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ABSTRACT : We present a new dynamic hashed file organization that 
solves most problems associated with the directory of the grid file proposed 
by Nievergelt et al. Our scheme is a multilevel extension of the grid file 
that supports multiattribute accesses to the file for exact-match, partial- 
match, and range queries as well as graceful expansion and shrinkage of the 
file in a dynamic environment. This new file organization offers a number 
of advantages over the grid file such as compact representation of the 
directory, linear growth of the directory in the number of records, easy 
splitting and merging of the directory, efficient processing of partial-match 
queries, and finer granularity of the directory. Moreover, it provides a new 
concept, calledabshuct d , that can be employed in practical database 
applications. 

1. Introduction 

We present a new dynamic hashed file organization that allows 
accesses to the file using multiple attributes. We call it the multilevel grid 
file (MLGF). The MLGF is an extension of the grid file proposed by 
Nievergelt et al. [Nie84]. This extension solves many drawbacks of the grid 
file caused by its multidimensional array directory. 

Before proceeding, we define some terminology. Ajife is a collection 
of record, where a record consists of a list of attributes. A subset of the 
attributes, called organizing attributes, participates in organizing the file. 
For simplicity, we assume that the set of organizing attributes forms a key 
that uniquely determines a record. Let us note that we need this assumption 
only to follow a historical convention in defining terminology. 
Historically, in the literature, it has been implicitly assumed that an exact- 
match query (which we shall define later) retrieves a unique record by 
matching values for all organizing attributes. This assumption is not at all 
necessary otherwise.. In general, the set of organizing attributes can be either 
a subset or a superset of a key. In fact. it may even be an arbitrary set of 
attributes. We define a file to have a muItidimensional organization if there 
is more than one organizing attribute. 

A&main of an attribute is a set of values from which a value for the 
attribute can be drawn. We define thedomuin space to be Cartesian product 
of the domains of all organizing attributes. (The domain space has been 
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called by various names in the literature: region [Rob81], record space, 
embedded space [Nie84], attribute space lOto85a], base space iFus8.51, to 
name a few.) We call any subset of the domain space a region. 

A query is a predicate that must be satisfied by the records retrieved 
from the file. We deEine an exact-march query as a conjunct of equality 
predicates (such as Attribute A = ‘a’) for every organizing attribute. A 
partial-march query is similar to an exact-match query except that only a 
proper subset of organizing attributes is included in the predicate. A range 
query is a conjunct of equality predicates and at least one range predicate 
(such as Attribute A > ‘a’). Finally, we define a muitiatrribute access or 
rerrievul as an access to the file attempting to retrieve records matching 
values for more than one attribute. 

The multiattribute retrieval problem has been studied extensively in 
the literature under the topic of partial-match retrieval problems [Riv76] 
[Bur76a] [Bur76b] [Ah0791 [Bo179]. Many of these approaches employ 
hashing techniques for organizing the files. Although conventional hashing 
used as a file organization technique has the advantages of being simple and 
fast, many of these organizations do not provide the capability of 
dynamically adapting to the environments in which data volume grows or 
shrinks by large factors. 

Recently, extensive progress has been made on the development of file 
organizations based on hashing that can dynamicalty vary the size of the 
file. Dynamic hashing by Larson [Lar78], virtual hashing by Litwin 
[Lit78], linear (virtual) hashing by Litwin &it801 Kit 793, and extendible 
hashing by Fagin et al. Fag791 are pioneering research contributions in 
this direction. Many variations of these schemes are also available in 
lLit81]. &ar80], ILar821, [SchBl], and ~~1813. A hybridapproach between 
the conventional B-tree [Bay721 and the extendible hashing method can be 
found in [Lome 11. 

All these techniques, however, emphasize only single-attribute cases. 
These techniques must be extended for the design of multidimensional file 
organizations. Extensions of linear hashing have been reported in [Bur83], 
[Ouk83], and [Oto85a]. Similarly, the ideas behind the extendible hashing 
method have greatly affected the design of the grid file [Nie84]. Dynamic 
multipaging [Mer82] based on extendible arrays has been the major 
motivation for the multidimensional extendible hashing directory [Oto84] 
as well as the multidimensional linear hashing scheme [Olo85a]. Just for 
comparison purposes, we note that multidimensional extensions of the 
conventional B-tree have been reported in [Rob811 and [Sch82]. A static 
multidimensional directory that induces a domain partitioning similar to 
that of mob8 11 has also been reported in [Lio77]. 

The grid file is an extension of dynamic hashed organizations 
incorporating multiattribute accesses using a multidimensional file 
organization. The grid file consist of two components: the directory and the 
main data in the file. The directory partitions the domain space into grid- 
like regions and associates for each region a pointer to the physical block 
that contains the records that belong to the region. A one-dimensional array 
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for each attribute, called the linear scale, is also associated with the 
directory. These linear scales define the intervals of the partitions of 
individual domains. 

The idea behind the design of the grid file is conceptually very simple; 
but, the implementation may pose many difficulties because of the 
envisionment of the directory as a large multidimensional array. Although, 
the designers of the grid file left the representation of the directory open, 
their two-disk-access guarantee for exact-match queries requires an array-like 
structure. The purpose of this paper is to propose a novel mechanism that 
solves these problems. We first identify potential drawbacks of the grid file 
and then present our scheme that overcomes these drawbacks. Further, we 
discuss an additional advantage that our scheme provides, when applied to 
database environments, but that has not been considered seriously in 
conventional database systems. 

In the following we describe the overall organization of this paper. In 
Section 2 we discuss the properties of the grid file and present motivations 
of our work. In Sections 3 and 4 we describe the architecture of tbe MLGF: 
we first introduce the single-attribute case in Section 3, and subsequently, 
extend it to the multidimensional case in Section 4. We subsequently 
present algorithms for querying and manipulating the lv&GF in Section 5. 
In Section 6 we discuss the advantages of our scheme as well as 
enhancements achieved compared with the grid file. We reinforce the result 
of this discussion by a quantitive analysis in Section 7. Finally, Section 8 
summarizes the contributions of this paper and proposes future research. 

2. Motivations 

In this section we discuss drawbacks of the grid file and present 
motivations for this paper. 

2.1. Compactness of directory 

A major problem in the grid file is the size of the directory. 
Simulation results presented in [Nic84] indicate that the size of the directory 
grows approximately linearly in the size of the file. We note, however, that 
the coefficient of the linear function grows as the data distribution deviates 
from a uniform one. Furthermore, If a strong correlation (some value 
relationship between x and y values) among attributes exists, the growth of 
the directory is of a much higher order - a high polynomial order in the size 
of the file; and an exponential order in the number of organizing attributes 
(i.e., the dimensionafity of the directory). Incidentally, the authors of the 
grid file addressed both attribute correlation and nonuniformity in the record 
distribution. We believe, however, the attribute correlation has much more 
serious effect on the asymptotic growth of the directory. 

In Sections 3 and 4 we shall present a solution to this problem. Here, 
we make an assumption that will be used throughout the paper. Since we 
are dealing with problems associated with large directories, we assume that 
the directory does not fit in main memory and must reside in the secondary 
storage. 

2.2. Splitting of directory 

Another difficulty associated with the grid file is the one encountered 
when the directory splits. Because the directory is a multidimensional army, 
splitting it necessarily accompanies copying the entire directory. Therefore, 
a directory split would cause a large amount of I/O accesses. Here, we 
conclude that we need an organization for the directory that gracefully adapts 
to dynamic changes. Our scheme presented in Sections 3 and 4 also solves 
this problem. 

2.3. Merging of directory and data blocks 

In the grid file merging occurs in two stages: merging of data blocks 
and merging of cross sections (hyperplanes) of the directory. In this 

subsection, we discuss performance issues associated with these two stages 
of merging. For merging data blocks, two algorithms-namely, die buddy 
system and neighbor system-were proposed in lNie84]. Since the grid 
directory has a plain array structure, however, it does not provide a 
convenient data structure to recognize a buddy or a neighbor that satisfies 
the convexity property. The convexity property requires that a region be a 
k-dimensional “rectangle”. Hence, algorithms for detecting a buddy or a 
mergeable neighbor must be executed each time a block is merged. Frequent 
execution of these algorithms will be very costly, especially when the 
directory is stored in the disk. 

The next stage, diiectory merging, was hardly investigated in fNie841 
under the assumption that, in practical environments, the merged 
hyperplane will split again sooner or later, rendering the merger 
unnecessary. We believe that this assumption is incorrect because, as the 
distribution of records changes, the hyperplane to be split will not 
necessarily be the same as the one just merged. If the hyperplanes to he 
merged were left unmerged. we would end up with a large number of 
redundant directory entries that would contribute to creating an oversized 
directory. 

There are two problems associated with merging hyperplanes. First, as 
in splitting, merging the directory necessitates copying the entire directory. 
Second, to merge two hyperplanes, we must fist determine whether they 
are “mergeable”. To be mergeable, each directory entry in one hyperplane 
must point to the same block as the corresponding entry in the other 
hyperplane. Detecting this condition is costly because a large number of 
directory entries have to be searched. 

The problems discussed above have a serious effect on performance 
when the directory is stored in secondary storage. Because the directory is a 
multidimensional array, (assuming the dimensionality is greater than one) 
logically contiguous directory elements are not necessarily stored in 
contiguous physical blocks-let alone in the same physical block. As a 
result, searching the directory is very likely to incur one block access per 
one directory entry. Therefore, we expect that the operations associated with 
merging the directory as well as merging the data blocks will cause a large 
amount of I/O accesses. Our scheme presented in Section 3 and 4 solves 
these problems by keeping a convenient representation of buddies and 
merging the directory only “locally”, while maintaining a conceptual grid- 
like partitioning of the domain space. 

2.4. Partial-match queries 

‘Ibe grid file guarantees a bound of two disk accesses for exact-match 
queries. Nevertheless, performance may degrade severely for partial-match 
queries for the following reasons. First, to process a partial-match query, an 
entire hyperplane of tbe directory orthogonal to the domains of the 
attributes specified in the query has to be examined. As discussed in Section 
2.3, searching the directory of a grid file is likely to incur one block access 
per one directory entry. Consequently, a large number of I/O accesses are 
expected in processing such a query. To illustrate, consider a three-dimensional 
grid directory consisting of 1000 elements having equal sized partitions in 
all axes; then, since there must be ten hyperplanes in an axis, a query 
matching one attribute will cause lOOO/lO = 100 I/O accesses. Furthermore, 
the situation gets worse if the dimensionality gets larger. For example, for 
a six-dimensional directory consisting of the same number of elements, the 
same query will cost 1000/lOCO’m= 315 I/O accesses. 

Although the above example describes a somewhat pessimistic case, 
we expect the effect of excessive directory accesses could he significant 
even in practical situations. In our scheme described in Sections 3 and 4, we 
alleviate these problems by keeping the directory compact (i.e., by not 
storing redundant directory entries), by keeping the directory entries that are 
close together in the domain space in the same .physical block as much as 
possible. 
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3. Single-Attribute Case 

In this section we use Extendible Hashing [Fag791 as the single 
attribute analogy of the grid file and present our extension to the multilevel 
counterpart of extendible hashing. In this way, the motivation, concept, and 
its ramifications are easier to understand. In the next section we shall repeat 
this process in the context of the grid file. Here we assume that the 
organizing attribute consists of exactly one attribute. Even though 
extendible hashing can allow a composite of attributes, we omit this 
possibility for the sake of simplicity, and without loss of generality. 

3.1. Extendible Hashing 

Extendible Hashing (EH) is an access technique that can be used to 
find all the records that have a particular value for the organizing attribute 
This value is termed as key-value. The reader should not confuse this with 
the concept of keys in the traditional framework of functional dependencies. 
EH consists of two levels: the directory (i.e., the root) and the leaves. The 
leaves contain the records. Typically, each leaf can be viewed as a block in 
the secondary storage. 

The directory is used to locate the block (i.e., leaf) containing the 
records that have a particular key-value. Succinctly, the directory is an array 
of pointers to leaf blocks. There are 2” entries in the directory, where d is 
called thedeprh of the directory-a parameter associated with the directory. 
Also, associated with a directory is a hashing function H that maps the 
values from their original (possibly clustered) domain to an integer in 
(0,1,2,.....,5), wheree is an integer at least as large as d. The hashing 
function H partitions any set of records into 2” partitions, based on the first 
d bits of the hashed value. Therefore, the i” directory entry consists of a 
pointer to a block, p. that contains records associated with all the key- 
values that hash into the ?’ partition. 

The (array-like) indexing capability into the directory is an important 
property that is used to guarantee that any search requires no more than two 
accesses. But guaranteeing this capability requires that the updates to the 
directory be performed without destroying this property. In EH the updates 
that require extending the directory are done by doubling the entries. Thus 
the number of entries in a directory is always some power of 2. 

In summary, EH provides an efftcient access technique, in which the 
user is guaranteed no more than two block accesses to locate the data. 
However, there are some problems that may seriously degrade the 
performance of this method: they are the problems we discussed in Section 
2 that are applied to the single-attribute case. Although these problems are 
less serious in this case, we address them here to motivate a solution that 
we intend to generalize in Section 4. 

1. 

2 

There are 2” entries in a directory; i.e., the size of the directory is 
determined by the parameterd alone. Ideally, one would prefer that the 
number of entries, 2d, is no more than the number of leaf blocks. In 
EH, however, the size of the directory can be disproportionately large 
when compared to the number of leaf blocks. 
Extending the directory is an expensive operation especially when the 
directory is large. Directory extension involves doubling the number 
of directory entries, including those entries that did not overflow. As 
the block that overflows is the only block that is split, it would be 
better if we alter only the corresponding entry in the directory. 

3.2. Multilevel EH method 

In this subsection we propose a multilevel generalization of the EH 
method, multilevel extendible hashing(MLEH), that solves the above two 
problems. Even though the following solution is quite similar to the 
dynamic hashing method presented by Larson &~78], we approach our 
solution as a generalization of the EH method, because we intend to repeat 

this process of generalization, in the next section, for the multiattribute 
case. 

Let us consider an example of EH organization given in Figure 1. The 
content of the directory can be summarized by the following set of records 
(i.e., tuples): 

D, = ( (00, Block A), (010, Block B), (011, Block C), (1, Block D) ) 

Abstractly, D, consists of a set of records 6,~) such that x represents a 
region in the domain space andy is a pointer to the block where the records 
in that region are stored. Intuitively, if .z = 010, then it represents a region 
all of whose hash values start with 010. 

WICK A HASH f-)=00... 

00 I POINTER 
0 IO POINTER 
0 I I POINTER 
IO0 POINTER 
IO t POINTER 
I IO POINTER 
I I I POlNTER 

BLOCK B HASH (-l=OlO... 

BLOCK C HASH (-l=Oll... 

Figure 1. An EH example. 

The main difference between this set representation and that of the EH 
method is that, in EH, the address of the i” entry (i.e., the entry 
corresponding to the? partition) is computed, whereas thee” entry must be 
searched in the set representation. This searching involves two problems: 
1. Given an entry number, say i, how to match (i.e., identify) a record 

for that entry. 
2. How to find that matched record efficiently. 

The match for the? entry can he defined as the record @,y) such thatx 
is a prefix of the binary representation of y . The process of finding the 
match is termedprefur marching. 

In order to address the second problem, we observe that D, is itself a 
“file”. Therefore, it needs to be organized in some fashion. Thus, the 
problem of finding a record in D, is quite similar to that of looking for a 
record in the original file (say DJ. Based on this observation, we propose to 
organize the set D, using the extendible hashing method. Here, the first 
attribute is used as the organizing attribute and the identity function is used 
as the hashing function. Such an organkation is shown in Figure 2, in 
which the directory for D, is called D, Finally, the directory for D, (i.e., 
DJ can also be organized using the multilevel EH method, creating D, as 
its directory. 

In short, Ds is the directory for the file DZ; D,is the directory for the 
file D,; and D, is the directory for the original file D,,. This hierarchy of 
abstractions provides a multilevel approach to organizing the directory. 
Note that, in each directory Di. the regions represented by the set of 
x-values are mutually exclusive. 

This proposed modification solves both problems associated with the 
EH method. Fist, the number of entries in the directory is usually much 
less than in the EH method. This is evident from the following 
observations. Any block in the original file (i.e., De), is pointed to by 
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BLOCK A 

I, BLOCK F 

BLOCK D 

Y---l 
I 1 

Figure 2. An MLEH example. 

exactly one entry in the directory and an empty region is not represented in 
the directory. Thus, the number of entries in each directory Di is no more 
than the number of blocks in the associated file D,., . 

Second, in the event a block overflows, the process of updating the 
directory is quite simple. It consists of 
1. modifying the old record corresponding to the overflowed block, 
2. adding a new record to represent the newly created block due to the 

split operation, and 
3. propagating this effect up the hierarchy, if necessary. 
As compared to the overhead incurred due to the doubling of the directory in 
EH, the above process is very efficient. 

4. Multiattribute Case 

In this section we describe the grid file technique as a k -dimensional 
extension of EH and then generalize the technique to the multilevel gridfile 
(MLGF). 

4.1. Grid File 

In EH, the domain space can be represented as values in a single 
dimension. Consequently, each region in this domain space is also one 
dimensional. In contrast, the grid file views the domain space as a k- 
dimensional space when there are k organizing attributes in the record. 
Thus, a region in the grid file is also a k-dimensional space. 

As in EH, the grid file also consists of two levels: the directory (i.e., 
the root) and the leaves (i.e., data blocks). Typically, data blocks arc stored 
in the secondary storage and contain the records in the file. Each data block 
represents a region in the domain space and has all the records that lie 
within the region. 

The directory is viewed as a k-dimensional array. Each element in this 
array represents a region in the domain space, and has a pointer to the 
corresponding data block. As in EH, more than one entry in the directory 
may point to the same data block. The size of the directory is determined by 
a linear scale for each dimension. A linear scaleLSj [O..mj] is a one-dimensional 
array of values for ther attribute such thatLS, [i] c LSj[i+l] for 0 I i < 
mj - 1 and 1 I j I k. Thus, a linear scale partitions the corresponding 
domain, and a value Y in the domain is said to occur in the i” partition. if 
LS, [i] I v < LS, [i+l]. Intuitively, the LS, can be viewed as an order- 
preserving hashing function that maps the values in the domain for attribute 
j to an integer from 0 to mj - 1 . If the number of partitions in each 
dimension are the same (i.e. mj = mj+( for ah j), the size of the directory is 
m*. 

An exact-match query search algorithm consists of the following. 
First, compute the partition for the value for each dimension. Then, look 
up the directory for the pointer to the data block, which may require one 
access. The second access is required for accessing the data block. 

4.2. multilevel Grid File 

As we did in the generalization of EH, we propose to create a 
hierarchy of abstractions to represent the directory. The content of the 
directory @f the grid file can also be summarized by the following set 
notation for the directory. 

D, = ((x y ) Ix represents a region, and y is a pointer to the data block ) . 

The region is a k-dimensional space that can be represented by a k-tuple 
where the i” element of the k-tuple is the partition number on the P 
dimension. y is a pointer to the data block as before. 

In a way similar to the technique used for MLEH, we can organize D, 
by creating a directory D, for the file D,. We call this organization the 
multilevel grid file (MLGF) . For example, a three-level MLGF can be 
described as follows: D, is the directory for the tile D,: D, is the directory 
for the file D,; D, is the directory for the original file D,. Once again, this 
hierarchy of abstractions provides a multilevel approach to organizing the 
directory. 

Besides the multilevel property, there is one other major deviation 
from the grid file approach. The partition number is computed using a 
hashing function (possibly order-preserving) rather than a linear scale. This 
enables the MLGF method to represent a partition using the prefix of the 
hash value in the same way it is done in EH and MLEH. The advantages of 
this approach are evident in the splitting and merging operations. This will 
bc elaborated in Section 6. Before we discuss the pros and cons of this 
technique, let us describe an example. 

Example 4.1: Figure 3 depicts an MLGFrepresentation of a two-attribute 
file and its two-dimensional (logical) grid, where the physical blocks are 
shown by dotted inner rectangles. In this example there are twelve blocks. 
Accordingly, there are twelve entries in the directory D,, as shown in Figure 
3. We have assumed, in this example, a blocking factor of (maximum ofl 
five entries per block. Even though there are only twelve entries in D , there 
are four physical blocks associated with it. The directory of D, has four 
entries, all contained in one physical block. An entry (10.0) in D, 
represents that all records whose hash values of the Fist attribute start with 
10, and whose hash values of the second attribute start with 0. Note that the 
block in D,, which the entry (10,O) in D, points to, has the region (i.e. 
(10.0)) subdivided into the following regions: (lOO,OO), (lOO,Ol), and 
(101.0). 

From this example, let us note the following points: 
1. The empty blocks (e.g. (00,l)) are not represented anywhere in this 

slructure. 
2. Each physical block can represent a region of varying size; 

nevertheless, only one entry in the directory corresponds to that block. 
3. The fact that the domain of a particular dimension is completely 
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I1 BLOCK H 

IO BLOCK I 

01 BLOCK J 

00 BLOCK L 

000 001 010 01 I 100 101 I IO I II 

- 0 
100,OO BLOCK E - 
lOO,Ol BLOCK F - IJ 

101,O BLOCK G A 
T 

- A 

I ,I0 BLOCK H - 

I ,iI BLOCK I 
-B 

L 

I I ,OO BLOCK L 

1 J 

Figure 3. An MLGF and its space partition. 

represented is denoted by the symbol “-” in the figure. That is, all 
hash values starting with both 1 and 0 are represented by this symbol. 

5. Algorithms 

In this section we describe the three operations-query, insertion, and 
deletion-for manipulating a multilevel grid file. We define some parameters 
that are used as program variables in describing the algorithms: 1) Root 
specifies the pointer to the root level of the h4LGF directory, 2)Key Record 
is the record of key values to be inserted or deleted, and 3) Hush Record is 
the corresponding record of hashed values. Further, the directory is viewed 
as a set of (Region Vecror, Ptr ) pairs, whereRegion Vector is the record of 
hash values representing the region, and PR points to the physical block 
corresponding to the region. 

5.1. Query 

Following the approach taken by Robinson [Robgl], we define a 
query region as follows. “A query can be expressed by specifying a region, 
the query region. It is convenient to think of a region as a cross product of 
intervals.“iRob81]. In this representation, an exact-match query is specified 
by the intervals representing single points; a partial-match query is 
represented by specifying full domains for some of the intervals; and 
finally, a range query can be specified by giving intervals that are not full 
domains. 

The algorithm to output all the records satisfying a query is as 
follows: 

1. Terminate ifRoot is NULL; otherwisePu@tr := Root. 
2. Read the block pointed by PagePlr . 

3. IF tbe block read is a leaf block 
a. THEN for each record in the block that satisfies the query, 

(i.e., the record is in the query region), output the record. 
b. ELSE for each element (pegion Vecror, Prr) in the block do 

the following: if the intersection of the region specified by 
the Region Vecror and the query region is nonempty, then 
recurse from Step 2 using Pb as PagePa. 

Note that, in our scheme, the problem of checking intersection in 
Step 3b simply reduces to pefix matching, and is quite efficient 

5.2. Deletion 

In this subsection we limit our discussion to the deletion of a single 
record. Generalizing this algorithm for the cases of more than one record and 
of query-dependent deletion can be done in an obvious manner. 

We define additional terminology. Aparenr direcroty entry of a block 
is the directory entry whose Pa points to the block. ‘Ibe block containing 
tbe parent directory entry is the parent block. In general, a block is 
associated with a region vector representing the region of the block. The 
region vector of a specific block is called the original region vector, and 
accordingly, the region vector of its buddy the b&y region vecror. Lastly, 
the parameter Currenr Block stands for the block that is considered at a 
specific moment. 

Deleting a record consists of searching for the record to be deleted and 
deleting it subsequently from the appropriate block. The algorithm is as 
follows. 

1. Terminate ifRoot = Null; 
2. Do an exact-match query on Key Record to be deleted, thereby finding 

the block from which Key Record is to be deleted. Set this block to be 
Current Block . If Key Record does not exist, then signal an error and 
terminate. 

3. Delete Key Record from Current Block; If the block becomes empty, 
free Currenr Block and iterate Step 3 by setting Key Record to be the 
parent directory entry and&rent Block to be the parent block. 

4. Invoke the function MERGE-DOMAIN for Current Block. This 
function finds a domain on which to merge and a mergeable buddy in 
the same parent block where its parent directory entry is, if they exist. 

5. IF a mergeable buddy was found THEN do 
a. If the buddy region is nonempty, do the following: merge Currenr 

Block and the buddy block to form a merged block; free the buddy 
block and delete the parent directory entry of the buddy block; 
update the Prr in the parent directory entry of Current Block to 
point to the merged block. 

b. Replace the original region vector in the parent directory entry by 
the merged region vector. 

c. Set Currenr Block to be the merged block. 
d Iterate Steps 4 and 5 for (new)Current Block. 

6. ELSE 
a. IF Cwrent Block is tbe result of a merge operation THEN 

Recurse from Step 4 with the parent block as Currenr Block. 
b. ELSE terminate. 

Here, the function MERGEABLE is left unstated. Any solution must 
do the following: find another directory entry in the same parent block 
whose components of the region vector for all but one domain are identical 
to those of the original region vector. For the domain on which the 
components differ, the difference is limited to the last bit. There may be 
many choices; here we assume any one is chosen based on some criteria 
(e.g., the total number of tuples in the blocks to be merged is less than a 
certain threshold). Also, note that an empty buddy region is mergeable. An 
empty buddy region must be properly contained in the region of the parent 
block without a corresponding directory entry in the patent block. 
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5.3. Insertion 

In this subsection we limit our discussion to insertion of a single 
record. Generalizing this algorithm for the cases of more than one record and 
of query-dependent insertion can be done in an obvious manner. Insertion of 
a record consists of searching for the region that the record belongs to and 
adding the record in the appropriate block. The algorithm is as follows. 

IF Root = NULL THEN 
Create a rmt block with a directory entry (Region Vector, Ptr), where 
each component of Region Vecror is “-“, and P@ points to a data 
block (also created) containing Key Record to be inserted. 
ELSE 
Do an exact-match query on&y Record to be inserted, thereby fmding 
the region where Key Record is to be added. This region may or may 
not correspond to a data block because empty regions are not 
represented in the MLGF. 
Adding Key Record: 
a. IF the data block exists THEN add Key Record to that block. If 

Key Record already exists, signal an error and terminate. 
b. ELSE do 

1) Add a directory entry that points to a newly created block at 
the next level (say;E) and whose region vector isHashRecord. 

2) From the next level add a directory block for each nonleaf level 
of the MLGF containing one directory entry that points to the 
newly created block in the next level and whose region vector 
is identical to that of its parent directory entry. 

3) At the leaf level create a data block containing one record (i.e., 
Key Record). 

4) Apply merging algorithm as given in the previous section for 
this newly created block B until no more merging occurs. This 
step finds a region containing the largest empty region that can 
be obtained. 

SPLIlTING: IF SPLIT~HEURISTIC is true THEN do 
a. Choose a domain to be split. 
b. Construct two new region vectors by appending one bit (0 and 1 

respectively) to the component hash value (for the chosen domain) 
ofRegion Vector representing the splitting block. 

c. Partition the splitting block based on these two new region 
vectors; thus crearing two new blocks and free the old block. 

d. Replace the directory entry for the splitting block by the two new 
directory entries for the constructed region vectors with 
corresponding pointers to the appropriate (newly created) blocks. 
Repeat 4 for the parent block to accomodate overflow. 

Like in the deletion case, the function SPLIT-HEURISTICS is left 
unstated. It should be used to decide when and which domain to split based 
on some criteria. Nevertheless, it should be noted that there is an important 
aspect in choosing a splitting domain. When a directory block splits, a 
domain cannot be. chosen if the set of directory entries in the splitting block 
does not partition in the domain into two disjoint nonempty sets. In 
particular, if a splitting block contains a directory entry having a 
component hash value for a domain that-is equal to the common prefix of 
the block (i.e., the component hash value for the domain of the parent 
directory entry), then a partition cannot be obtained for that domain. This 
happens because the region represented by this directory entry intersects 
both subregions divided, and thus, the directory entry must appear in both 
subsets, rendering them nondisjoint. 

6. Discussions 

In this section we discuss advantages and disadvantages of the MLGF 
as compared with the grid file and other conventional file organizations. In 
Sections 6.1, 6.2, 6.3, and 6.4, we begin by discussing enhancements of 
the MLGF over the grid tile on the issues proposed in Section 2. We then 
present, in Section 6.5, additional advantages of the MLGF that have not 
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been addressed in the design of the grid file. In Section 6.6 we compare 
features of the MLGF with those of the K-D-B-tree. Finally, in Section 
6.7, we discuss other miscellaneous issues. 

6.1. Compactness of directory 

In the MLGF we keep only those directory entries that represent 
nonempty regions. As a result, the number of directory entries is bounded 
by (i.e., always less than or equal to) twice the number of records regardless 
of the record distribution and correlations among attributes. (An exceptional 
case is when there are chains consisting of directory blocks at successive 
levels that contain only one directory entry. We believe this occurs very 
rarely, since such a chain is created only when a new record is inserted into 
an empty region existing at a nonleaf level.) Therefore, the asymptotic 
growth of the directory must be &early dependent on the growth of data. 

6.2. Splitting of directory 

Splitting the directory is simple in the. MLGF. When a block 
overflows, only the directory entry pointing to this block is affected (and, 
recursively, so is the directory entry in the next higher level, if the directory 
block overflows). A directory entry is split into two, simply by adding 
one bit (0 or 1, respectively) at the end of the component hash value of the 
region vector for the splitting domain. Therefore, splitting the directory is a 
local operation affecting only one or a few directory entries. This aspect 
contrasts with splitting the directory of a grid file, when an entire 
hyperplane is created, and the entire directory copied. Incidentally, directory 
split occurs in the grid file much less frequently than in the MLGF because 
a split of a hyperplane creates a number of directory entries that can absorb 
many of future splits of data blocks. Nevertheless, the cost of one split is 
exorbitant due to the cost of copying the entire directory. Clearly, the 
MLGF is not only more efficient in cost but also distributes the cost more 
evenly over all splits of data blocks. 

6.3. Merging of directory and data blocks 

In the MLGF merging the data blocks is made easy by maintaining a 
convenient representation of buddies in the directory. For example, the 
buddy of a directory entry represented by 01001 for the merging domain 
must be the one represented by 01000 for the same domain with identical 
representations for the other domains. The existence of this directory entry 
can be easily determined by accessing the directory hierarchy; in case it 
exists, the data block to be merged is found by following the pointer. The 
technique just described contrasts with that of the grid file, in which an 
algorithm for finding buddy from a flat zuray-structured directory has to be 
run every time a block is merged, thereby causing a large amount of I/O 
accesses. 

Merging the directory entries is easier in the MLGF than in the grid 
file because it occurs only “locally” as in the case of splitting. With the 
MLGF, merging is carried out by simply taking one bit off the original bit 
strings representing the directory entries and creating a new entry pointing 
to the newly merged block. As in the case of splitting, the local merging 
operation may be recursively propagated to the next higher level, if the 
occupancy of the directory block falls below a certain threshold. Our scheme 
contrasts with that of the grid file, in which an entire hyperplane is merged, 
and further, an algorithm for detecting an “mergeable” hyperplane has to be 
run dynamically every time a block is merged, thereby causing a large 
number of I/O accesses. Note that, unlike in the case of splitting, the 
possibility of merging a hyperplane must be checked for every block merger 
in the grid file. This aspect renders merging in the grid file even costlier. 

6.4. Partial-match queries 

We observed in Section 2.4 that partial-match queries are potentially 
very costly due to searching a large portion of the directory, i.e., a 
hyperplane. This problem is greatly alleviated in our scheme due to 
compactness of the directory: since the number of directory entries is less 
than that of the grid file, searching a hyperpkme must be less costly. Yet 



another important enhancement comes from the multilevel architecture of 
the directory. Since a directory entry representing a region points to a 
physical block containing lower level directory entries subdividing the 
region, those lower level directory entries, which are close to one another in 
the domain space, tend to be in the same physical block. Therefore, 
searching a hyperplane must be less costly because more than one directory 
entry can be searched in one block access. This contrasts with the case of 
the grid file, in which one block access is needed per one directory entry. 
The following example should clarify this point. 

Example 6.1: Consider a two-level, two-dimensional directory stored in 
physical blocks with a capacity of four (i.e., the directory blocking factor = 
4 ). Suppose the top-level directory consists of four entries. Assuming a 
uniform distribution of records, we shall have the directory in Figure 4. 
Here, dotted inner squares represent physical blocks. 

From the figure we note that, even though a hyperplane contains four 
directory entries, searching the hyperplane will cause only two block 
accesses. In general, under the assumption of uniform distribution of 
records and cyclic splitting of individual domains, the number of block 
accesses for searching a hyperplane would beD’-“dlb”d (derived in section 
7). where D is the number of entries in the directory, d the dimensionality, 
andb the directory blocking factor. 

Let us note that the problems associated with partial-match queries 
addressed here are inherenf in any multidimensional organizations. These 
problems can be better visualized by considering a case in which the file is 
accessed through a key attribute that uniformly determines a record; even in 
this case, if there is more than one organizing attribute, an entire 
hyperplane of the directory, and accordingly, its corresponding data blocks, 
have to be accessed. 

DOMAIN A 

Figure 4. A two-level, two-dimensional directory 
with the directory blocking factor of four. 

6.5. Abstract Database 

An important advantage of the MLGF comes from the availability of 
abstract databases, against which a preevaluation of a query can be 
performed. We define anubszract &&use, DB-A, of a database, DB-B, as a 
database derived from DB-B in such a way that the result of a query obtained 
from DB-A is a superset of the result obtained from DB-B. 

Each level of the directory in our scheme can be considered a k+l- 
attribute file: each entry in a directory consists of values fork attributes of 
the file and a pointer to a block of the next lower level directory. Thus, 
queries can be processed against the directory only, provided that the 
attribute values specified in the queries are transformed into proper 
representations (by a hash transformation, in this case). The result of 
processing a query against the directory must be a superset of the result that 
would be obtained from the data file, provided that the result is transformed 
into proper representations (through a pointer, in this case). Therefore, we 

conclude that the lowest level of the MLGF directory forms an abstract 
database of the data file. In the same manner, each level of the directory is 
an abstract database of the next lower level. 

The concept of abstract databases-first introduced in [KriM] as bucket 
databases-has a profound effect on performance, especially when only a 
limited amount of main memory is available. Example 6.2 illustrates this 

Example 6.2: Suppose that the size of the database considered is 10 
Mbytes and the size of an abstract database is 100 Kbytes. We assume 
further that SC0 Kbytes of main memory is available for processing queries. 
Since sufficient main memory is available for the abstract database, it can 
be kept in main memory. We process a query in two steps. First, we 
roughly process (i.e., preprocess) the query against the memory-resident 
abstract database to obtain the superset of the result. During this process, 
relevant records from the origina! database are brought in main memory. 
The set of these records is called a reduced&abase [Be&l] for this query. 
Let us assume that the size of the reduced database is 10 Kbytes. We 
subsequently process the query once again against the reduced database, 
which we expect to fit in main memory. In either step, since all the data 
reside in main memory, the query can be evaluated with little I/X. In fact, 
I/O accesses are needed only to bring the reduced database in main memory. 
Thus, the more reduction we achieve, the better the performance should be. 
The reductive power of preprocessing a query using an abstract database has 
been investigated in detail in [K&X4]. Let us note that, in the MLGF, we 
can use any level of the directory as the absuact database. 

6.7. Related research 

Perhaps, the closest to the MLGF is the K-D-B-tree developed by 
Robinson [Rob81]. The K-D-B-tree comprises two types of blocks: region 
blocks and point blocks. Region blocks contain a collection of (region, 
blockfd) pairs, where blockId is a pointer to the block in the next lower 
level of the tree. Point blocks contain a collection of (point, localion) pairs, 
where locadon gives dte location of a data record. Nevertheless, (here are a 
number of differences between the two schemes. 

1. The K-D-B-tree splits a region according to the even-record-distribution 
strategy. Thus, when a block splits, half the records are moved to one 
block, while the other half to another. Accordingly, the region is split 
based on the boundary value of these two halves. On the other hand, 
in the MLGF, regions always split based on a predetermined grid-like 
boundary. 

2. The even-recorddistribution splitting strategy does not induce grid-like 
partitions of the domain space. Instead, it produces an irregular 
partitioning. Thus, merging is not easy because a region almost 
always has to merge with the one it originally split from. In contrast, 
in tbe MLGF, a region has multiple alternatives when merging-one 
for each axis in the domain space. Since these alternatives provide 
additional freedom in merging, we also expect a better storage 
utilization in the MLGF. 

3. The K-D-B-tree does not address the problem of representing 
multidimensional regions inside a physical block. It is clear, however, 
that original attribute values must be stored as discriminator values. It 
should be pointed out that finding an efficient representation of a 
multidimensional region using variable discriminator values may not 
be trivial. (We believe the representation must be a tree-like structure.) 
In comparison, the MLGF directory stores in a block a bit encoding of 
the trie representing further partitioning of the region that the block 
belongs to. 

4. Since the K-D-B-tree stores original attributes values, the leaf level of 
the tree is almost equivalent in size to the data file, in case all the 
attributes are considered in the K-D-B-tree. In contrast, by storing 
hashed bit strings, the MLGF directory provides a compact 
representation. At the same time, the number of levels in the MLGF 
directory must be minimal because of compact representation of index 
entries and a large index blocking factor. 
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5. The K-D-B-tree distinguishes the leaf level blocks (point blocks) from 
the other blocks (region blocks). In contrast, the MLGF employs a 
consistent representation in all the directory levels. This strategy helps 
keep the file querying manipulation algorithms simple and clean. 

The prefix B-tree [Bay771 bears some resemblance in concept to the 
one-dimensional version of the MLGF. i.e., MLEH. It differs from the 
MLEH in two important ways: 
1. It partitions the domain space along arbitrary boundaries. 
2. It represents a region implicitly by using a set of discriminator values. 

In contrast, the MLEH represents a region explicitly by using a 
unique bit string. 

Let us note that these differences would cause a multidimensional extension 
of the prefix B-tree to encounter with problems similar to those of the 
K-D-B-tree. 

The hierarchical multidimensional extendible hashing [Oto85b] also 
shares a common concept with the MLGF and has a linear growth of the 
directory, but it uses an array for the directory structure inside a physical 
block as extendible hashing does for the entire directory. In comparison, the 
MLGF uses a simple list of directory tuples for efficient storage and easy 
manipulation. 

6.8. Other issues 

Range queries can be handled efficiently in the MLGF, provided the 
hashing function is order preserving. As indicated in Fgg79], order-preserving 
hashing functions have rarely been used in practice because they do not 
provide sufficiently uniform distribution over the address space. In the 
MLGF, however, skewing of the hashing function is not much of a concern 
because we store only those directory entries representing a nonempty 
region. After all, there should be no serious waste in time or storage cost 
due to a nonuniform distribution. 

In [Nie84], it has been shown that the buddy system, when used for 
merging, gives a lower utilization of main storage space than the neighbour 
system. This happens mainly because an equal-sized buddy is frequently 
unavailable for merging, while a mergeable neighbour is. By definition, a 
buddy is a neighbour, but notvice V.YSLI. On the contrary, the buddy system 
proves to be a more systematic and flexible in merging the directory. In the 
neighbour system, the directory can hardly be shrunk because of irregular 
partition of the domain space. In conclusion, we believe that the buddy 
system is better than the neighbour system in a highly dynamic 
environment. In the MLGF the buddy system is inherently imbedded in the 
design. 

7. Performance Analysis 

In this section we present a simple performance analysis for the 
MLGF and the grid file. The analysis is intended to quantify our informal 
discussion on the properties of the two file organizations, but is not 
intended to provide accurate estimation of the costs involved in such 
organizations. Primarily, we present a worst case analysis; later, we try to 
relax the worst case condition to investigate its effects. Throughout this 
section, we assume an equal number of partitioning of the domain space in 
all domains. Before proceeding, we define some notation: 

n: number of records in a file 
d: number of organizing attributes (dimensionality) 
6: number of directory entires in a physical block (directory blocking 

fact@ 
DG : size of the directory in a grid file 
D,: size of the lowest level of the directory in an MLGF 

7.1. Directory size 

Grid File: In the worst case, the asymptotic growth of the directory is 
wo. 

MLGF: The number of directory entries in the lowest level is bounded by 
the number of Wocks in the data file, and consequently, by the number of 
records in the file. Thus, the asymptotic growth of the directory will be 
o(n). 

7.2 . Hyperplane search 

Grid File: We note that the number of hyperplanes in a domain is Dew. 
Hence, the number of directory entries contained in a hyperplane is D, “. 
Since the directory is organized as a multidimensional array, in all domains 
except one, a hyperplane search is likely to incur one block access per one 
directory entry. Thus, the total number of block accesses for searching a 
hyperplane will beDo”“. 

MLGF: The MLGF directory is organized in such a way that the directory 
elements representing regions that are close to one another in the domain 
space tend to be in the same physical block. Specifically, an entry in an 
upper level (H) of the directory points to a physical block containing 6 
entries of the next lower level (L) of the directory. Hence, any hyperplane of 
IevelL that contains a directory entry in this physical block will find an 
average of b’M directory entries that belong to the hyperplane and that reside 
in the same block. As a result, the number of block accesses for searching a 
hyperplane of the lowest level of the directory will beDM’~‘uhw. Since the 
cost of searching the upper levels of the directory is dominated by that of 
searching the lowest level, we ignore its effect. 

7.3. Partial-match queries 

Grid File: Combining the effects of directory size and hyperplane search, 
we obtain the total number of directory block accesses for processing a 
partial-match query that specifies one attribute to be O(n4r-r’dJ). 

MLGF: Similarly, we estimate the number of directory block accesses as 
o(n“” lb’“). 

Here, for simplicity, we did not consider accesses to data blocks. It 
should be mentioned, however, that the MLGF has important advantages in 
accessing data blocks: In the MLGF there is no redundant access to the 
same data block. because a data block is pointed by one and only one 
directory entry. In contrast, in the grid file, a number of directory enties can 
poinl to the same data block. 

7.4. Exact-match queries 

Grid File: The number of block accesses for processing an exact-match 
query is at most two. 

MLGF: We estimate the number of levels in tbe directory as rlognl. 
Including one access to the main data block, the number of block accesses 
for an exact-match query will berlo?#i + 1. 

7.5. Splitting of directory 

To investigate the cost of splitting the directory, we calculate the 
accumulated number of block accesses caused by splitting the directory 
starting from an empty file to a file of size D, or D,. We consider 
accumulated cost because the pattern of splitting is quite different in two 
file organizations. As discussed in Section 6.2, the cost of splitting the 
directory in the grid file is very high, but a split of the directory absorbes 
many future splits of data blocks. The measure based on accumulated cost 
would average out differences in splitting patterns. 

Grid File: Given a directory size, DG, a growing file must have 
experienced directory splits as many times as the total number of 
hyperplanes. Since the number of hyperplanes in one domain is DGIM, the 
total number of hyperplanes isd x D,“d. For each split, the entire directory 
is copied: each block in the directory is read in and written out to a new 
block. Thus, two block accesses are needed for each directory block. Since 
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the average size of the directory over the period of the file growth is D,/2, 
the accumulated number of block accesses for splitting the directory is 2 X 
@+/2b)xdxDG”d=d/b xD,““~. 

MLGF: The accumulated number of splitting operations on the directory is 
bounded by the number of entries in the lowest level, D,, assuming that 
the propagation of splits to upper levels of the directory is negligible. 
Associated with each splitting operation, there are two block accesses: one 
for reading and one for writing a directory block. Thus, the accumulated 
number of block accesses for splitting the directory is 2 xD,. 

7.6. Merging of directory 

The cost of merging the directory can be obtained in a way similar to 
the one used for splitting. However, for merging, we have additional costs 
to consider: 1) the cost of finding a buddy or a neighbour to be merged; 2) 
(in the case of the grid file) the cost of checking the feasibility of merging a 
hypctplane every time a data block is merged. Since these costs vary widely 
according to specific algorithms used, the details will not be further 
discussed. Let us note, however, that these additional costs will be much 
higher in the case of the grid file. as discussed in Sections 2.3 and 6.3. 

7.7. Summary 

In Table 1, we summarize the tesuhs of performance analysis. 

I Grid Filz MLGF I 

Table 1: Performance of the MLGF and the grid file. 

Example 7.1: Consider a file having the following characteristics: n = 
10,000, d = 3, b = 250, number of attributes = 10, block size = 4K bytes, 
size of a pointer = 4 bytes, size of a hashed key = 4 bytes, size of a 
directory entry = 16 bytes. Then, the estimated performance can be 
summarized as in Table 2. 

In Example 7.1 it is shown that the MLGF organization provides 
drastic enhancement in performance when compared with the grid file 
organization. A major cause of the difference in performance is the size of 
the directory. Specifically, the size of the grid file directory grows 
exponentially, while the size of the MLGF directory grows linearly in the 
size of the fiie. 

Grid file MLGF 

directory size 2,013 x10’ 

partial-march qrery = 10s =74 

exact-match query 2 3 

directory split z1.2 x 10’4 =2 x IO’ 

Table 2: Example performance figures. 

Let us note that the figure in Table 2 reflect only the worst case 
performance. Let us now relax the worst case condition and examine the 
effect of the relaxation on tbe performance. In general, the size of the grid 
file directory is u X n’, where 1 I Y < d, and u is a constant The value of 
Y depends on correlation among attributes, We assume that the value of v is 
1.1, which is slightly higher than in the case without any correlation (v = 
1). We assume that the value of u is 1.0 to make it compatible with that 
for the MLGF. Then, using the same characteristics of the file as in 
Example 7.1, we obtain the following performance estimation for the grid 
file: directory size = 2.5 x lo’, cost of processing a partial-match query s 
858, cost of processing an exact-match query = 2, and accumulated cost of 
splitting the directory 5 2.2 x 106. Comparing these figures with those of 
the MLGF in Table 2, we conclude that, even with a small amount of 
correlation, performance of the grid file can be notably worse than that of 
the MLGF. 

8. Conclusions and Further Study 

We have presented an extension of the grid file that provides a 
multilevel access mechanism while maintaining a grid-like partitioning of 
the domain space. The extension offers a number of advantages such as 
compact representation of the directory, easy splitting and merging of the 
directory, efficient processing of partial-match queries, and the concept of 
abstract databases. We believe that the contribution of this paper is a major 
step towards the design of multidimensional file organizations 
implementable in practical systems. 

Through the work described in this paper, the authors have found 
many common features and ideas shared by various seemingly different file 
organizations: binary search trees [Knu73], K-D trees [Ben75], K-D tries 
[Ore82], B-trees [Bay72]. K-D-B-trees [Rob81], digital B-trees [Lom81], 
tries lJ+e60], quad trees [Fin71], linear hashing [LUO], virtual hashing 
[Lit78], dynamic hashing [Lar78], extendible hashing [Fag79], 
multidimensional linear hashing [Oto85a], [Ouk83], [Bur83], dynamic 
multipaging [Mer82], multidimensional directory &io77], and grid files 
[Nie84], etc. We are currently working on the generalization of the ideas 
behind all these tile organizations by characterizing the way they partition 
the domain space and the way they represent the partitions. A nice 
formalism on this issue is the purpose of our current study. 

From the discussions in Sections 2.4 and 6.4, we have learned that the 
performance degrades for partial-match queries as we add more 
dimensionality. Intuitively, this happens because the size of the hyperplane 
to be searched gets larger as the dimensionality gets larger. The implication 
is that, given a query distribution, there must be an optimal set of 
organizing attributes that gives the best performance. This optimal set may 
not necessarily be the set of all attributes because of the above mentioned 
property. We define the problem of finding an optimal set of organizing 
attributes thephysical da&use design problem [Ham76] wha83] ma&l] 
[Wha85a] mha85b]. A systematic approach to the physical database design 
for the multidimensional file organizations is left as an interesting topic for 
further study. 

Finally, a systematic and comprehensive simulation research on 
performance and storage utilization of the MLGF organization is an 
important topic of our immediate future work. 
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