
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 1, NO. 4, DECEMBER 1995 343

Octree-R:
An Adaptive Octree for Efficient Ray Tracing

Kyu-Young Whang, Senior Member, IEEE, Ju-Won Song, Ji-Woong Chang, Ji-Yun Kim,
Wan-Sup Cho, Chong-Mok Park, and 11-Yeol Song

Abstract-Ray tracing requires many ray-obect intersection
tests. A way of reducing the number of ray-object intersection
tests is to subdivide the space occupied by objects into many non-
overlapping subregions, called voxels, and to construct an octree
for the subdivided space. In this paper, we propose the Octree-R,
an octree-variant data structure for efficient ray tracing. The
algorithm for constructing the Octree-R first estimates the num-
ber of ray-object intersection tests. Then, it partitions the space
along the plane that minimizes the estimated number of ray-
object intersection tests. We present the results of experiments for
verifying the effectiveness of the Octree-R. In the experiment, the
Octree-R provides a 4% to 47% performance gain over the con-
ventional octree. The result shows the more skewed the object
distribution (as is typical for real data), the more performance
gain the Octree-R achieves.

Index Terms-Ray tracing octree, Octree-R, space subdivision.

I. INTRODUCTION

AY tracing is a technique for rendering pictures from a R three-dimensional model by following the paths of
simulated light rays through the scene. One of the most serious
problems of ray tracing is that it requires a relatively large
amount of computation time for it must perform the ray-object
intersection test for each ray and each object in the scene.
Techniques using the bounding volume and space subdivision
have been two major approaches for improving the efficiency
of ray tracing [l], [3].

A bounding volume is a volume of a simple shape that sur-
rounds a given object. Using the idea of the bounding volume
simplifies the examination of a ray-object intersection. That is,
for the examination of a ray-object intersection, the bounding
volume containing the object is examined first. The object is
examined against the ray only when the bounding volume is
found to intersect the ray. Even though using the idea of the
bounding volume reduces the time-consuming examination of
the ray-object intersections, the computation time for ray trac-
ing is still proportional to the number of objects. To solve this
problem, the hierarchical bounding volume has been widely
used [6] , [9], [l l] , [15]. The hierarchical approach places ob-
jects in minimum bounding volumes and groups them recur-
sively to form a minimum volume enclosing the entire world
of the scene. As a result, the computation time is proportional

K.-Y. Whang, J.-W. Song, LW. Chang, LY. Kim, W.S. Cho, and C.-M. Padc
are with the Computer Science Department and center for Attificial Intelligence
Research, Korea Advanced Institute of Science and TechnoIogy, Taejeon, 305-701,
Korea; e-mail kywhang@mozart.kaist.ac.kr.

1.-Y. Song is with the College of Information Studies, Drexel University-
Philadelphia, PA 19104 USA.
To order reprints of this article, e-mail: transactions@computer.org, and

reference IEEECS Log Number V95028.

to the logarithm of the number of objects.
Space subdivision is another popular technique to speed up

ray tracing. This method divides a space into nonoverlapping
unit elements of space. The unit element of space thus created
is called the voxel [4], IS]. The major characteristic of space
subdivision is that objects are examined in the order along the
path of a ray. Hence, in order to find the closest object that
intersects a ray, there is no need to sort all the objects. Be-
sides, since only object:; that lie in or near the path of a ray
need to be examined, the method reduces the number of ob-
jects to be examined significantly.

Space subdivision methods are classified into two types de-
pending on whether or not the space is uniformly divided [l].
The uniform subdivision method has the advantage of effective
identification of the voxels that a ray intersects. Such identifi-
cation can be done by simple calculations utilizing the regu-
larity of the uniform structure [7], [4]. However, since this
method divides the space uniformly regardless of object distri-
bution, it loses adaptability. Adaptability means that the degree
of space subdivision changes depending on the object distri-
bution. In particular, as the space is divided into smaller vox-
els, a greater number of empty voxels are generated. Hence,
not only the time is wasted for a ray to pass these empty vox-
els, but there is also memory overhead caused by the three-
dimensional data structure representing the voxels.

These problems of the uniform subdivision methods can be
overcome by using nonuniform subdivision methods. In nonuni-
form subdivision methods, a dense area of the space is divided
into a large number of voxels and a sparse one into a small num-
ber of voxels. This way, the space is properly divided according
to the object distribution, and thus, the time and the memory
space are effectively saved. As the data structure used in nonuni-
form subdivision, Glassrier [5] uses an octree, and JSaplan [8] a
binary space partitioning; tree (bintree). Both use spatial median
to divide the subspace. The spatial median represents half the
range of the subspace along each axis.

Several variants of the above methods have been introduced
in literature. Scherson and Caspary [14] have proposed a uni-
fied technique exploiting the advantages of both hierarchical
bounding volumes and octrees. MacDonald and Booth [lo]
have examined two heuristics for space subdivisions using
bintrees: one based on the intuition that surface area is a good
estimate of intersection probability, and the other based on the
fact that optimal splitting plane lies between the spatial median
and the object median (of a volume. The object median is the
splitting plane that places one half of the objects on each side
of the plane.

1077-2626/95$04.00 0 1995 IEEE

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on July 23, 2009 at 08:24 from IEEE Xplore. Restrictions apply.

mailto:transactions@computer.org

344

voxel and the ma
The nodes in a

nodes, which con:ain
subspaces repres
contain lists of
an octree correspcand
tually passing.
to leaf nodes. Once
ing all ray-object
intersects and
these voxels. Hen
performance gain
relatively smaller
the number of

determine the ide
next. Second, we
process is called

Ray tracing usiig

I IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 1, NO. 4, DECEMBER 1995

imum depth of an octree allowed [5], [SI.
octree are classified into two types: internal

the positions of the planes dividing the
nted by the nodes, and leaf nodes, which

objects intersecting with voxels. Leaf nodes of
to the voxels through which rays are ac-

Internal nodes of an octree provide access paths
an octree is constructed, instead of examin-

intersection tests, we find voxels that a ray
exmine only the objects that intersects with

:e, using the octree could provide significant
if the time taken for a ray to pass voxels is
than the gain in speed obtained by reducing

an octree is a two-step process. First, we
itity of the neighboring node to be visited
locate the neighboring node. This two-step
:he octree traversal scheme. Various octree

ray-object intersection test.

the Octree-R. The al-

I 11. PRELIMINARIES

traversal schemes have been proposed in the literature. Inter-
ested readers are referred to [2] for the classification of these
schemes.

m. OCTREE-R CONSTRUCTION ALGORITHM

In thrs section, we present the Octree-R data structure for
more efficient ray tracing. An Octree-R has the same structure as
an octree except that the space is subdivided at a point that is not
a spatial median. In Section III.A, we present a cost model for
ray tracing using conventional octrees. In Section III.B, we pres-
ent a method of finding an optimal plane for spatial subdivision
based on the cost model in constructing an Octree-R.

A. Cost Model for Ray Tracing Using Octrees

Before we discuss the Octree-R construction algorithm, we
introduce the cost model, which was originally presented in the
reference El] for ray tracing using octrees. The cost here repre-
sents the time taken for ray tracing. We define the number of
voxels the ray has passed as n,, the number of ray-object inter-
section tests as n,, the time for the ray to move to the next
voxel as T,, and the time taken for a ray-object intersection test
as Ti. Then the time taken for ray tracing can be represented as
follows:

(1)
The equation shows that the total time taken for ray tracing is
the summation of the time for a ray to pass the voxels and the
time to do ray-object intersection tests.

We now discuss the meanings of (1) using an example. Sup-
pose we are building an octree by repeatedly subdividing a given
space. We consider two different octrees: one having N voxels
and the other having less than N voxels. The fact that we have
constructed an octree having a larger number of voxels in the
same space means that we divided the given space more fre-
quently and thus, in general, we have a smaller number of ob-
jects intersecting with each voxel. Hence, as we have a larger
number of voxels, the number of ray-object intersection tests n,
in (1) becomes smaller. When we have a larger number of vox-
els, however, the number of voxels the ray needs to pass also
increases, and thus the gain obtained by reducing n, in (1) is
compromised. That is, n, and n, in (1) have an opposing relation-
ship to each other. Nevertheless, n, in (1) is proportional to the
total number of voxels. Thus, if we assume the same number of
voxels in the octrees to be compared, the one having the smallest
value for n, will have the smallest total cost, as represented in
(1). This assumption is practically reasonable since the number
of voxels determines the main memory space that the octree
occupies. Thus, optimization of ray tracing cost is conditioned
by constant memory space.

In the next section, we present an algorithm to construct an
Octree-R so as to reduce the ray tracing cost. We first observe
that, for a given space with the same number of voxels, the
expected number of ray-object intersection tests can be differ-
ent depending on the position of the dividing plane, and then
construct the Octree-R algorithm so as to minimize the ex-
pected value.

Cost = n, . T, +nt . T,

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on July 23, 2009 at 08:24 from IEEE Xplore. Restrictions apply.

WHANG ET AL.: OCTREE-R: AN ADAPTIVE OCTREE FOR EFFICIENT RAY TRACING 345

B. Octree-R Construction Algorithm

In this section, we propose an Octree-R construction algo-
rithm that tries to minimize the expected number of ray-object
intersection tests. We first explain the basic theory, which is
based on [11, for computing the expected number of ray-object
intersection tests.

Suppose volume A contains volume B as shown in Fig. 1.
We denote the conditional probability for a ray r to pass vol-
ume B when the ray passes A as Pr(B!A). Assuming the rays are
uniformly distributed, the conditional probability Pr(Bk4) be-
comes the ratio of B’s average projected area to A’s average
projected area [6] . Furthermore, if the volume is convex, the
average projected area is one-fourth of the volume’s surface
[17]. This is a model (introduced in 1981) more formal than
MacDonald and Booth’s assumption (presented in 1990) [101
that the surface area is a good estimate of ray-object intersec-
tion probability. Thus, assuming that A and B are convex,

< P(B,d)> SB
<P(A,d)> SA

Pr(BIA) = =-

Here, P(V, d) is the projected area of V perpendicular to the
directions d, < > represents the average value for all directions

Fig. 2. Finding an effective plane.

d, and Sv is the surface area of the volume V.

Fig. 1. Computing the conditional probability for a ray to pass through
volume B once it passes through volume A.

We now estimate the expected number of ray-object inter-
section tests by applying (2) to the space subdivision tech-
nique. We assume that rays are randomly distributed over the
entire space. Then, since the voxels created by dividing the
given space are (convex) hexahedrons, we can apply (2). If we
divide a given space R as shown in Fig. 2, the conditional
probability for a ray to pass through the space A once it passes
through the space R is as follows:

Pr(A1R) = - - (3)
S A (t) - 2(tb + tc + bc)

s, 2(ab + ac i- bc)

Here, 2(tb + tc + bc) is the surface area of the hexahedron
whose lengths of the sides are t, b, and c, along the axes x, y,
and z , respectively; 2(ab + ac + bc) the surface area of the
hexahedron whose lengths of the sides are a, b, and c, along
the axes x, y , and z , respectively (see Fig. 2). Then, (3) can be
simplified as follows:

(4)
t(b +c) + bc
a(b + c) + bc

Pr(A1R) =

Similarly, the conditional probability for a ray to pass
through space B once it passes through space R can be given as
follows:

(5) SI, (t) (U - t)(b i- C) + bc
a(b + c) + bc

Pr(B1R) = -- =
3 R

Hence, assuming that no object intersects with the dividing
plane and that there are n(t) and m(t) objects in spaces A and
B, respectively, the expected number of ray-object intersection
tests E(t) as the ray passles through space R is given as follows:

(6) t(b + c) + bc
a(b + c) + bc

(a - t)(b + c) + bc
a(b + c) + bc - n(t) + m(t) - -

Let us consider a mare general case allowing objects inter-
secting with the dividing plane. We denote the number of objects
intersecting with plane t in Fig. 2 as s(t), the number of objects
completely included in the space A as n(t), and the number of
objects completely included in the space B as m(t). Then, the
expected number of rayobject intersection tests, E(t), when the
ray passes through the given space R is given as follows:

E(t) = u n (t) + .- m(t) + {y+y} s(t) (7)
S R SI3

If we substitute (7) with (4) and (5) , we obtain

t(b + C) + l k
a(b + c) + rbc

(a - t)(b + c) + bc
a(b + c)+ bc E(t) = - n(t) + m(t>

a(b + c) + 2bc
a(b + c)i + bc +-- s(t>

We have so far shown that, when we construct an Octree-R,
the expected number of ray-object intersection tests depends
on the position of the dividing plane in the space. Thus, we can

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on July 23, 2009 at 08:24 from IEEE Xplore. Restrictions apply.

346 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 1, NO. 4, DECEMBER 1995

construct an Octree-R in such a way as to reduce the number
of ray-object intersection tests by dividing the space with t that
minimizes (8). In order to find the t value that minimizes (S),
we would have to examine the entire space. Doing so, how-
ever, would cause too much overhead in constructing an Oc-
tree-R. Therefore, in this paper, we adopt the property identi-
fied by MacDonald and Booth [lo] that the optimal splitting
plane lies between the spatial median and the object median.
The property was derived using a cost formula similar to (8).

In order to divide the given space into eight voxels, we first
find the t values minimizing (8) for each axis of X , Y, and 2.
The t value is found by examining the space at k + 1 different
points equally spaced between the spatial and object medians.
In the experiments, we have used ten for the value of k. We
then divide the given space with these t values. In this process,
the order of calculating three values o f t is not important since
we compute these values independently for each axis. Fig. 3
summarizes the Octree-R construction algorithm. In Fig. 3,
MaxObj is the maximum number of objects allowed in a
voxel. In procedure FindDividing-Plane, the object
median is obtained by binary search with an error bound of the
maximum of 5% of the number of the objects in the voxel and
1. The algorithm is identical to that of the octree except for the
computation for optimal t. In the next section, we examine the
effectiveness of this data structure through experiments.

IV. EXPERIMENTAL RESULTS

In this section, we examine the performance of the Octree-R
proposed in this paper through experiments. Section IV.A pre-
sents the method of generating data for the experiments, and
Section 1V.B interprets the experimental data.

Procedure Cons truct-Octree-R

1) Make the root voxel from the input data
2) Subdivide(root-voxel, MaxObj)

Procedure Subdivide(Voxe1, MaxObj)

1) If the number of objects in Voxel 5 MaxObj then return.
2) Find a dividing plane that minimizes (8) for each axis (X, Y,

and Z);

tx = Fin&Dividing-Plane(X, Voxel);
ty = Find-Dividing-Plane(Y, Voxel);
tz = Find-Dividing-Plane(Z, voxel);

data structure using the point (tx. t,,, td. Let Subvoxel[i] be
the zth subvoxel data structure.

4) for (i = 0; i < 8; i + +)
5) Subdivide(Subvoxel[i], MaxObj);
Procedure Find-Dividing-Plane (Axis, Voxel)
1) Find the object median by binary search with an error

bound of max(5% of the objects, 1).
2) Find a dividing plane that minimizes (8) for Axis (X, Y, or

2) from k + 1 points equally spaced between the object
median and the spatial median. These points include the
two medians.

3. Create eight subvoxel data structures from the parent voxel

3) Return the dividing planet for Axis.

Fig. 3.Octree-R construction algorithm.

A. Experiment Data
For the experiments, we have generated two different

classes of random data. One class has uniform distributions
and the other Gaussian distributions. Each class consists of
two categories having different sizes of distributed objects. We
also used four real data sets in the standard procedural data-
base (tetra, rings, balls, and gears), the ray-traced views of
which are shown in Figs. 4, 5 , 6, and 7. Thus, we have a total
of eight different data sets.

In Fig. 3, we set k = 10 since it is an empirically reasonable
number. Sensitivity of the result on k is not very relevent since
the construction time of Octree-R is only a small fraction of
the ray tracing time.

The space in which objects are distributed is a three-
dimensional one where each axis ranges between zero and one.
The shape of each object is a triangle. The reason we assume a
triangle for an object is that, in general, objects used in com-
puter graphics can be represented by their surfaces and the
objects’ surfaces are represented by patches of triangles
through triangulation. We used ten thousand objects for each
data set (4,09631,201 objects for the real data sets). The
process of generating data consists of two steps. In the first
step, the position of an object is determined in the three-
dimensional space. In the second step, a triangle with the given
size is generated at that position.

To generate the positions of the objects, we use a uniform
random function and a Gaussian random function with the
average of 0.5 and the standard deviation of 0.25. To gener-
ate triangles with the given size, we first make a sphere
whose center is at the position determined in the previous
step and whose radius is the given size. We then calculate
the two points in the sphere using the uniform random func-
tion. The reason we use a uniform random function is to
avoid generating triangles having identical sizes and direc-
tions. Now that we have located the three points, we can
make a triangle by connecting the center and the other two
points of the sphere. Even though the triangles generated in
this way may intersect with each other, this does not create
any problem since triangles are planes. We experimented
with two different cases: in the first case the radius of the
sphere has a constant value of 0.03; and in the second case
the radius is uniformly distributed over the range between
0.005 and 0.03.

3. Experimental Results
When comparing the performance of the Octree-R with that

of the octree, we have used the same number of voxels as has
been discussed in Section 1V.A. We have varied the number
of voxels from 3,000 to 5,000 by varying blocking factors(the
number of objects in a voxel) in order to see the effect of the
degree of space partitioning.

The experimental results for the eight sets of the test data
are shown in Figs. 8,9, 10, and Fig. 11. The horizontal axis of
Fig. 8 represents the number of leaf nodes (voxels), and the
vertical axis the average number of ray-object intersection
tests. Figs. 9, 10, and 11 show the effectiveness of the Octree-
R compared with the octree that uses the spatial median. The
effectiveness is defined as follows:

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on July 23, 2009 at 08:24 from IEEE Xplore. Restrictions apply.

WHANG ET AL.: OCTREE-U: AN ADAPTIVE OCTREE FOR EFFICIENT RAY TRACING 347

Fig. 4. The ray-traced view of the real data named “tetra” having 4,096 objects. Fig. 5. The ray-traced view of the real data named “rings” having 31,201 objects.

Fig. 6. The ray-traced view of the real data named ‘%balls” having 17,473 objects.

xloo (9) f(octree)- f(0ctree-R)
f(octree)

Effectiveness (%) =

In (9), ‘tf (octree)” represents the average number of ray-
object intersection tests when the octree is used and “(Octree-
R)” when the Octree-R is used.

The figures show that the Octree-R gains from 4% to 47%
over the octree. For the case of the uniform distribution, we
observe the following trend: When the number of voxels is
small, the effectiveness is about 4% and, as the number of
voxels increases, it increases up to 11%. The reason the effec-

Fig. 7. The ray-traced view of the real data named “gears” having 9,345 objects.

tiveness is low when the number of voxels is small is that the
dividing plane minimizing (8) is found near the spatial median
since the data is uniformly distributed. If the number of voxels
increases, the space is divided in a minute scale, and nonuni-
formity builds up locally moving the dividing plane of the Oc-
tree-R from the median. For the case of the Gaussian distribu-
tion, however, we observe that the effectiveness stays fairly
flat around 12% regardless of the number of voxels. This phe-
nomenon is easily understood since the Gaussian distribution
is nonuniform.

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on July 23, 2009 at 08:24 from IEEE Xplore. Restrictions apply.

348 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 1, NO. 4, DECEMBER 1995

3000 3400 3800 4200 4600 5000

Number of Leaf Nodes

Fig. 8. Average number of ray-object intersection tests for the Octree-R with
uniform distribution of spheres of radius 0.03.

Radius
0.03 -E& I

3000 3400 3800 4200 4600 5Mw)
Number of Leaf Nodes

Fig. 10. The effectiveness of the Octree-R with Gaussian distribution of
spheres of radius 0.03 and varying radii.

Finally, Fig. 11 shows that the effectiveness for real data is
much higher between 9% and 47%. The result is a direct con-
sequence of highly skewed (i.e., nonuniform) distribution of
objects in the real data sets.

In Table I, we compare the time for constructing the Octfee-
R and the time for ray tracing for a real data set, “balls.” The
results show that although constructing an Octree-R takes
somewhat more time than doing an octree, the construction
time for the octree or Octree-R is far smaller than the ray
tracing time and thus has a negligible effect on the overall ray
tracing costs.

TABLE I
A COMPARISON OF CONSTRUCTION AND RAY TRACING COSTS FOR THE

OCTREE AND OCTREE-R FOR A REAL DATA SET ‘%ALL$’

Radius
0.03 -43- I

varying + I 5 16 ,i varying +

12

3000 3400 3800 4200 4600 5000
I I I I I I I I

3000 3400 3800 4200 4600 5000
Number of Leaf Nodes

Fig. 9. The effectiveness of the Octree-R with uniform distribution of spheres
of radius 0.03 and varying radii.

-gears
-a- ltetra

10 I I I I I
3000 3400 3800 4200 4600 5000

Number of Leaf Nodes

Fig. 11. The effectiveness of the Octree-R with a real data set in Fig. 8.

The experimental results have shown that, overall, the Octree-
R has better performance than the octree by 4% to 47%. Re-
garding object distributions, the Gaussian distribution consis-
tently shows better effectiveness than the uniform distribution.
This implies that the Octree-R is more effective when the ob-
jects are nonuniformly distributed than when the data is uni-
formly distributed. The reason is that, when the data is uni-
formly distributed, similar-sized voxels contain similar num-
bers of objects, and thus the dividing plane minimizing (8) is
near the spatial median. This argument is strongly supported
by experiments using real data sets with highly nonuniform
distributions. Here, we obtained much higher effectiveness
than from other data sets.

The Octree-R construction algorithm proposed in this paper
first finds the most effective plane for each axis, and then uses
the set of three planes to divide the current voxel. This set of
planes may not be optimal since each axis is considered inde-
pendently. Finding the optimal set of planes is left as a further
study.

REFERENCES
V. CONCLUSIONS

In this paper, we have proposed a data structure for improv-
ing ray tracing. This structure, named the Octree-R, is con-
structed by dividing the space with the plane minimizing the
number of ray-object intersection tests. Octree-R reduces the
number of ray-object intersection tests in comparison with the
octree that divides the space with a spatial median.

We have made experiments with two sizes of the objects
and two different distributions as well as four real data sets.

[l] J. Arvo and D. Kirk, “A survey of ray tracing acceleration techniques,”
An Introduction to Ray Tracing, A.S. Glassner ed., Academic Press,
1989.
R. End1 and M. Sommer, “Classification of ray-generators in uniform
subdivisions and octrees for ray tracing,” Computer Graphics Forum,
vol. 13, no. 1, pp. 3-19, 1994.
l.D. Foley, A. van Dam, S.K. Feiner, and J.F. Hughes, Computer
Graphics: Principles and Practice, second ed., Addison-Wesley, 1990.
A. Fujimoto, T. Tanaka, and K. Iwata, “ARTS: Accelerated ray tracing
system,” IEEE Computer Graphics and Applications, vol. 6, no. 4, pp.
16-26, Apr. 1986.

[2]

[3]

[4]

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on July 23, 2009 at 08:24 from IEEE Xplore. Restrictions apply.

WHANG ET AL.: OCTREE-R: AN ADAPTIVE OCTREE FOR EFFICIENT RAY TRACING 349

[SI AS. Glassner, “Space subdivision for fast ray tracing,” IEEE Computer
Graphics and Applications, vol. 4, no. 10, pp. 15-22, Oct. 1984.

[6] J. Goldsmith and J. Salmon, “Automatic creation of object hierarchies
for ray tracing,” IEEE Computer Graphics and Applications, vol. 7, no.
5, pp. 14-20, May 1987
P.K. Hsiung and R. Thibadeau, “Accelerating ARTS,” The Visual Com-
puter, vol. 8, pp. 181-190, 1992.
M.R. Kaplan, ‘The use of spatial coherence in ray tracing,” Techniques
for Computer Graphics, D.F. Rogers and R.A. Eamshaw eds., Springer-
Verlag, 1987.

[9] T.L. Kay, and J.T. Kajiya, “Ray tracing complex scenes,” Computer
Graphics, vol. 20, no. 4, pp. 269-278, Aug. 1986.

[IO] J.D. MacDonald and K.S. Booth, “Heuristics for ray tracing using space
subdivision,” The Visual Computer, vol. 6, pp. 153-166, 1990.

[I l l S.M. Rubin and T. Whitted, “A 3-dimensional representation for fast
rendering of complex scenes,” Computer Graphics, vol. 14, no. 3, pp.
110-116, July 1980.

[I21 H. Samet, “Implementing ray tracing with octrees and neighbor find-
ing,” Computers and Graphics, vol. 13, no. 4, pp. 445-460, 1989.

[131 H. Samet, Applications of Spatial Data Structures: Computer Graphics,
Image Processing, and GIs, Addison-Wesley, 1989.

[I41 I.D. Scherson and E. Caspary, “Data structures and the time complexity
of ray tracing,” The Visual Computer, vol. 3, pp. 201-213, 1987.

[I51 H. Weghorst, G. Hooper, and D.P. Greenberg, “Improved computational
methods for ray tracing,” ACM Trans. on Graphics, vol. 3, no. 1, pp.
52-69, Jan. 1984.

[16] T. Whitted, “An improved illumination model for shaded display,”
Comm. ACM, vol. 23, no. 6, pp. 343-349, June 1980.

[17] H.C. Van de Hulst, Light Scattering by Small Particles. Dover Publica-
tions. 1981

[7]

[8]

Kyu-Young Whang (M’83-SM’88) graduated
(Summa Cum Laude) from Seoul National Univer-
sity, in 1973, and received the MS degrees from the
Korea Advanced Institute of Science and Technol-
ogy (KAIST) in 1975 and Stanford University in
1982. He eamed the PhD degree from Stanford
University in 1984.

From 1983 to 1991, he was a research staff
member at the IBM T.J. Watson Research Center,
Yorktown Heights, N.Y., where he performed vari-
ous research projects in databases, office systems

(including Office-by-Example), and expert systems. He is now a full professor
in the Computer Science Department of KAIST and the director of the Data-
base and Knowledge Engineering Laboratory of the Center for Artificial In-
telligence Research. His research interests encompass multimedia databases,
object-oriented databases, engineering databases, advanced storage systems,
and GIs.

Dr. Whang served as an IEEE Distinguished Visitor from 1989 to 1990;
received the Best Paper Award from the Sixth IEEE International Conference
on Data Engineering; served the Fvth IEEE International Conference on
Data Engineering as a program cochair; and has served program committees
of numerous international conferences, including ACM SIGMOD and VLDB.
He twice received the External Honor Recognition from IBM. He is on the
editorial boards of VLDB Journal and International Journal of Geographic
Injormation Systems. Being on the board of directors, Dr. Whang is the edi-
tor-in-chief of the Journal of Korea Information Science Society. He is a
senior member of the IEEE and a member of the ACM.

Ju-Won Song received the BS degree in electrical
engineering from Kyungpook National University in
1981, the MS degree in computer science from
Korea Advanced Institute of Science and Technol-
ogy (KAIST) in 1983. Since 1983, he has been a
research engineer in Korea Telecom (KT). He is also
a PhD candidate in computer science at KAIST. His
research interests include spatial database systems,
geographical information systems, and multidimen-
sional access methods.

Ji-Woong Chang graduated from Yonsei University
in 1993 and received the MS degree in computer
science from Korea Advanced Institute of Science
and Technology (KAIST) in 1995. He is currently
working toward the PhD degree in computer science
at KAIST. His research interests include storage
systems, concurrency control, and memory resident
datahases.

Ji-Yun Kim received the BS degree in electronics
engineering from Seoul National University, Seoul,
Korea, in 1990, and the MS degree in computer
science from Korea Advanced Institute of Science
and Technology (KAIST), Taejon, Korea, in 1992.
He is currently a PhD candidate at KAIST. His
research interests include computer architecture,
parallel and distributed systems, and computer
graplhics.

Wani-Sup Cho received the BS degree in statistics
from Kyungpook National University in 1985 and the
MS degree in computer science from Korea Advanced
Institute of Science and Technology (KAIST) in 1987.
From 1987 to 1990, he served as a research engineer
in the Electronics and Telecommunications Research
Institute, Korea. He is currently working toward the
PhD degree in computer science at KAIST. His re-
search interests include object-oriented database sys-
tems, database design, graphical/visual user interface,
and computer graphics.

Chong-Mok Park graduated from Yonsei Univer-
sity in 1990 and received the MS degree from the
Korea Advanced Institute of Science and Technol-
ogy (KAIST) in 1992. In 1993, he worked as a
summer student at Hewlett-Packard Laboratories,
Palo Alto, Calif. He is now a PhD student in the
Computer Science Department of KAIST. His re-
search interests include object-oriented databases,
multimedia databases, and hypermedia.

11-Yeol Song received the BS degree from Han-
Yang University in 1975, the MS and the PhD de-
grees from Louisiana State University in 1984 and
1988, respectively. From 1975 to 1982, he was a
researcher and a senior researcher in the Agency for
Defense Development, Korea. He is now associate
professor in the College of Information Studies of
Drexel University. His research interests encompass
datahase management systems, object-oriented
datahases, knowledge-based systems, multimedia
information systems, and digital library. Dr. Song

has served on program committees of numerous int&national conferences,
including CIKM and ER approach and as a guest editor of the Journal of
Computer and Software Engineering.

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on July 23, 2009 at 08:24 from IEEE Xplore. Restrictions apply.

