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Octree-R: 
An Adaptive Octree for Efficient Ray Tracing 

Kyu-Young Whang, Senior Member, IEEE, Ju-Won Song, Ji-Woong Chang, Ji-Yun Kim, 
Wan-Sup Cho, Chong-Mok Park, and 11-Yeol Song 

Abstract-Ray tracing requires many ray-obect intersection 
tests. A way of reducing the number of ray-object intersection 
tests is to subdivide the space occupied by objects into many non- 
overlapping subregions, called voxels, and to construct an octree 
for the subdivided space. In this paper, we propose the Octree-R, 
an octree-variant data structure for efficient ray tracing. The 
algorithm for constructing the Octree-R first estimates the num- 
ber of ray-object intersection tests. Then, it partitions the space 
along the plane that minimizes the estimated number of ray- 
object intersection tests. We present the results of experiments for 
verifying the effectiveness of the Octree-R. In the experiment, the 
Octree-R provides a 4% to 47% performance gain over the con- 
ventional octree. The result shows the more skewed the object 
distribution (as is typical for real data), the more performance 
gain the Octree-R achieves. 

Index Terms-Ray tracing octree, Octree-R, space subdivision. 

I. INTRODUCTION 

AY tracing is a technique for rendering pictures from a R three-dimensional model by following the paths of 
simulated light rays through the scene. One of the most serious 
problems of ray tracing is that it requires a relatively large 
amount of computation time for it must perform the ray-object 
intersection test for each ray and each object in the scene. 
Techniques using the bounding volume and space subdivision 
have been two major approaches for improving the efficiency 
of ray tracing [l], [3]. 

A bounding volume is a volume of a simple shape that sur- 
rounds a given object. Using the idea of the bounding volume 
simplifies the examination of a ray-object intersection. That is, 
for the examination of a ray-object intersection, the bounding 
volume containing the object is examined first. The object is 
examined against the ray only when the bounding volume is 
found to intersect the ray. Even though using the idea of the 
bounding volume reduces the time-consuming examination of 
the ray-object intersections, the computation time for ray trac- 
ing is still proportional to the number of objects. To solve this 
problem, the hierarchical bounding volume has been widely 
used [6] ,  [9], [ l l ] ,  [15]. The hierarchical approach places ob- 
jects in minimum bounding volumes and groups them recur- 
sively to form a minimum volume enclosing the entire world 
of the scene. As a result, the computation time is proportional 
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to the logarithm of the number of objects. 
Space subdivision is another popular technique to speed up 

ray tracing. This method divides a space into nonoverlapping 
unit elements of space. The unit element of space thus created 
is called the voxel [4], IS]. The major characteristic of space 
subdivision is that objects are examined in the order along the 
path of a ray. Hence, in order to find the closest object that 
intersects a ray, there is no need to sort all the objects. Be- 
sides, since only object:; that lie in or near the path of a ray 
need to be examined, the method reduces the number of ob- 
jects to be examined significantly. 

Space subdivision methods are classified into two types de- 
pending on whether or not the space is uniformly divided [l]. 
The uniform subdivision method has the advantage of effective 
identification of the voxels that a ray intersects. Such identifi- 
cation can be done by simple calculations utilizing the regu- 
larity of the uniform structure [7], [4]. However, since this 
method divides the space uniformly regardless of object distri- 
bution, it loses adaptability. Adaptability means that the degree 
of space subdivision changes depending on the object distri- 
bution. In particular, as the space is divided into smaller vox- 
els, a greater number of empty voxels are generated. Hence, 
not only the time is wasted for a ray to pass these empty vox- 
els, but there is also memory overhead caused by the three- 
dimensional data structure representing the voxels. 

These problems of the uniform subdivision methods can be 
overcome by using nonuniform subdivision methods. In nonuni- 
form subdivision methods, a dense area of the space is divided 
into a large number of voxels and a sparse one into a small num- 
ber of voxels. This way, the space is properly divided according 
to the object distribution, and thus, the time and the memory 
space are effectively saved. As the data structure used in nonuni- 
form subdivision, Glassrier [5] uses an octree, and JSaplan [8] a 
binary space partitioning; tree (bintree). Both use spatial median 
to divide the subspace. The spatial median represents half the 
range of the subspace along each axis. 

Several variants of the above methods have been introduced 
in literature. Scherson and Caspary [14] have proposed a uni- 
fied technique exploiting the advantages of both hierarchical 
bounding volumes and octrees. MacDonald and Booth [lo] 
have examined two heuristics for space subdivisions using 
bintrees: one based on the intuition that surface area is a good 
estimate of intersection probability, and the other based on the 
fact that optimal splitting plane lies between the spatial median 
and the object median (of a volume. The object median is the 
splitting plane that places one half of the objects on each side 
of the plane. 
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I 11. PRELIMINARIES 

traversal schemes have been proposed in the literature. Inter- 
ested readers are referred to [2] for the classification of these 
schemes. 

m. OCTREE-R CONSTRUCTION ALGORITHM 

In thrs section, we present the Octree-R data structure for 
more efficient ray tracing. An Octree-R has the same structure as 
an octree except that the space is subdivided at a point that is not 
a spatial median. In Section III.A, we present a cost model for 
ray tracing using conventional octrees. In Section III.B, we pres- 
ent a method of finding an optimal plane for spatial subdivision 
based on the cost model in constructing an Octree-R. 

A. Cost Model for Ray Tracing Using Octrees 

Before we discuss the Octree-R construction algorithm, we 
introduce the cost model, which was originally presented in the 
reference El] for ray tracing using octrees. The cost here repre- 
sents the time taken for ray tracing. We define the number of 
voxels the ray has passed as n,, the number of ray-object inter- 
section tests as n,, the time for the ray to move to the next 
voxel as T,, and the time taken for a ray-object intersection test 
as Ti. Then the time taken for ray tracing can be represented as 
follows: 

(1) 
The equation shows that the total time taken for ray tracing is 
the summation of the time for a ray to pass the voxels and the 
time to do ray-object intersection tests. 

We now discuss the meanings of (1) using an example. Sup- 
pose we are building an octree by repeatedly subdividing a given 
space. We consider two different octrees: one having N voxels 
and the other having less than N voxels. The fact that we have 
constructed an octree having a larger number of voxels in the 
same space means that we divided the given space more fre- 
quently and thus, in general, we have a smaller number of ob- 
jects intersecting with each voxel. Hence, as we have a larger 
number of voxels, the number of ray-object intersection tests n, 
in (1) becomes smaller. When we have a larger number of vox- 
els, however, the number of voxels the ray needs to pass also 
increases, and thus the gain obtained by reducing n, in (1) is 
compromised. That is, n, and n, in (1) have an opposing relation- 
ship to each other. Nevertheless, n, in (1) is proportional to the 
total number of voxels. Thus, if we assume the same number of 
voxels in the octrees to be compared, the one having the smallest 
value for n, will have the smallest total cost, as represented in 
(1). This assumption is practically reasonable since the number 
of voxels determines the main memory space that the octree 
occupies. Thus, optimization of ray tracing cost is conditioned 
by constant memory space. 

In the next section, we present an algorithm to construct an 
Octree-R so as to reduce the ray tracing cost. We first observe 
that, for a given space with the same number of voxels, the 
expected number of ray-object intersection tests can be differ- 
ent depending on the position of the dividing plane, and then 
construct the Octree-R algorithm so as to minimize the ex- 
pected value. 

Cost = n, . T, +nt . T, 
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B. Octree-R Construction Algorithm 

In this section, we propose an Octree-R construction algo- 
rithm that tries to minimize the expected number of ray-object 
intersection tests. We first explain the basic theory, which is 
based on [ 11, for computing the expected number of ray-object 
intersection tests. 

Suppose volume A contains volume B as shown in Fig. 1. 
We denote the conditional probability for a ray r to pass vol- 
ume B when the ray passes A as Pr(B!A). Assuming the rays are 
uniformly distributed, the conditional probability Pr(Bk4) be- 
comes the ratio of B’s average projected area to A’s average 
projected area [6] .  Furthermore, if the volume is convex, the 
average projected area is one-fourth of the volume’s surface 
[17]. This is a model (introduced in 1981) more formal than 
MacDonald and Booth’s assumption (presented in 1990) [ 101 
that the surface area is a good estimate of ray-object intersec- 
tion probability. Thus, assuming that A and B are convex, 

< P(B,d)> SB 
<P(A,d)>  SA 

Pr( BIA) = =- 

Here, P(V, d) is the projected area of V perpendicular to the 
directions d, < > represents the average value for all directions 

Fig. 2. Finding an effective plane. 

d, and Sv is the surface area of the volume V.  

Fig. 1. Computing the conditional probability for a ray to pass through 
volume B once it passes through volume A. 

We now estimate the expected number of ray-object inter- 
section tests by applying (2) to the space subdivision tech- 
nique. We assume that rays are randomly distributed over the 
entire space. Then, since the voxels created by dividing the 
given space are (convex) hexahedrons, we can apply (2). If we 
divide a given space R as shown in Fig. 2, the conditional 
probability for a ray to pass through the space A once it passes 
through the space R is as follows: 

Pr(A1R) = - - (3) 
S A  ( t )  - 2(tb + tc + bc) 

s, 2(ab + ac i- bc) 

Here, 2(tb + tc + bc) is the surface area of the hexahedron 
whose lengths of the sides are t, b, and c, along the axes x, y, 
and z ,  respectively; 2(ab + ac + bc) the surface area of the 
hexahedron whose lengths of the sides are a, b, and c, along 
the axes x, y ,  and z ,  respectively (see Fig. 2). Then, (3) can be 
simplified as follows: 

(4) 
t(b +c) + bc 
a(b + c)  + bc 

Pr(A1R) = 

Similarly, the conditional probability for a ray to pass 
through space B once it passes through space R can be given as 
follows: 

(5)  SI, ( t )  (U - t)(b i- C )  + bc 
a(b + c) + bc 

Pr(B1R) = -- = 
3 R  

Hence, assuming that no object intersects with the dividing 
plane and that there are n(t) and m(t) objects in spaces A and 
B, respectively, the expected number of ray-object intersection 
tests E(t) as the ray passles through space R is given as follows: 

(6) t(b + c )  + bc 
a(b + c )  + bc 

(a  - t)(b + c )  + bc 
a(b + c )  + bc - n(t) + m(t) - - 

Let us consider a mare general case allowing objects inter- 
secting with the dividing plane. We denote the number of objects 
intersecting with plane t in Fig. 2 as s(t), the number of objects 
completely included in the space A as n(t), and the number of 
objects completely included in the space B as m(t). Then, the 
expected number of rayobject intersection tests, E(t), when the 
ray passes through the given space R is given as follows: 

E( t )  = u n ( t )  + .- m(t)  + {y+y} s( t )  (7) 
S R  SI3 

If we substitute (7) with (4) and (5) ,  we obtain 

t(b + C) + l k  
a(b + c)  + rbc 

(a  - t)(b + c)  + bc 
a(b + c)+ bc E( t )  = - n(t)  + m(t> 

a(b + c )  + 2bc 
a(b + c)i + bc +-- s(t> 

We have so far shown that, when we construct an Octree-R, 
the expected number of ray-object intersection tests depends 
on the position of the dividing plane in the space. Thus, we can 
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construct an Octree-R in such a way as to reduce the number 
of ray-object intersection tests by dividing the space with t that 
minimizes (8). In order to find the t value that minimizes (S), 
we would have to examine the entire space. Doing so, how- 
ever, would cause too much overhead in constructing an Oc- 
tree-R. Therefore, in this paper, we adopt the property identi- 
fied by MacDonald and Booth [lo] that the optimal splitting 
plane lies between the spatial median and the object median. 
The property was derived using a cost formula similar to (8). 

In order to divide the given space into eight voxels, we first 
find the t values minimizing (8) for each axis of X ,  Y,  and 2. 
The t value is found by examining the space at k + 1 different 
points equally spaced between the spatial and object medians. 
In the experiments, we have used ten for the value of k. We 
then divide the given space with these t values. In this process, 
the order of calculating three values o f t  is not important since 
we compute these values independently for each axis. Fig. 3 
summarizes the Octree-R construction algorithm. In Fig. 3, 
MaxObj is the maximum number of objects allowed in a 
voxel. In procedure FindDividing-Plane, the object 
median is obtained by binary search with an error bound of the 
maximum of 5% of the number of the objects in the voxel and 
1. The algorithm is identical to that of the octree except for the 
computation for optimal t. In the next section, we examine the 
effectiveness of this data structure through experiments. 

IV. EXPERIMENTAL RESULTS 

In this section, we examine the performance of the Octree-R 
proposed in this paper through experiments. Section IV.A pre- 
sents the method of generating data for the experiments, and 
Section 1V.B interprets the experimental data. 

Procedure Cons truct-Octree-R 

1) Make the root voxel from the input data 
2) Subdivide(root-voxel, MaxObj) 

Procedure Subdivide(Voxe1, MaxObj) 

1) If the number of objects in Voxel 5 MaxObj then return. 
2) Find a dividing plane that minimizes (8) for each axis (X, Y, 

and Z); 

tx = Fin&Dividing-Plane(X, Voxel); 
ty = Find-Dividing-Plane(Y, Voxel); 
tz = Find-Dividing-Plane(Z, voxel); 

data structure using the point (tx. t,,, td. Let Subvoxel[i] be 
the zth subvoxel data structure. 

4) for (i = 0; i < 8; i + +) 
5 )  Subdivide(Subvoxel[i], MaxObj); 
Procedure Find-Dividing-Plane (Axis,  Voxel) 
1) Find the object median by binary search with an error 

bound of max(5% of the objects, 1). 
2) Find a dividing plane that minimizes (8) for Axis (X, Y, or 

2) from k + 1 points equally spaced between the object 
median and the spatial median. These points include the 
two medians. 

3. Create eight subvoxel data structures from the parent voxel 

3) Return the dividing planet for Axis. 

Fig. 3.Octree-R construction algorithm. 

A. Experiment Data 
For the experiments, we have generated two different 

classes of random data. One class has uniform distributions 
and the other Gaussian distributions. Each class consists of 
two categories having different sizes of distributed objects. We 
also used four real data sets in the standard procedural data- 
base (tetra, rings, balls, and gears), the ray-traced views of 
which are shown in Figs. 4, 5 ,  6, and 7. Thus, we have a total 
of eight different data sets. 

In Fig. 3, we set k = 10 since it is an empirically reasonable 
number. Sensitivity of the result on k is not very relevent since 
the construction time of Octree-R is only a small fraction of 
the ray tracing time. 

The space in which objects are distributed is a three- 
dimensional one where each axis ranges between zero and one. 
The shape of each object is a triangle. The reason we assume a 
triangle for an object is that, in general, objects used in com- 
puter graphics can be represented by their surfaces and the 
objects’ surfaces are represented by patches of triangles 
through triangulation. We used ten thousand objects for each 
data set (4,09631,201 objects for the real data sets). The 
process of generating data consists of two steps. In the first 
step, the position of an object is determined in the three- 
dimensional space. In the second step, a triangle with the given 
size is generated at that position. 

To generate the positions of the objects, we use a uniform 
random function and a Gaussian random function with the 
average of 0.5 and the standard deviation of 0.25. To gener- 
ate triangles with the given size, we first make a sphere 
whose center is at the position determined in the previous 
step and whose radius is the given size. We then calculate 
the two points in the sphere using the uniform random func- 
tion. The reason we use a uniform random function is to 
avoid generating triangles having identical sizes and direc- 
tions. Now that we have located the three points, we can 
make a triangle by connecting the center and the other two 
points of the sphere. Even though the triangles generated in 
this way may intersect with each other, this does not create 
any problem since triangles are planes. We experimented 
with two different cases: in the first case the radius of the 
sphere has a constant value of 0.03; and in the second case 
the radius is uniformly distributed over the range between 
0.005 and 0.03. 

3. Experimental Results 
When comparing the performance of the Octree-R with that 

of the octree, we have used the same number of voxels as has 
been discussed in Section 1V.A. We have varied the number 
of voxels from 3,000 to 5,000 by varying blocking factors(the 
number of objects in a voxel) in order to see the effect of the 
degree of space partitioning. 

The experimental results for the eight sets of the test data 
are shown in Figs. 8,9, 10, and Fig. 11. The horizontal axis of 
Fig. 8 represents the number of leaf nodes (voxels), and the 
vertical axis the average number of ray-object intersection 
tests. Figs. 9, 10, and 11 show the effectiveness of the Octree- 
R compared with the octree that uses the spatial median. The 
effectiveness is defined as follows: 
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Fig. 4. The ray-traced view of the real data named “tetra” having 4,096 objects. Fig. 5. The ray-traced view of the real data named “rings” having 31,201 objects. 

Fig. 6. The ray-traced view of the real data named ‘%balls” having 17,473 objects. 

xloo (9) f(octree)- f(0ctree-R ) 
f(octree) 

Effectiveness (%) = 

In (9), ‘tf (octree)” represents the average number of ray- 
object intersection tests when the octree is used and “(Octree- 
R)” when the Octree-R is used. 

The figures show that the Octree-R gains from 4% to 47% 
over the octree. For the case of the uniform distribution, we 
observe the following trend: When the number of voxels is 
small, the effectiveness is about 4% and, as the number of 
voxels increases, it increases up to 11%. The reason the effec- 

Fig. 7. The ray-traced view of the real data named “gears” having 9,345 objects. 

tiveness is low when the number of voxels is small is that the 
dividing plane minimizing (8) is found near the spatial median 
since the data is uniformly distributed. If the number of voxels 
increases, the space is divided in a minute scale, and nonuni- 
formity builds up locally moving the dividing plane of the Oc- 
tree-R from the median. For the case of the Gaussian distribu- 
tion, however, we observe that the effectiveness stays fairly 
flat around 12% regardless of the number of voxels. This phe- 
nomenon is easily understood since the Gaussian distribution 
is nonuniform. 
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3000 3400 3800 4200 4600 5000 

Number of Leaf Nodes 

Fig. 8. Average number of ray-object intersection tests for the Octree-R with 
uniform distribution of spheres of radius 0.03. 

Radius 
0.03 -E& I 

3000 3400 3800 4200 4600 5Mw) 
Number of Leaf Nodes 

Fig. 10. The effectiveness of the Octree-R with Gaussian distribution of 
spheres of radius 0.03 and varying radii. 

Finally, Fig. 11 shows that the effectiveness for real data is 
much higher between 9% and 47%. The result is a direct con- 
sequence of highly skewed (i.e., nonuniform) distribution of 
objects in the real data sets. 

In Table I, we compare the time for constructing the Octfee- 
R and the time for ray tracing for a real data set, “balls.” The 
results show that although constructing an Octree-R takes 
somewhat more time than doing an octree, the construction 
time for the octree or Octree-R is far smaller than the ray 
tracing time and thus has a negligible effect on the overall ray 
tracing costs. 

TABLE I 
A COMPARISON OF CONSTRUCTION AND RAY TRACING COSTS FOR THE 

OCTREE AND OCTREE-R FOR A REAL DATA SET ‘%ALL$’ 

Radius 
0.03 -43- I 

varying + I 5 16 ,i varying + 

12 

3000 3400 3800 4200 4600 5000 
I I I I I I I I 

3000 3400 3800 4200 4600 5000 
Number of Leaf Nodes 

Fig. 9. The effectiveness of the Octree-R with uniform distribution of spheres 
of radius 0.03 and varying radii. 

-gears 
-a- ltetra 

10 I I I I I 
3000 3400 3800 4200 4600 5000 

Number of Leaf Nodes 

Fig. 11. The effectiveness of the Octree-R with a real data set in Fig. 8. 

The experimental results have shown that, overall, the Octree- 
R has better performance than the octree by 4% to 47%. Re- 
garding object distributions, the Gaussian distribution consis- 
tently shows better effectiveness than the uniform distribution. 
This implies that the Octree-R is more effective when the ob- 
jects are nonuniformly distributed than when the data is uni- 
formly distributed. The reason is that, when the data is uni- 
formly distributed, similar-sized voxels contain similar num- 
bers of objects, and thus the dividing plane minimizing (8) is 
near the spatial median. This argument is strongly supported 
by experiments using real data sets with highly nonuniform 
distributions. Here, we obtained much higher effectiveness 
than from other data sets. 

The Octree-R construction algorithm proposed in this paper 
first finds the most effective plane for each axis, and then uses 
the set of three planes to divide the current voxel. This set of 
planes may not be optimal since each axis is considered inde- 
pendently. Finding the optimal set of planes is left as a further 
study. 
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