
The Multilevel Grid File - A Dynamic Hierarchical Multidimensional File Structure

Kyu-Young Whang
Center for Artificial Intelligence Research and Computer Science Depxunent

Korea Advanced institute of Science and Technology
P.O. Box 150 Cheong-Ryang Ni, Seoul, Korea

Ravi Krishnamurthy
Hewlett-Packard Laboralories

1501 Page Mill Road, Bldg. 3U
Palo Alto, CA 94304-1181

ABSTRACT : We present a new dynamic hashed file organization that
solves most problems associated with the directory of the grid file proposed
by Nievergelt et al. Our scheme is a multilevel extension of the grid file
that supports multiattribute accesses to the file for exact-match, partial-
match, and range queries as well as graceful expansion and shrinkage of the
file in a dynamic environment. This new file organization offers a number
of advantages over the grid file such as compact representation of the
directory, linear growth of the directory in the number of records, easy
splitting and merging of the directory, efficient processing of partial-match
queries, and finer granularity of the directory. Moreover, it provides a new
concept, calledabshuct d , that can be employed in practical database
applications.

1. Introduction

We present a new dynamic hashed file organization that allows
accesses to the file using multiple attributes. We call it the multilevel grid
file (MLGF). The MLGF is an extension of the grid file proposed by
Nievergelt et al. [Nie84]. This extension solves many drawbacks of the grid
file caused by its multidimensional array directory.

Before proceeding, we define some terminology. Ajife is a collection
of record, where a record consists of a list of attributes. A subset of the
attributes, called organizing attributes, participates in organizing the file.
For simplicity, we assume that the set of organizing attributes forms a key
that uniquely determines a record. Let us note that we need this assumption
only to follow a historical convention in defining terminology.
Historically, in the literature, it has been implicitly assumed that an exact-
match query (which we shall define later) retrieves a unique record by
matching values for all organizing attributes. This assumption is not at all
necessary otherwise.. In general, the set of organizing attributes can be either
a subset or a superset of a key. In fact. it may even be an arbitrary set of
attributes. We define a file to have a muItidimensional organization if there
is more than one organizing attribute.

A&main of an attribute is a set of values from which a value for the
attribute can be drawn. We define thedomuin space to be Cartesian product
of the domains of all organizing attributes. (The domain space has been

DATABASE SYSTEMS FOR ADVANCED APPLICATIONS ‘91
Ed. A. Makinouchi
@World Scientific Publishing Co.

called by various names in the literature: region [Rob81], record space,
embedded space [Nie84], attribute space lOto85a], base space iFus8.51, to
name a few.) We call any subset of the domain space a region.

A query is a predicate that must be satisfied by the records retrieved
from the file. We deEine an exact-march query as a conjunct of equality
predicates (such as Attribute A = ‘a’) for every organizing attribute. A
partial-march query is similar to an exact-match query except that only a
proper subset of organizing attributes is included in the predicate. A range
query is a conjunct of equality predicates and at least one range predicate
(such as Attribute A > ‘a’). Finally, we define a muitiatrribute access or
rerrievul as an access to the file attempting to retrieve records matching
values for more than one attribute.

The multiattribute retrieval problem has been studied extensively in
the literature under the topic of partial-match retrieval problems [Riv76]
[Bur76a] [Bur76b] [Ah0791 [Bo179]. Many of these approaches employ
hashing techniques for organizing the files. Although conventional hashing
used as a file organization technique has the advantages of being simple and
fast, many of these organizations do not provide the capability of
dynamically adapting to the environments in which data volume grows or
shrinks by large factors.

Recently, extensive progress has been made on the development of file
organizations based on hashing that can dynamicalty vary the size of the
file. Dynamic hashing by Larson [Lar78], virtual hashing by Litwin
[Lit78], linear (virtual) hashing by Litwin &it801 Kit 793, and extendible
hashing by Fagin et al. Fag791 are pioneering research contributions in
this direction. Many variations of these schemes are also available in
lLit81]. &ar80], ILar821, [SchBl], and ~~1813. A hybridapproach between
the conventional B-tree [Bay721 and the extendible hashing method can be
found in [Lome 11.

All these techniques, however, emphasize only single-attribute cases.
These techniques must be extended for the design of multidimensional file
organizations. Extensions of linear hashing have been reported in [Bur83],
[Ouk83], and [Oto85a]. Similarly, the ideas behind the extendible hashing
method have greatly affected the design of the grid file [Nie84]. Dynamic
multipaging [Mer82] based on extendible arrays has been the major
motivation for the multidimensional extendible hashing directory [Oto84]
as well as the multidimensional linear hashing scheme [Olo85a]. Just for
comparison purposes, we note that multidimensional extensions of the
conventional B-tree have been reported in [Rob811 and [Sch82]. A static
multidimensional directory that induces a domain partitioning similar to
that of mob8 11 has also been reported in [Lio77].

The grid file is an extension of dynamic hashed organizations
incorporating multiattribute accesses using a multidimensional file
organization. The grid file consist of two components: the directory and the
main data in the file. The directory partitions the domain space into grid-
like regions and associates for each region a pointer to the physical block
that contains the records that belong to the region. A one-dimensional array

449

for each attribute, called the linear scale, is also associated with the
directory. These linear scales define the intervals of the partitions of
individual domains.

The idea behind the design of the grid file is conceptually very simple;
but, the implementation may pose many difficulties because of the
envisionment of the directory as a large multidimensional array. Although,
the designers of the grid file left the representation of the directory open,
their two-disk-access guarantee for exact-match queries requires an array-like
structure. The purpose of this paper is to propose a novel mechanism that
solves these problems. We first identify potential drawbacks of the grid file
and then present our scheme that overcomes these drawbacks. Further, we
discuss an additional advantage that our scheme provides, when applied to
database environments, but that has not been considered seriously in
conventional database systems.

In the following we describe the overall organization of this paper. In
Section 2 we discuss the properties of the grid file and present motivations
of our work. In Sections 3 and 4 we describe the architecture of tbe MLGF:
we first introduce the single-attribute case in Section 3, and subsequently,
extend it to the multidimensional case in Section 4. We subsequently
present algorithms for querying and manipulating the lv&GF in Section 5.
In Section 6 we discuss the advantages of our scheme as well as
enhancements achieved compared with the grid file. We reinforce the result
of this discussion by a quantitive analysis in Section 7. Finally, Section 8
summarizes the contributions of this paper and proposes future research.

2. Motivations

In this section we discuss drawbacks of the grid file and present
motivations for this paper.

2.1. Compactness of directory

A major problem in the grid file is the size of the directory.
Simulation results presented in [Nic84] indicate that the size of the directory
grows approximately linearly in the size of the file. We note, however, that
the coefficient of the linear function grows as the data distribution deviates
from a uniform one. Furthermore, If a strong correlation (some value
relationship between x and y values) among attributes exists, the growth of
the directory is of a much higher order - a high polynomial order in the size
of the file; and an exponential order in the number of organizing attributes
(i.e., the dimensionafity of the directory). Incidentally, the authors of the
grid file addressed both attribute correlation and nonuniformity in the record
distribution. We believe, however, the attribute correlation has much more
serious effect on the asymptotic growth of the directory.

In Sections 3 and 4 we shall present a solution to this problem. Here,
we make an assumption that will be used throughout the paper. Since we
are dealing with problems associated with large directories, we assume that
the directory does not fit in main memory and must reside in the secondary
storage.

2.2. Splitting of directory

Another difficulty associated with the grid file is the one encountered
when the directory splits. Because the directory is a multidimensional army,
splitting it necessarily accompanies copying the entire directory. Therefore,
a directory split would cause a large amount of I/O accesses. Here, we
conclude that we need an organization for the directory that gracefully adapts
to dynamic changes. Our scheme presented in Sections 3 and 4 also solves
this problem.

2.3. Merging of directory and data blocks

In the grid file merging occurs in two stages: merging of data blocks
and merging of cross sections (hyperplanes) of the directory. In this

subsection, we discuss performance issues associated with these two stages
of merging. For merging data blocks, two algorithms-namely, die buddy
system and neighbor system-were proposed in lNie84]. Since the grid
directory has a plain array structure, however, it does not provide a
convenient data structure to recognize a buddy or a neighbor that satisfies
the convexity property. The convexity property requires that a region be a
k-dimensional “rectangle”. Hence, algorithms for detecting a buddy or a
mergeable neighbor must be executed each time a block is merged. Frequent
execution of these algorithms will be very costly, especially when the
directory is stored in the disk.

The next stage, diiectory merging, was hardly investigated in fNie841
under the assumption that, in practical environments, the merged
hyperplane will split again sooner or later, rendering the merger
unnecessary. We believe that this assumption is incorrect because, as the
distribution of records changes, the hyperplane to be split will not
necessarily be the same as the one just merged. If the hyperplanes to he
merged were left unmerged. we would end up with a large number of
redundant directory entries that would contribute to creating an oversized
directory.

There are two problems associated with merging hyperplanes. First, as
in splitting, merging the directory necessitates copying the entire directory.
Second, to merge two hyperplanes, we must fist determine whether they
are “mergeable”. To be mergeable, each directory entry in one hyperplane
must point to the same block as the corresponding entry in the other
hyperplane. Detecting this condition is costly because a large number of
directory entries have to be searched.

The problems discussed above have a serious effect on performance
when the directory is stored in secondary storage. Because the directory is a
multidimensional array, (assuming the dimensionality is greater than one)
logically contiguous directory elements are not necessarily stored in
contiguous physical blocks-let alone in the same physical block. As a
result, searching the directory is very likely to incur one block access per
one directory entry. Therefore, we expect that the operations associated with
merging the directory as well as merging the data blocks will cause a large
amount of I/O accesses. Our scheme presented in Section 3 and 4 solves
these problems by keeping a convenient representation of buddies and
merging the directory only “locally”, while maintaining a conceptual grid-
like partitioning of the domain space.

2.4. Partial-match queries

‘Ibe grid file guarantees a bound of two disk accesses for exact-match
queries. Nevertheless, performance may degrade severely for partial-match
queries for the following reasons. First, to process a partial-match query, an
entire hyperplane of tbe directory orthogonal to the domains of the
attributes specified in the query has to be examined. As discussed in Section
2.3, searching the directory of a grid file is likely to incur one block access
per one directory entry. Consequently, a large number of I/O accesses are
expected in processing such a query. To illustrate, consider a three-dimensional
grid directory consisting of 1000 elements having equal sized partitions in
all axes; then, since there must be ten hyperplanes in an axis, a query
matching one attribute will cause lOOO/lO = 100 I/O accesses. Furthermore,
the situation gets worse if the dimensionality gets larger. For example, for
a six-dimensional directory consisting of the same number of elements, the
same query will cost 1000/lOCO’m= 315 I/O accesses.

Although the above example describes a somewhat pessimistic case,
we expect the effect of excessive directory accesses could he significant
even in practical situations. In our scheme described in Sections 3 and 4, we
alleviate these problems by keeping the directory compact (i.e., by not
storing redundant directory entries), by keeping the directory entries that are
close together in the domain space in the same .physical block as much as
possible.

450

3. Single-Attribute Case

In this section we use Extendible Hashing [Fag791 as the single
attribute analogy of the grid file and present our extension to the multilevel
counterpart of extendible hashing. In this way, the motivation, concept, and
its ramifications are easier to understand. In the next section we shall repeat
this process in the context of the grid file. Here we assume that the
organizing attribute consists of exactly one attribute. Even though
extendible hashing can allow a composite of attributes, we omit this
possibility for the sake of simplicity, and without loss of generality.

3.1. Extendible Hashing

Extendible Hashing (EH) is an access technique that can be used to
find all the records that have a particular value for the organizing attribute
This value is termed as key-value. The reader should not confuse this with
the concept of keys in the traditional framework of functional dependencies.
EH consists of two levels: the directory (i.e., the root) and the leaves. The
leaves contain the records. Typically, each leaf can be viewed as a block in
the secondary storage.

The directory is used to locate the block (i.e., leaf) containing the
records that have a particular key-value. Succinctly, the directory is an array
of pointers to leaf blocks. There are 2” entries in the directory, where d is
called thedeprh of the directory-a parameter associated with the directory.
Also, associated with a directory is a hashing function H that maps the
values from their original (possibly clustered) domain to an integer in
(0,1,2,.....,5), wheree is an integer at least as large as d. The hashing
function H partitions any set of records into 2” partitions, based on the first
d bits of the hashed value. Therefore, the i” directory entry consists of a
pointer to a block, p. that contains records associated with all the key-
values that hash into the ?’ partition.

The (array-like) indexing capability into the directory is an important
property that is used to guarantee that any search requires no more than two
accesses. But guaranteeing this capability requires that the updates to the
directory be performed without destroying this property. In EH the updates
that require extending the directory are done by doubling the entries. Thus
the number of entries in a directory is always some power of 2.

In summary, EH provides an efftcient access technique, in which the
user is guaranteed no more than two block accesses to locate the data.
However, there are some problems that may seriously degrade the
performance of this method: they are the problems we discussed in Section
2 that are applied to the single-attribute case. Although these problems are
less serious in this case, we address them here to motivate a solution that
we intend to generalize in Section 4.

1.

2

There are 2” entries in a directory; i.e., the size of the directory is
determined by the parameterd alone. Ideally, one would prefer that the
number of entries, 2d, is no more than the number of leaf blocks. In
EH, however, the size of the directory can be disproportionately large
when compared to the number of leaf blocks.
Extending the directory is an expensive operation especially when the
directory is large. Directory extension involves doubling the number
of directory entries, including those entries that did not overflow. As
the block that overflows is the only block that is split, it would be
better if we alter only the corresponding entry in the directory.

3.2. Multilevel EH method

In this subsection we propose a multilevel generalization of the EH
method, multilevel extendible hashing(MLEH), that solves the above two
problems. Even though the following solution is quite similar to the
dynamic hashing method presented by Larson &~78], we approach our
solution as a generalization of the EH method, because we intend to repeat

this process of generalization, in the next section, for the multiattribute
case.

Let us consider an example of EH organization given in Figure 1. The
content of the directory can be summarized by the following set of records
(i.e., tuples):

D, = ((00, Block A), (010, Block B), (011, Block C), (1, Block D))

Abstractly, D, consists of a set of records 6,~) such that x represents a
region in the domain space andy is a pointer to the block where the records
in that region are stored. Intuitively, if .z = 010, then it represents a region
all of whose hash values start with 010.

WICK A HASH f-)=00...

00 I POINTER
0 IO POINTER
0 I I POINTER
IO0 POINTER
IO t POINTER
I IO POINTER
I I I POlNTER

BLOCK B HASH (-l=OlO...

BLOCK C HASH (-l=Oll...

Figure 1. An EH example.

The main difference between this set representation and that of the EH
method is that, in EH, the address of the i” entry (i.e., the entry
corresponding to the? partition) is computed, whereas thee” entry must be
searched in the set representation. This searching involves two problems:
1. Given an entry number, say i, how to match (i.e., identify) a record

for that entry.
2. How to find that matched record efficiently.

The match for the? entry can he defined as the record @,y) such thatx
is a prefix of the binary representation of y . The process of finding the
match is termedprefur marching.

In order to address the second problem, we observe that D, is itself a
“file”. Therefore, it needs to be organized in some fashion. Thus, the
problem of finding a record in D, is quite similar to that of looking for a
record in the original file (say DJ. Based on this observation, we propose to
organize the set D, using the extendible hashing method. Here, the first
attribute is used as the organizing attribute and the identity function is used
as the hashing function. Such an organkation is shown in Figure 2, in
which the directory for D, is called D, Finally, the directory for D, (i.e.,
DJ can also be organized using the multilevel EH method, creating D, as
its directory.

In short, Ds is the directory for the file DZ; D,is the directory for the
file D,; and D, is the directory for the original file D,,. This hierarchy of
abstractions provides a multilevel approach to organizing the directory.
Note that, in each directory Di. the regions represented by the set of
x-values are mutually exclusive.

This proposed modification solves both problems associated with the
EH method. Fist, the number of entries in the directory is usually much
less than in the EH method. This is evident from the following
observations. Any block in the original file (i.e., De), is pointed to by

451

BLOCK A

I, BLOCK F

BLOCK D

Y---l
I 1

Figure 2. An MLEH example.

exactly one entry in the directory and an empty region is not represented in
the directory. Thus, the number of entries in each directory Di is no more
than the number of blocks in the associated file D,., .

Second, in the event a block overflows, the process of updating the
directory is quite simple. It consists of
1. modifying the old record corresponding to the overflowed block,
2. adding a new record to represent the newly created block due to the

split operation, and
3. propagating this effect up the hierarchy, if necessary.
As compared to the overhead incurred due to the doubling of the directory in
EH, the above process is very efficient.

4. Multiattribute Case

In this section we describe the grid file technique as a k -dimensional
extension of EH and then generalize the technique to the multilevel gridfile
(MLGF).

4.1. Grid File

In EH, the domain space can be represented as values in a single
dimension. Consequently, each region in this domain space is also one
dimensional. In contrast, the grid file views the domain space as a k-
dimensional space when there are k organizing attributes in the record.
Thus, a region in the grid file is also a k-dimensional space.

As in EH, the grid file also consists of two levels: the directory (i.e.,
the root) and the leaves (i.e., data blocks). Typically, data blocks arc stored
in the secondary storage and contain the records in the file. Each data block
represents a region in the domain space and has all the records that lie
within the region.

The directory is viewed as a k-dimensional array. Each element in this
array represents a region in the domain space, and has a pointer to the
corresponding data block. As in EH, more than one entry in the directory
may point to the same data block. The size of the directory is determined by
a linear scale for each dimension. A linear scaleLSj [O..mj] is a one-dimensional
array of values for ther attribute such thatLS, [i] c LSj[i+l] for 0 I i <
mj - 1 and 1 I j I k. Thus, a linear scale partitions the corresponding
domain, and a value Y in the domain is said to occur in the i” partition. if
LS, [i] I v < LS, [i+l]. Intuitively, the LS, can be viewed as an order-
preserving hashing function that maps the values in the domain for attribute
j to an integer from 0 to mj - 1 . If the number of partitions in each
dimension are the same (i.e. mj = mj+(for ah j), the size of the directory is
m*.

An exact-match query search algorithm consists of the following.
First, compute the partition for the value for each dimension. Then, look
up the directory for the pointer to the data block, which may require one
access. The second access is required for accessing the data block.

4.2. multilevel Grid File

As we did in the generalization of EH, we propose to create a
hierarchy of abstractions to represent the directory. The content of the
directory @f the grid file can also be summarized by the following set
notation for the directory.

D, = ((x y) Ix represents a region, and y is a pointer to the data block) .

The region is a k-dimensional space that can be represented by a k-tuple
where the i” element of the k-tuple is the partition number on the P
dimension. y is a pointer to the data block as before.

In a way similar to the technique used for MLEH, we can organize D,
by creating a directory D, for the file D,. We call this organization the
multilevel grid file (MLGF) . For example, a three-level MLGF can be
described as follows: D, is the directory for the tile D,: D, is the directory
for the file D,; D, is the directory for the original file D,. Once again, this
hierarchy of abstractions provides a multilevel approach to organizing the
directory.

Besides the multilevel property, there is one other major deviation
from the grid file approach. The partition number is computed using a
hashing function (possibly order-preserving) rather than a linear scale. This
enables the MLGF method to represent a partition using the prefix of the
hash value in the same way it is done in EH and MLEH. The advantages of
this approach are evident in the splitting and merging operations. This will
bc elaborated in Section 6. Before we discuss the pros and cons of this
technique, let us describe an example.

Example 4.1: Figure 3 depicts an MLGFrepresentation of a two-attribute
file and its two-dimensional (logical) grid, where the physical blocks are
shown by dotted inner rectangles. In this example there are twelve blocks.
Accordingly, there are twelve entries in the directory D,, as shown in Figure
3. We have assumed, in this example, a blocking factor of (maximum ofl
five entries per block. Even though there are only twelve entries in D , there
are four physical blocks associated with it. The directory of D, has four
entries, all contained in one physical block. An entry (10.0) in D,
represents that all records whose hash values of the Fist attribute start with
10, and whose hash values of the second attribute start with 0. Note that the
block in D,, which the entry (10,O) in D, points to, has the region (i.e.
(10.0)) subdivided into the following regions: (lOO,OO), (lOO,Ol), and
(101.0).

From this example, let us note the following points:
1. The empty blocks (e.g. (00,l)) are not represented anywhere in this

slructure.
2. Each physical block can represent a region of varying size;

nevertheless, only one entry in the directory corresponds to that block.
3. The fact that the domain of a particular dimension is completely

452

I1 BLOCK H

IO BLOCK I

01 BLOCK J

00 BLOCK L

000 001 010 01 I 100 101 I IO I II

- 0
100,OO BLOCK E -
lOO,Ol BLOCK F - IJ

101,O BLOCK G A
T

- A

I ,I0 BLOCK H -

I ,iI BLOCK I
-B

L

I I ,OO BLOCK L

1 J

Figure 3. An MLGF and its space partition.

represented is denoted by the symbol “-” in the figure. That is, all
hash values starting with both 1 and 0 are represented by this symbol.

5. Algorithms

In this section we describe the three operations-query, insertion, and
deletion-for manipulating a multilevel grid file. We define some parameters
that are used as program variables in describing the algorithms: 1) Root
specifies the pointer to the root level of the h4LGF directory, 2)Key Record
is the record of key values to be inserted or deleted, and 3) Hush Record is
the corresponding record of hashed values. Further, the directory is viewed
as a set of (Region Vecror, Ptr) pairs, whereRegion Vector is the record of
hash values representing the region, and PR points to the physical block
corresponding to the region.

5.1. Query

Following the approach taken by Robinson [Robgl], we define a
query region as follows. “A query can be expressed by specifying a region,
the query region. It is convenient to think of a region as a cross product of
intervals.“iRob81]. In this representation, an exact-match query is specified
by the intervals representing single points; a partial-match query is
represented by specifying full domains for some of the intervals; and
finally, a range query can be specified by giving intervals that are not full
domains.

The algorithm to output all the records satisfying a query is as
follows:

1. Terminate ifRoot is NULL; otherwisePu@tr := Root.
2. Read the block pointed by PagePlr .

3. IF tbe block read is a leaf block
a. THEN for each record in the block that satisfies the query,

(i.e., the record is in the query region), output the record.
b. ELSE for each element (pegion Vecror, Prr) in the block do

the following: if the intersection of the region specified by
the Region Vecror and the query region is nonempty, then
recurse from Step 2 using Pb as PagePa.

Note that, in our scheme, the problem of checking intersection in
Step 3b simply reduces to pefix matching, and is quite efficient

5.2. Deletion

In this subsection we limit our discussion to the deletion of a single
record. Generalizing this algorithm for the cases of more than one record and
of query-dependent deletion can be done in an obvious manner.

We define additional terminology. Aparenr direcroty entry of a block
is the directory entry whose Pa points to the block. ‘Ibe block containing
tbe parent directory entry is the parent block. In general, a block is
associated with a region vector representing the region of the block. The
region vector of a specific block is called the original region vector, and
accordingly, the region vector of its buddy the b&y region vecror. Lastly,
the parameter Currenr Block stands for the block that is considered at a
specific moment.

Deleting a record consists of searching for the record to be deleted and
deleting it subsequently from the appropriate block. The algorithm is as
follows.

1. Terminate ifRoot = Null;
2. Do an exact-match query on Key Record to be deleted, thereby finding

the block from which Key Record is to be deleted. Set this block to be
Current Block . If Key Record does not exist, then signal an error and
terminate.

3. Delete Key Record from Current Block; If the block becomes empty,
free Currenr Block and iterate Step 3 by setting Key Record to be the
parent directory entry and&rent Block to be the parent block.

4. Invoke the function MERGE-DOMAIN for Current Block. This
function finds a domain on which to merge and a mergeable buddy in
the same parent block where its parent directory entry is, if they exist.

5. IF a mergeable buddy was found THEN do
a. If the buddy region is nonempty, do the following: merge Currenr

Block and the buddy block to form a merged block; free the buddy
block and delete the parent directory entry of the buddy block;
update the Prr in the parent directory entry of Current Block to
point to the merged block.

b. Replace the original region vector in the parent directory entry by
the merged region vector.

c. Set Currenr Block to be the merged block.
d Iterate Steps 4 and 5 for (new)Current Block.

6. ELSE
a. IF Cwrent Block is tbe result of a merge operation THEN

Recurse from Step 4 with the parent block as Currenr Block.
b. ELSE terminate.

Here, the function MERGEABLE is left unstated. Any solution must
do the following: find another directory entry in the same parent block
whose components of the region vector for all but one domain are identical
to those of the original region vector. For the domain on which the
components differ, the difference is limited to the last bit. There may be
many choices; here we assume any one is chosen based on some criteria
(e.g., the total number of tuples in the blocks to be merged is less than a
certain threshold). Also, note that an empty buddy region is mergeable. An
empty buddy region must be properly contained in the region of the parent
block without a corresponding directory entry in the patent block.

453

5.3. Insertion

In this subsection we limit our discussion to insertion of a single
record. Generalizing this algorithm for the cases of more than one record and
of query-dependent insertion can be done in an obvious manner. Insertion of
a record consists of searching for the region that the record belongs to and
adding the record in the appropriate block. The algorithm is as follows.

IF Root = NULL THEN
Create a rmt block with a directory entry (Region Vector, Ptr), where
each component of Region Vecror is “-“, and P@ points to a data
block (also created) containing Key Record to be inserted.
ELSE
Do an exact-match query on&y Record to be inserted, thereby fmding
the region where Key Record is to be added. This region may or may
not correspond to a data block because empty regions are not
represented in the MLGF.
Adding Key Record:
a. IF the data block exists THEN add Key Record to that block. If

Key Record already exists, signal an error and terminate.
b. ELSE do

1) Add a directory entry that points to a newly created block at
the next level (say;E) and whose region vector isHashRecord.

2) From the next level add a directory block for each nonleaf level
of the MLGF containing one directory entry that points to the
newly created block in the next level and whose region vector
is identical to that of its parent directory entry.

3) At the leaf level create a data block containing one record (i.e.,
Key Record).

4) Apply merging algorithm as given in the previous section for
this newly created block B until no more merging occurs. This
step finds a region containing the largest empty region that can
be obtained.

SPLIlTING: IF SPLIT~HEURISTIC is true THEN do
a. Choose a domain to be split.
b. Construct two new region vectors by appending one bit (0 and 1

respectively) to the component hash value (for the chosen domain)
ofRegion Vector representing the splitting block.

c. Partition the splitting block based on these two new region
vectors; thus crearing two new blocks and free the old block.

d. Replace the directory entry for the splitting block by the two new
directory entries for the constructed region vectors with
corresponding pointers to the appropriate (newly created) blocks.
Repeat 4 for the parent block to accomodate overflow.

Like in the deletion case, the function SPLIT-HEURISTICS is left
unstated. It should be used to decide when and which domain to split based
on some criteria. Nevertheless, it should be noted that there is an important
aspect in choosing a splitting domain. When a directory block splits, a
domain cannot be. chosen if the set of directory entries in the splitting block
does not partition in the domain into two disjoint nonempty sets. In
particular, if a splitting block contains a directory entry having a
component hash value for a domain that-is equal to the common prefix of
the block (i.e., the component hash value for the domain of the parent
directory entry), then a partition cannot be obtained for that domain. This
happens because the region represented by this directory entry intersects
both subregions divided, and thus, the directory entry must appear in both
subsets, rendering them nondisjoint.

6. Discussions

In this section we discuss advantages and disadvantages of the MLGF
as compared with the grid file and other conventional file organizations. In
Sections 6.1, 6.2, 6.3, and 6.4, we begin by discussing enhancements of
the MLGF over the grid tile on the issues proposed in Section 2. We then
present, in Section 6.5, additional advantages of the MLGF that have not

454

been addressed in the design of the grid file. In Section 6.6 we compare
features of the MLGF with those of the K-D-B-tree. Finally, in Section
6.7, we discuss other miscellaneous issues.

6.1. Compactness of directory

In the MLGF we keep only those directory entries that represent
nonempty regions. As a result, the number of directory entries is bounded
by (i.e., always less than or equal to) twice the number of records regardless
of the record distribution and correlations among attributes. (An exceptional
case is when there are chains consisting of directory blocks at successive
levels that contain only one directory entry. We believe this occurs very
rarely, since such a chain is created only when a new record is inserted into
an empty region existing at a nonleaf level.) Therefore, the asymptotic
growth of the directory must be &early dependent on the growth of data.

6.2. Splitting of directory

Splitting the directory is simple in the. MLGF. When a block
overflows, only the directory entry pointing to this block is affected (and,
recursively, so is the directory entry in the next higher level, if the directory
block overflows). A directory entry is split into two, simply by adding
one bit (0 or 1, respectively) at the end of the component hash value of the
region vector for the splitting domain. Therefore, splitting the directory is a
local operation affecting only one or a few directory entries. This aspect
contrasts with splitting the directory of a grid file, when an entire
hyperplane is created, and the entire directory copied. Incidentally, directory
split occurs in the grid file much less frequently than in the MLGF because
a split of a hyperplane creates a number of directory entries that can absorb
many of future splits of data blocks. Nevertheless, the cost of one split is
exorbitant due to the cost of copying the entire directory. Clearly, the
MLGF is not only more efficient in cost but also distributes the cost more
evenly over all splits of data blocks.

6.3. Merging of directory and data blocks

In the MLGF merging the data blocks is made easy by maintaining a
convenient representation of buddies in the directory. For example, the
buddy of a directory entry represented by 01001 for the merging domain
must be the one represented by 01000 for the same domain with identical
representations for the other domains. The existence of this directory entry
can be easily determined by accessing the directory hierarchy; in case it
exists, the data block to be merged is found by following the pointer. The
technique just described contrasts with that of the grid file, in which an
algorithm for finding buddy from a flat zuray-structured directory has to be
run every time a block is merged, thereby causing a large amount of I/O
accesses.

Merging the directory entries is easier in the MLGF than in the grid
file because it occurs only “locally” as in the case of splitting. With the
MLGF, merging is carried out by simply taking one bit off the original bit
strings representing the directory entries and creating a new entry pointing
to the newly merged block. As in the case of splitting, the local merging
operation may be recursively propagated to the next higher level, if the
occupancy of the directory block falls below a certain threshold. Our scheme
contrasts with that of the grid file, in which an entire hyperplane is merged,
and further, an algorithm for detecting an “mergeable” hyperplane has to be
run dynamically every time a block is merged, thereby causing a large
number of I/O accesses. Note that, unlike in the case of splitting, the
possibility of merging a hyperplane must be checked for every block merger
in the grid file. This aspect renders merging in the grid file even costlier.

6.4. Partial-match queries

We observed in Section 2.4 that partial-match queries are potentially
very costly due to searching a large portion of the directory, i.e., a
hyperplane. This problem is greatly alleviated in our scheme due to
compactness of the directory: since the number of directory entries is less
than that of the grid file, searching a hyperpkme must be less costly. Yet

another important enhancement comes from the multilevel architecture of
the directory. Since a directory entry representing a region points to a
physical block containing lower level directory entries subdividing the
region, those lower level directory entries, which are close to one another in
the domain space, tend to be in the same physical block. Therefore,
searching a hyperplane must be less costly because more than one directory
entry can be searched in one block access. This contrasts with the case of
the grid file, in which one block access is needed per one directory entry.
The following example should clarify this point.

Example 6.1: Consider a two-level, two-dimensional directory stored in
physical blocks with a capacity of four (i.e., the directory blocking factor =
4). Suppose the top-level directory consists of four entries. Assuming a
uniform distribution of records, we shall have the directory in Figure 4.
Here, dotted inner squares represent physical blocks.

From the figure we note that, even though a hyperplane contains four
directory entries, searching the hyperplane will cause only two block
accesses. In general, under the assumption of uniform distribution of
records and cyclic splitting of individual domains, the number of block
accesses for searching a hyperplane would beD’-“dlb”d (derived in section
7). where D is the number of entries in the directory, d the dimensionality,
andb the directory blocking factor.

Let us note that the problems associated with partial-match queries
addressed here are inherenf in any multidimensional organizations. These
problems can be better visualized by considering a case in which the file is
accessed through a key attribute that uniformly determines a record; even in
this case, if there is more than one organizing attribute, an entire
hyperplane of the directory, and accordingly, its corresponding data blocks,
have to be accessed.

DOMAIN A

Figure 4. A two-level, two-dimensional directory
with the directory blocking factor of four.

6.5. Abstract Database

An important advantage of the MLGF comes from the availability of
abstract databases, against which a preevaluation of a query can be
performed. We define anubszract &&use, DB-A, of a database, DB-B, as a
database derived from DB-B in such a way that the result of a query obtained
from DB-A is a superset of the result obtained from DB-B.

Each level of the directory in our scheme can be considered a k+l-
attribute file: each entry in a directory consists of values fork attributes of
the file and a pointer to a block of the next lower level directory. Thus,
queries can be processed against the directory only, provided that the
attribute values specified in the queries are transformed into proper
representations (by a hash transformation, in this case). The result of
processing a query against the directory must be a superset of the result that
would be obtained from the data file, provided that the result is transformed
into proper representations (through a pointer, in this case). Therefore, we

conclude that the lowest level of the MLGF directory forms an abstract
database of the data file. In the same manner, each level of the directory is
an abstract database of the next lower level.

The concept of abstract databases-first introduced in [KriM] as bucket
databases-has a profound effect on performance, especially when only a
limited amount of main memory is available. Example 6.2 illustrates this

Example 6.2: Suppose that the size of the database considered is 10
Mbytes and the size of an abstract database is 100 Kbytes. We assume
further that SC0 Kbytes of main memory is available for processing queries.
Since sufficient main memory is available for the abstract database, it can
be kept in main memory. We process a query in two steps. First, we
roughly process (i.e., preprocess) the query against the memory-resident
abstract database to obtain the superset of the result. During this process,
relevant records from the origina! database are brought in main memory.
The set of these records is called a reduced&abase [Be&l] for this query.
Let us assume that the size of the reduced database is 10 Kbytes. We
subsequently process the query once again against the reduced database,
which we expect to fit in main memory. In either step, since all the data
reside in main memory, the query can be evaluated with little I/X. In fact,
I/O accesses are needed only to bring the reduced database in main memory.
Thus, the more reduction we achieve, the better the performance should be.
The reductive power of preprocessing a query using an abstract database has
been investigated in detail in [K&X4]. Let us note that, in the MLGF, we
can use any level of the directory as the absuact database.

6.7. Related research

Perhaps, the closest to the MLGF is the K-D-B-tree developed by
Robinson [Rob81]. The K-D-B-tree comprises two types of blocks: region
blocks and point blocks. Region blocks contain a collection of (region,
blockfd) pairs, where blockId is a pointer to the block in the next lower
level of the tree. Point blocks contain a collection of (point, localion) pairs,
where locadon gives dte location of a data record. Nevertheless, (here are a
number of differences between the two schemes.

1. The K-D-B-tree splits a region according to the even-record-distribution
strategy. Thus, when a block splits, half the records are moved to one
block, while the other half to another. Accordingly, the region is split
based on the boundary value of these two halves. On the other hand,
in the MLGF, regions always split based on a predetermined grid-like
boundary.

2. The even-recorddistribution splitting strategy does not induce grid-like
partitions of the domain space. Instead, it produces an irregular
partitioning. Thus, merging is not easy because a region almost
always has to merge with the one it originally split from. In contrast,
in tbe MLGF, a region has multiple alternatives when merging-one
for each axis in the domain space. Since these alternatives provide
additional freedom in merging, we also expect a better storage
utilization in the MLGF.

3. The K-D-B-tree does not address the problem of representing
multidimensional regions inside a physical block. It is clear, however,
that original attribute values must be stored as discriminator values. It
should be pointed out that finding an efficient representation of a
multidimensional region using variable discriminator values may not
be trivial. (We believe the representation must be a tree-like structure.)
In comparison, the MLGF directory stores in a block a bit encoding of
the trie representing further partitioning of the region that the block
belongs to.

4. Since the K-D-B-tree stores original attributes values, the leaf level of
the tree is almost equivalent in size to the data file, in case all the
attributes are considered in the K-D-B-tree. In contrast, by storing
hashed bit strings, the MLGF directory provides a compact
representation. At the same time, the number of levels in the MLGF
directory must be minimal because of compact representation of index
entries and a large index blocking factor.

455

5. The K-D-B-tree distinguishes the leaf level blocks (point blocks) from
the other blocks (region blocks). In contrast, the MLGF employs a
consistent representation in all the directory levels. This strategy helps
keep the file querying manipulation algorithms simple and clean.

The prefix B-tree [Bay771 bears some resemblance in concept to the
one-dimensional version of the MLGF. i.e., MLEH. It differs from the
MLEH in two important ways:
1. It partitions the domain space along arbitrary boundaries.
2. It represents a region implicitly by using a set of discriminator values.

In contrast, the MLEH represents a region explicitly by using a
unique bit string.

Let us note that these differences would cause a multidimensional extension
of the prefix B-tree to encounter with problems similar to those of the
K-D-B-tree.

The hierarchical multidimensional extendible hashing [Oto85b] also
shares a common concept with the MLGF and has a linear growth of the
directory, but it uses an array for the directory structure inside a physical
block as extendible hashing does for the entire directory. In comparison, the
MLGF uses a simple list of directory tuples for efficient storage and easy
manipulation.

6.8. Other issues

Range queries can be handled efficiently in the MLGF, provided the
hashing function is order preserving. As indicated in Fgg79], order-preserving
hashing functions have rarely been used in practice because they do not
provide sufficiently uniform distribution over the address space. In the
MLGF, however, skewing of the hashing function is not much of a concern
because we store only those directory entries representing a nonempty
region. After all, there should be no serious waste in time or storage cost
due to a nonuniform distribution.

In [Nie84], it has been shown that the buddy system, when used for
merging, gives a lower utilization of main storage space than the neighbour
system. This happens mainly because an equal-sized buddy is frequently
unavailable for merging, while a mergeable neighbour is. By definition, a
buddy is a neighbour, but notvice V.YSLI. On the contrary, the buddy system
proves to be a more systematic and flexible in merging the directory. In the
neighbour system, the directory can hardly be shrunk because of irregular
partition of the domain space. In conclusion, we believe that the buddy
system is better than the neighbour system in a highly dynamic
environment. In the MLGF the buddy system is inherently imbedded in the
design.

7. Performance Analysis

In this section we present a simple performance analysis for the
MLGF and the grid file. The analysis is intended to quantify our informal
discussion on the properties of the two file organizations, but is not
intended to provide accurate estimation of the costs involved in such
organizations. Primarily, we present a worst case analysis; later, we try to
relax the worst case condition to investigate its effects. Throughout this
section, we assume an equal number of partitioning of the domain space in
all domains. Before proceeding, we define some notation:

n: number of records in a file
d: number of organizing attributes (dimensionality)
6: number of directory entires in a physical block (directory blocking

fact@
DG : size of the directory in a grid file
D,: size of the lowest level of the directory in an MLGF

7.1. Directory size

Grid File: In the worst case, the asymptotic growth of the directory is
wo.

MLGF: The number of directory entries in the lowest level is bounded by
the number of Wocks in the data file, and consequently, by the number of
records in the file. Thus, the asymptotic growth of the directory will be
o(n).

7.2 . Hyperplane search

Grid File: We note that the number of hyperplanes in a domain is Dew.
Hence, the number of directory entries contained in a hyperplane is D, “.
Since the directory is organized as a multidimensional array, in all domains
except one, a hyperplane search is likely to incur one block access per one
directory entry. Thus, the total number of block accesses for searching a
hyperplane will beDo”“.

MLGF: The MLGF directory is organized in such a way that the directory
elements representing regions that are close to one another in the domain
space tend to be in the same physical block. Specifically, an entry in an
upper level (H) of the directory points to a physical block containing 6
entries of the next lower level (L) of the directory. Hence, any hyperplane of
IevelL that contains a directory entry in this physical block will find an
average of b’M directory entries that belong to the hyperplane and that reside
in the same block. As a result, the number of block accesses for searching a
hyperplane of the lowest level of the directory will beDM’~‘uhw. Since the
cost of searching the upper levels of the directory is dominated by that of
searching the lowest level, we ignore its effect.

7.3. Partial-match queries

Grid File: Combining the effects of directory size and hyperplane search,
we obtain the total number of directory block accesses for processing a
partial-match query that specifies one attribute to be O(n4r-r’dJ).

MLGF: Similarly, we estimate the number of directory block accesses as
o(n“” lb’“).

Here, for simplicity, we did not consider accesses to data blocks. It
should be mentioned, however, that the MLGF has important advantages in
accessing data blocks: In the MLGF there is no redundant access to the
same data block. because a data block is pointed by one and only one
directory entry. In contrast, in the grid file, a number of directory enties can
poinl to the same data block.

7.4. Exact-match queries

Grid File: The number of block accesses for processing an exact-match
query is at most two.

MLGF: We estimate the number of levels in tbe directory as rlognl.
Including one access to the main data block, the number of block accesses
for an exact-match query will berlo?#i + 1.

7.5. Splitting of directory

To investigate the cost of splitting the directory, we calculate the
accumulated number of block accesses caused by splitting the directory
starting from an empty file to a file of size D, or D,. We consider
accumulated cost because the pattern of splitting is quite different in two
file organizations. As discussed in Section 6.2, the cost of splitting the
directory in the grid file is very high, but a split of the directory absorbes
many future splits of data blocks. The measure based on accumulated cost
would average out differences in splitting patterns.

Grid File: Given a directory size, DG, a growing file must have
experienced directory splits as many times as the total number of
hyperplanes. Since the number of hyperplanes in one domain is DGIM, the
total number of hyperplanes isd x D,“d. For each split, the entire directory
is copied: each block in the directory is read in and written out to a new
block. Thus, two block accesses are needed for each directory block. Since

456

the average size of the directory over the period of the file growth is D,/2,
the accumulated number of block accesses for splitting the directory is 2 X
@+/2b)xdxDG”d=d/b xD,““~.

MLGF: The accumulated number of splitting operations on the directory is
bounded by the number of entries in the lowest level, D,, assuming that
the propagation of splits to upper levels of the directory is negligible.
Associated with each splitting operation, there are two block accesses: one
for reading and one for writing a directory block. Thus, the accumulated
number of block accesses for splitting the directory is 2 xD,.

7.6. Merging of directory

The cost of merging the directory can be obtained in a way similar to
the one used for splitting. However, for merging, we have additional costs
to consider: 1) the cost of finding a buddy or a neighbour to be merged; 2)
(in the case of the grid file) the cost of checking the feasibility of merging a
hypctplane every time a data block is merged. Since these costs vary widely
according to specific algorithms used, the details will not be further
discussed. Let us note, however, that these additional costs will be much
higher in the case of the grid file. as discussed in Sections 2.3 and 6.3.

7.7. Summary

In Table 1, we summarize the tesuhs of performance analysis.

I Grid Filz MLGF I

Table 1: Performance of the MLGF and the grid file.

Example 7.1: Consider a file having the following characteristics: n =
10,000, d = 3, b = 250, number of attributes = 10, block size = 4K bytes,
size of a pointer = 4 bytes, size of a hashed key = 4 bytes, size of a
directory entry = 16 bytes. Then, the estimated performance can be
summarized as in Table 2.

In Example 7.1 it is shown that the MLGF organization provides
drastic enhancement in performance when compared with the grid file
organization. A major cause of the difference in performance is the size of
the directory. Specifically, the size of the grid file directory grows
exponentially, while the size of the MLGF directory grows linearly in the
size of the fiie.

Grid file MLGF

directory size 2,013 x10’

partial-march qrery = 10s =74

exact-match query 2 3

directory split z1.2 x 10’4 =2 x IO’

Table 2: Example performance figures.

Let us note that the figure in Table 2 reflect only the worst case
performance. Let us now relax the worst case condition and examine the
effect of the relaxation on tbe performance. In general, the size of the grid
file directory is u X n’, where 1 I Y < d, and u is a constant The value of
Y depends on correlation among attributes, We assume that the value of v is
1.1, which is slightly higher than in the case without any correlation (v =
1). We assume that the value of u is 1.0 to make it compatible with that
for the MLGF. Then, using the same characteristics of the file as in
Example 7.1, we obtain the following performance estimation for the grid
file: directory size = 2.5 x lo’, cost of processing a partial-match query s
858, cost of processing an exact-match query = 2, and accumulated cost of
splitting the directory 5 2.2 x 106. Comparing these figures with those of
the MLGF in Table 2, we conclude that, even with a small amount of
correlation, performance of the grid file can be notably worse than that of
the MLGF.

8. Conclusions and Further Study

We have presented an extension of the grid file that provides a
multilevel access mechanism while maintaining a grid-like partitioning of
the domain space. The extension offers a number of advantages such as
compact representation of the directory, easy splitting and merging of the
directory, efficient processing of partial-match queries, and the concept of
abstract databases. We believe that the contribution of this paper is a major
step towards the design of multidimensional file organizations
implementable in practical systems.

Through the work described in this paper, the authors have found
many common features and ideas shared by various seemingly different file
organizations: binary search trees [Knu73], K-D trees [Ben75], K-D tries
[Ore82], B-trees [Bay72]. K-D-B-trees [Rob81], digital B-trees [Lom81],
tries lJ+e60], quad trees [Fin71], linear hashing [LUO], virtual hashing
[Lit78], dynamic hashing [Lar78], extendible hashing [Fag79],
multidimensional linear hashing [Oto85a], [Ouk83], [Bur83], dynamic
multipaging [Mer82], multidimensional directory &io77], and grid files
[Nie84], etc. We are currently working on the generalization of the ideas
behind all these tile organizations by characterizing the way they partition
the domain space and the way they represent the partitions. A nice
formalism on this issue is the purpose of our current study.

From the discussions in Sections 2.4 and 6.4, we have learned that the
performance degrades for partial-match queries as we add more
dimensionality. Intuitively, this happens because the size of the hyperplane
to be searched gets larger as the dimensionality gets larger. The implication
is that, given a query distribution, there must be an optimal set of
organizing attributes that gives the best performance. This optimal set may
not necessarily be the set of all attributes because of the above mentioned
property. We define the problem of finding an optimal set of organizing
attributes thephysical da&use design problem [Ham76] wha83] ma&l]
[Wha85a] mha85b]. A systematic approach to the physical database design
for the multidimensional file organizations is left as an interesting topic for
further study.

Finally, a systematic and comprehensive simulation research on
performance and storage utilization of the MLGF organization is an
important topic of our immediate future work.

Acknowledgements

The authors are grateful for invaluable feedback they received from
many people on an earlier version of this paper. Steve Morgan, Kyoji
Kawagoe, Ekow Otoo, Per-Ake Larson, and David Lomet carefully read the
paper and contributed very thoughtful comments. The authors wish to thank
Witold Litwin and Tim Merret for providing a forum of lively discussion
and helpful feedback. Sang-Wook Kim suggested some improvement in the
insertion algorithm.

457

__:

References

[Ah0791

[Bay721

[Bay771

[Ber8 I]

[Ben73

LB01791

[Bur76a]

]Bur76b]

lBm+331

Fag791

[Fin741

!Fn=ll

[Fus85]

IHam

[Hin85]

[Knu73]

ILar781

Aho, A.V. and Ullman, J.D., “Optimal Partial-Match Retrieval
When Fields are. Independently Specified,“ACM Trans. Duruhe
Systems, Vol. 4, No. 2, pp. 168-179, June 1979.

Bayer, R. and McCreight, E., “Organization and Maintenance of
Large Ordered Indexes,” Acta Informatica, Vol. 1, No. 3, pp.
173-189, Sept. 1972.

Bayer, R. and Unterauer. K., “Prefix B-Trees,” ACM Trans.
Database Systems, Vol. 2, NO. 1, pp. 1 l-26, Mar. 1977.

Berstein, P.A. and Chiu, D.W., “Using Semijoins to Solve
Relational Queries,“JACM, Vol. 28, NO. 1, pp. 25-40, 1981.

Bentley, J.L., “Multidimensional Binary Search Trees Used for
Associative Searching,” Commun. ACM, Vol. 18. NO. 9, pp.
509-517, Sept. 1975.

Bolour, A., “Optimality Properties of Multiple-Key Hashing
Functions,” .I. ACM, pp. 196-210, April 1979.

Burkhard, W.A., “Partial Match Retrieval,” BIT, Vol. 16, pp.
13-31, 1976.

Burkhard, W.A., “Hashing and Trie Algorithms for Partial Match
Retrieval,” ACM Trans. Database Systems, Vol. 1, No. 2, pp.
175-187, June 1976.

Burkhard, W.A., “Interpolation-Based Index Maintenance,” In
Proc. ACM Symp. Principles of Database Systems, pp. 76-89,
1983.

Fagin R. et al., “Extendible Hashing-A Fast Access Method for
Dynamic Files,” ACM Trans. Database Systems, Vol. 4, No. 3,
pp. 315-344, Sept. 1979.

Finkel, R.A. and Bentley, J.L., “Quad Trees: A Data Structure
for Retrieval on Composite Keys,” Acta Informafica, Vol. 4, pp.
1-9, 1974.

Fredkin, E., “Trie Memory.” Commun. ACM, Vol. 3, No. 9,
pp. 490-499, Sept. 1960.

Fushimi, S. et al., “Algorithm and Performance Evaluation of
Adaptive Multidimensional Clustering Technique,” In Proc. Intl.
Conf. on Managemenr of Dam, ACM SIGMOD, Austin, Texas,
pp. 308-318, May 1985.

Hammer, M. and Chan, A., “Index Selection in a Self-Adaptive
Database Management System,” In SIGMOD ACM SIGMOD,
Washington, D.C., pp. 1-8, June 1976.

Hinrichs, K.H., “The Grid File System: Implementation and
Case Studies of Applications,” Ph. D Dissertation, Swiss Federal
Institute of Technology, Zurich, 1985.

Knuth, D.E., The Art of Computer Programming, Vol. III:
Sorting and Searching, Addison-Wesley, Reading, Mass., 1973.

Krishnamurthy. R. and Morgan, S., “Query Processing on
Personal Computers: A Pragmatic Approach,” In Proc, I&h Intl.
Cot$ VeryLarge Data Bases, Singapore.1984.

Larson, P., “Dynamic Hashing,” BIT, Vol. 18, pp. 184-201,
1978.

IL=801

Fr821

[Lio77]

[Lit781

[Lit791

[Lit801

ILit

[LomSll

[Mer82]

[Mul&l]

fNie&l]

[O&Z]

[Oto85a]

[Oto85b]

[Ouk83]

[Riv76]

Larson, P., “Linear Hashing with Partial Expansions,” In Proc.
6rh Intl. Conf. Very Large Data Bases, IEEE, Montreal, Canada,
pp. 224-232, Oct. 1980.

Larson, P., “Performance Analysis of Linear Hashing with
Partial Expansions,” ACM Trans. Database Systems, Vol. 7,
No. 4, pp. 566-587, Dec. 1982.

Liou, J.H. and Yao, S.B., “Multi-Dimensional Clustering for
Data Base Organizations,” Information Sysfems, Vol. 2, pp.
187-198, 1977.

Litwin, W., “Virtual Hashing: A Dynamically Changing
Hashing,” In Proc. 4th Intl. Conf. Very Large Data Bases , IEEE,
Berlin, pp. 517-523, 1978.

Litwin, W., “Linear Virtual Hasing: A New Tool for Files and
Tables Implementation,” Res. Rep. MAP-I-021, I.R.I.A., Jan.
1979.

Litwin, W., “Linear Hashing: A New Tool for File and Table
Addressing,” In Proc. 6th Inrl. Conf. Very Large Dara Bases,
IEEE, Montreal, Canada, pp. 212-223,198O.

Litwin, W., “Ttie Hashing,” InProc. Intl. Conj on Management
ofData, ACM SIGMOD. New York, pp. 19-29, 1981.

Lomet, D.G., “Digital B-trees,” In Proc. 7th In11. Conf. Very
Large Data Bases, IEEE, Cannes, France, pp. 333-344, Sept.
1981.

Merret, T.H. and Otoo, E.J., “Dynamic Multipaging: a Storage
Structure for Large Shared Data Banks,” Proc. InrI. Conf. on
Database, improving Usability and Responsiveness, P.
Scheuermann ed., Academic Press, pp. 237-256,1982.

Mullin, J.K., “Tightly Controlled Linear Hashing without
Seperate Overflow Storage,“BIT, Vol. 21, pp. 390-400, 1981.

Nievergelt, 3. et at., “The Grid File: An Adaptable, Symmetric
Multikey File Structure,” ACM Truns. Database Systems, Vol.
9, No. 1, pp. 38-71, Mar. 1984.

Orestein, J.A., “Multidimensional Tries used for Associated
Searching,” Information Processing Letters, Vol. 14, No. 4, pp.
150-157, June 1982.

Otoo, E.J., “A Mapping Function for the Directory of a
Multidimensional Extendible Hashing,” In Proc. IOth Inrl. Conf,
Very Large Data Bases, Singapore, pp. 493-506, Aug. 1984.

0~00, E.J., “A Multidimensional Digital Hashing Scheme for
Files with Composite Keys,” In Proc. Intl. Conf. on
Management of Data, ACM SIGMOD, Austin, Texas,pp. 214-
231, 1985.

0100, E.J., “Balanced Multidimensional Extendible Hash Tree,”
draft paper, Carleton University, Ottawa, Canada, 1985.

Ouksel, M. and Scheuermann P., “Storage Mapping for
Multidimensional Linear Hashing, ” In Proc. ACM Symp.
Principles of Database Systems, Atlanta, Georgia, pp. 90-105,
1983.

Rives& R.L., “Partial-Match Retrieval Algorithms,” SIAM J.
Computing, Vol. 5, No. 1, pp. 19-50, Mar. 1976.

[Rob811 Robinson, J.T., “The K-D-B-Tree: A Search Structure for Large
Multidimensional Dynamic Indexes,” In Proc. Infl. Conf. on
ManagementofData, ACM SIGMOD, New York, pp. 10-18,
1981.

[Sch81] Scholl, M., “New File Organization Based on Dynamic
Hashing,” ACM Trans. Database Syslems, Vol. 6, No. 1, pp.
194-211, Mar. 1981.

[Sch82] Scheucrmann, P. and Ouksel, M., “Multidimensional B-Trees for
Associative Searching in Database Systems,” Information
Systems, Vol. 7, No. 2, pp. 123-137, 1982.

ma831 Whang, K.-Y., Wiederhold, G. and Sagalowicz, D., “Estimating
Block Accesses in Database Organizations - A Closed
Noniterative Formula,” Commun. ACM, Vol. 26, No. 11, pp.
940-944, Nov. 1983.

wha84] Whang, K.-Y., Wicderhold, G. and Sagalowicz, D., “Sepetability
- An Approach to Physical Database Design, ” IEEE Trans. on
Computers, Vol. C-33, No. 3, pp. 209-222, Mar. 1984.

‘tWha85a] Whang, K.-Y., “Property of Separability in Physical Design of
Network Model Databases,” Information Systems, Vol. 10, No.
1, pp. 57-63, 1985.

[Wha85b] Whang. K.-Y., “Index Selection in Relational Databases,” In
Proc. Ink Conf. on Foundations of Data Organization, Kyoto,
Japan, pp. 369-378, May 1985 (invited paper).

[Wie83] Wiederhold, G., Database Design, McGraw-Hill Book Company,
New York, 1983, Second Edition.

