tables in the queries 
had different numbers of tuples; thus, we represent a table by the number of 
tuples it contained, for example, lK, 2K, 10K. The size of a tuple was 186 bytes, 
and the size of the result of a query was controlled to be exactly 1000. Test 
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Table II. Performance Results of Test Set 2 

Total data 
Elapsed time (seconds) 

volume Single-user Shared 
Queries (Mbvtes) machine machine 

lKw2K 1.1 1.40 
1K w 5K 2.1 1.43 

1K w 10K 3.9 1.44 
lKw2Kw5K 2.8 1.85 Cl0 

lKw2KwlOK 4.6 2.18 
lKw2Kw2Kw5K 3.6 2.26 

1Kw2Kw5Kw10Kw10K 9.7 2.85 

queries were designed as joins among tables without any restriction predicates 
(i.e., unconditional joins). Each table had indexes on all columns. However, only 
indexes on the join columns were utilized because we tested only unconditional 
joins. The indexes occupied approximately 18 percent of the total space. The 
symbol “w” represents a join between tables. In Table II, since the elapsed time 
for the shared machine varied depending on the system load, we presented only 
an approximate upper bound. 

Finally, we note that a formal benchmarking has been done, and the results 
can be found in [4] and [6]. The contents in Table II came partially from those 
results [5]. We briefly summarize the results here: 

(1) OBE does very well with selections and joins, as indicated in Tables I 
and II. 

(2) OBE is somewhat slow in update, insertion, and deletion. For update of 
nonkey columns and deletion, maintenance of indexes causes the major cost. 
However, note that this problem does not come from our index update algorithm; 
instead, it comes from our decision to provide indexes for all columns by default, 
although there is a provision for selective indexing. Experiments indicate that 
the cost of updating all indexes is comparable to (somewhat higher than) that of 
updating one index in conventional disk-based DBMSs. Insertion and update of 
key columns are quite slow; the reason is duplicate elimination by default. Note 
that many other DBMSs, such as SQL/DS or INGRES, do not provide this 
feature by default; instead, they allow duplicates in a table. Also note that 
duplicate elimination in a permanent table is different from that in a temporary 
table, for which we use an efficient hash-based method. 

(3) OBE is somewhat slow for certain types of projections, in which our 
efficient, hash-based duplicate elimination is not used. Nevertheless, this problem 
is not inherently related to the memory-residency assumption. We believe that 
this problem can be fixed by more careful design of data structures for these 
operations. 

(4) We also address the problem of the total size of the physical memory (of 
the entire system, not per user) being less than the size of the data. The 
experiments indicate that the performance is gradually degraded as the size of 
data crosses over the physical memory size. It shows a tendency to degrade 
approximately four times as the ratio of the data size to the physical memory 
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size doubles. Note that, as long as the system’s total memory is greater than the 
data requirement of a single user, there is no significant degradation due to 
thrashing, as discussed in Section 3.6.1. Of course, the response time would be 
increased (approximately linearly) as the number of users increases. If a system 
uses pure demand paging, the degradation would be far more significant in a 
multiuser environment owing to thrashing. 

(5) The tests are based on the fact that the tables are already in main memory. 
If they are not, they have to be brought in main memory at the first reference. 
Nevertheless, reading a table into main memory is very fast in our system because 
we store a table as one record in a file. The file system has a built-in mechanism 
to try to store a contiguous virtual file address space in contiguous physical disk 
pages as much as possible. Typically, the system takes 0.67 second to read in 
1 megabyte of data. 

For more details of the benchmarking results, readers are referred to [4]. 

3.7 Concurrency Control 

Here we sketch OBE’s concurrency control-the portion of the OBE system that 
assures correct operation when multiple users access shared data simultaneously. 
An application for reserving rooms, for example, could use such an ability. A 
recent paper [39] describes the concurrency control in more detail. 

We define two terms: 

-An OBE subtransaction is the set of actions that the user specifies before 
pressing the PROCESS key. This set might include nested executions of 
windows and selections from menus. 

-An OBE transaction is a sequence of subtransactions that satisfies one of the 
following: 
(1) The sequence’s length is 1, and the subtransaction only reads. 
(2) The sequence’s first subtransaction and possibly others write, and only the 

last subtransaction saves on disk. The length might be just 1. 

During an OBE session, the user can execute any number of transactions. A 
transaction is the unit of activity for which the concurrency control assures 
correct operation (consistency). The transaction’s operations take effect atomi- 
cally (as a group), as in a transfer from a checking account to a savings account 
at a banking machine. Transactions take effect as if they were serial [ll], that 
is, as if their operations were not interleaved with other transactions’ operations. 

Most research in concurrency control for transaction-oriented systems has 
taken place in the context of DBMSs. Probably most of this research can apply 
to office systems, and readers who have studied concurrency control for database 
systems will recognize several of the techniques that OBE uses. However, some 
issues in concurrency control that apply to OBE, and some other office systems 
may differ from those that apply to a DBMS. These differences influenced our 
design decisions. The differences include less conflict among transactions in an 
office system, possible user interactions (e.g., selection from a menu) during 
transactions, and persistence of local copies of data (in virtual memory) across 
transactions. 
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We believe that most OBE transactions will use unshared databases. Therefore, 
in our design trade-offs, we gave a high priority to optimizing the concurrency 
control toward those transactions. 

OBE applies a type of optimistic concurrency control [28] to each subtransac- 
tion. When evaluating a query or write, we read and write local copies of objects. 
Any user interactions during the subtransaction take place now. We assume that 
the local copies are fresh; that is, no other users have written the objects in the 
database on disk after this user most recently read or wrote them in the database. 
If a referenced object has no local copy yet, then we read the object from its file 
into virtual memory, that is, we create a local copy. 

After the evaluation, OBE validates (checks freshness of the copies of all 
objects that the transaction has referenced). If all are fresh, then we complete 
the subtransaction. This includes saving, if the user specified saving. If any 
referenced copies are stale (not fresh), then we reject the subtransaction (if the 
transaction has written) or restart the subtransaction (if the transaction has not 
written). A rejection includes erasing local copies of referenced objects that OBE 
has written or that are stale. The erasing aborts the transaction. OBE behaves 
as if the aborted transaction never occurred. Rejections should occur rarely. A 
restart involves rereading stale referenced objects from the database into local 
copies and then reevaluating the query. 

OBE currently uses freshness indicators as a mechanism to implement the 
determination of freshness. A freshness indicator is a piece of information that 
OBE maintains. A freshness indicator exists for a user for an object if and only 
if that user has a fresh copy of that object. We have explicitly separated the 
policy of freshness from the well-known mechanism that most implementations 
of such a policy use, that is, timestumps. The separation lets us use different 
mechanisms for the same policy. 

The optimistic strategy assures correctness. The strategy includes some locks 
that are essential to ensure integrity of certain low-level actions. We supplement 
the strategy with other, inessential locks only to improve performance by reducing 
the frequency of restarts, as we explain below. OBE uses mortal locks. When 
OBE locks a mortal lock, it specifies a lifetime for the lock. Usually OBE explicitly 
unlocks the lock later. If, however, OBE does not explicitly unlock the lock, then 
the lock automatically becomes unlocked after its lifetime has expired. This 
finiteness of lifetime led to our term mortal lock. 

OBE specifies a very long lifetime (24 hours) for all essential locks, that is, for 
checking freshness, reading from the database, and saving in the database. This 
provides the effect of a conventional lock. OBE specifies a brief lifetime (starting 
with 1 minute) only for inessential locks that it uses to make successful validation 
likely, as we describe below. We expect that even the brief locks will almost 
always be unlocked explicitly, as conventional locks are. Locks should time out 
only under unusual circumstances, such as very slow user interaction during a 
subtransaction. A user can interact slowly without blocking other users indefi- 
nitely because the locks will time out. OBE does not set long (24-hour) locks 
around user interactions. 

If we restart a subtransaction (begin a second pass), then we set brief 
(l-minute) read locks for all objects that the subtransaction has referenced. If a 
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copy becomes stale during the second pass, we again restart, but with a longer 
lifetime of the locks (2 minutes). If we restart more times, we use even longer 
lifetimes (4 minutes, 8 minutes, etc.). This strategy should succeed eventually, 
usually on the first or second pass. OBE does not rely on the existence of the 
brief (minute) locks during a restarted subtransaction. OBE uses them only to 
increase the probability of success by decreasing the probability that another 
user will save a referenced object before this user’s next validation. 

3.8 Recovery 
Recovery is a function that a database management system must provide to 
guarantee the integrity of data. In OBE, recovery is required when a failed save 
operation has left the database in an inconsistent state. A save operation may 
fail because of a system error or inadequate disk storage space. 

Saving a database consists of several steps. First, each modified segment 
(object) is written to disk in files of type commit. Next, the new directory 
is written to disk with the same file type. The existence of a directory file of 
commit type signifies that the transaction has committed. The creation of this 
directory is guaranteed to be an atomic operation by the operating system. 
Finally, old versions of modified segments, including other deleted segments, 
are erased. The new files are subsequently renamed to the types of their original 
versions. 

If the save operation fails before the new directory is successfully written to 
disk, the transaction is aborted, and recovery is accomplished by erasing all files 
of type commit. On the other hand, once the new directory exists, recovery is 
done by reexecuting the part of the save operation that follows the operation of 
creating the new directory. 

OBE’s recovery scheme has several advantages. First, individual transaction 
backup is easy: It is done by simply discarding the memory-resident copy. 
Accordingly, there is no need for expensive systemwide transaction logging for 
the recovery from soft failures. In this sense OBE’s recovery scheme is similar to 
the deferred update policy [14]. Second, a systemwide checkpointing is not needed 
for recovering physical consistency. In OBE a transaction commit leaves the 
database in a globally consistent state, both logically and physically. Physical 
consistency is implied at a transaction commit because no two transactions can 
write in the same disk block without violating logical consistency, which is 
maintained by the concurrency control module. We obtain this property because 
the objects, which are the smallest granules of locking, are stored in disjoint disk 
blocks and thus cannot share the same disk block. System checkpointing is a 
cumbersome operation, especially in environments such as OBE, in which ma- 
nipulating private data is the primary mode of operation. 

This recovery scheme also has a disadvantage: It lacks the capability of 
recovering from hard failures because it does not store the update log permanently 
on disk. (Let us note that the files of type commit can serve as an update log, if 
stored permanently on disk.) However, the operating system’s recovery and 
backup facilities partially compensate for this drawback. 
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3.9 Authorization 

There are two phases in authorization: definition and enforcement. Authorization 
is defined by inserting an authorization statement according to the syntax 
described in Section 2.6. There are three system tables involved in defining 
authorization. When an authority statement is inserted, a tuple is placed in the 
AUTHORITY table, after verifying that the user is eligible for granting the 
specified authority. At the same time, if the authority statement involves a table 
object, associated column information must be stored in the AUTHCOL table. 
Lastly, the A UTHSTRUCTURE table is needed for authorizing the X. operation 
on a window. 

A complicated situation occurs when the X. authority on a window is granted. 
Since a window is an executable object, its authorization implies authorization 
on objects it contains (we call them s&objects). Thus, the system must verify 
the user’s eligibility for granting authorities on all subobjects, as well as on the 
window itself. If verification of eligibility fails on any of them, the X. authority 
on the window must not be granted. Let us note that this verification can be 
omitted, if the X. authority on the window has ever been granted to a different 
user. In the process of defining the authorization on the window, the subobject 
structure of the window is recorded in AUTHSTRUCTURE tables-in the 
database of the window and in those of subobjects. The entire procedure is 
repeated recursively if the original window specifies an X. operation for another 
window. 

Authorization thus defined is enforced every time an access to the database is 
requested. In most cases verifying the authorization is as simple as looking up 
the AUTHORITY table. However, a complex action needs to be taken in certain 
situations. For example, we encounter such a situation when an object, which is 
a subobject of a window that has been authorized for the X. operation, is deleted. 
Since such a window becomes nonexecutable after deletion of the subobject, any 
X. authorization on this window must be revoked. (Let us note that a nonexe- 
cutable window is still a valid OBE object and thus should not be deleted.) 
Besides, if the window is called in another window, the revocation must be 
propagated recursively. 

When executing a window, an interesting question arises on which window 
definition should be used. Specifically, we have to choose from a window that 
appears on the screen and the one stored in the database. Normally, we use the 
one on the screen since a user should be allowed to modify the window and 
execute it without having to store it in the database. When the user executes a 
window for which the user has the X. authorization, however, the definition must 
be fetched from the database. Otherwise, there is a danger of forging by modifying 
the window on the screen. 

4. CONCLUSIONS 

We have presented the facilities and architecture of OBE, a prototype office 
system and database manager that has been under development at IBM Research. 
In particular, we have emphasized three aspects of office systems: integration, 
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usability, and performance. OBE integrates heterogeneous objects by extending 
the concept of example elements that was originally defined in QBE. OBE 
ensures a high degree of usability by providing a flexible screen manager and a 
color-graphics presentation package. OBE implements a memory-resident data- 
base manager for high performance. 

We have classified integrated office systems into four categories. We have 
shown that OBE achieves the highest level of integration of heterogeneous office 
objects through a database system using the power of a relationally complete 
database language. We have presented a simple and effective implementation 
technique for this integration. 

We have presented a complete memory-resident database system. We have 
argued that a memory-resident system has an environment vastly different from 
those of conventional disk-based systems. We emphasize that simply keeping the 
data in main memory does not automatically guarantee good performance. 
Instead, all the data structures and algorithms must be designed to maximize the 
benefit of keeping the data in main memory. Indeed, OBE’s new indexing 
structures, join algorithms, and optimization algorithms have been designed with 
this goal in view. 

We have proposed a new approach to developing the cost model in a CPU- 
intensive system based on both experimental and analytic methods. In this 
approach, we identify the system’s bottlenecks and construct the cost model on 
the basis of their unit costs. Through this process, we identified the predicate 
evaluation as the dominant CPU computation. This contrasts with the case of 
conventional database systems, in which the cost of I/O accesses to retrieve 
tuples dominates. 

We have analyzed an operating system environment that provides a reasonable 
approximation for memory-residency of data. By employing a working-set algo- 
rithm, the system prevents potential thrashing due to heavy usage of virtual 
memory. We emphasize that coupling the virtual memory with the working-set 
algorithm is crucial in realizing a practical memory-resident database system. 
On the other hand, a pure demand paging scheme would not work in a practical 
time-sharing environment because of thrashing. 

We have presented a concurrency control scheme that is suitable for office 
environments and memory-resident databases. This scheme uses freshness to 
validate transactions and mortal locks to improve performance. 

An important feature that has been implemented, but not included in this 
paper, is the interface to a procedural language. We have implemented a facility 
for invoking OBE from PL.8 programs. This feature is necessary for applications 
requiring more than standard features of OBE (e.g., interfacing OBE to a different 
database system). 

Currently, a single-user version of the OBE system is fully operational. This 
version includes all the system components discussed in Sections 2 and 3, except 
for the concurrency control module and the authorization module. The concur- 
rency control module has been completely designed and implemented but has 
not been incorporated into the rest of the system. The authorization module has 
been designed and partially implemented. 
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We believe that the ideas contained in OBE and novel design decisions made 
in the prototype implementation are a major contribution toward the research 
on future integrated, high-performance, user-friendly office systems. 
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