World Wide Web (2015) 18:491-520
DOI 10.1007/511280-013-0264-y

DB-IR integration using tight-coupling
in the Odysseus DBMS

Kyu-Young Whang - Jae-Gil Lee - Min-Jae Lee -
Wook-Shin Han - Min-Soo Kim - Jun-Sung Kim

Received: 18 January 2013 / Revised: 15 July 2013 /
Accepted: 8 October 2013 / Published online: 15 December 2013
© Springer Science+Business Media New York 2013

Abstract As many recent applications require integration of structured data and text
data, unifying database (DB) and information retrieval (IR) technologies has become
one of major challenges in our field. There have been active discussions on the system
architecture for DB-IR integration, but a clear agreement has not been reached yet.
Along this direction, we have advocated the use of the tight-coupling architecture
and developed a novel structure of the IR index as well as tightly-coupled query
processing algorithms. In tight-coupling, the text data type is supported from the
storage system just like a built-in data type so that the query processor can efficiently

K.-Y. Whang (X)) - M.-J. Lee - J.-S. Kim

Department of Computer Science, Korea Advanced Institute of Science and Technology
(KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Korea

e-mail: kywhang@cs.kaist.ac.kr

M.-J. Lee
e-mail: mjlee@mozart.kaist.ac.kr

J.-S. Kim
e-mail: jskim@mozart.kaist.ac.kr

J.-G. Lee

Department of Knowledge Service Engineering, Korea Advanced Institute of Science
and Technology (KAIST), 291 Dachak-ro, Yuseong-gu, Daejeon 305-701, Korea
e-mail: jaegil@kaist.ac.kr

W.-S. Han

Department of Creative IT Engineering/Department of Computer Science and Engineering,
Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu,
Pohang-si, Gyeongbuk 790-784, Korea

e-mail: wshan@postech.ac.kr

M.-S. Kim

Department of Information and Communication Engineering, Daegu Gyeongbuk Institute
of Science & Technology (DGIST), 333 Technojungang-daero, Hyeonpung-myeon,
Dalseong-gun, Daegu 711-873, Korea

e-mail: mskim@dgist.ac.kr

@ Springer

492 World Wide Web (2015) 18:491-520

handle queries involving both structured data and text data. In this paper, for archival
purposes, we consolidate our achievements reported at non-regular publications over
the last ten years or so, extending them by adding greater details on the IR index and
the query processing algorithms. All the features in this paper are fully implemented
in the Odysseus DBMS that has been under development at KAIST for over 23 years.
We show that Odysseus significantly outperforms two open-source DBMSs and one
open-source search engine (with some exceptional cases) in processing DB-IR inte-
gration queries. These results indeed demonstrate superiority of the tight-coupling
architecture for DB-IR integration.

Keywords Tight-coupling - Information retrieval - DB-IR integration - Odysseus

1 DB-IR integration

Databases (DB) and information retrieval (IR) have been parallel universes. How-
ever, many recent applications such as customer support, health care, digital li-
braries, and advanced web search require integration of structured data and text
data [6, 13, 34, 40]. Seamless integration of structured data and text data is of prime
importance as discussed in the Lowell report [1] and the Claremont report [3]. Thus,
unifying DB and IR technologies has become one of major challenges in our field.

The requirements for DB-IR integration have been actively discussed in the
literature [6, 13, 34]. Among those requirements, we focus on the capability of
efficiently executing the queries involving both structured data and text data. This
capability forms the basis of DB-IR integration, and such queries can be easily found
in many applications.

Example 1 Consider a query that finds papers about “cloud computing” published
after “2005” in digital libraries. The former condition with “cloud computing” is
evaluated on text data such as titles or abstracts. The latter condition with “2005” is
evaluated on structured data such as the “publication_year” attribute of type integer.

For the requirement mentioned above, mainly four alternatives have been ad-
dressed in the literature [6, 13]: (i) IR on top of a relational DBMS (RDBMS),
(ii) a middleware layer on top of an RDBMS and an IR system, (iii) IR supported
via user-defined functions in RDBMSs, and (iv) IR on top of a relational storage
engine. Among them, the first and second alternatives have not been widely adopted.
One example of the first alternative is the SRAM system [16] implemented on
top of MonetDB/X100. Commercial DBMS vendors are using the third alternative
to add IR features into their DBMSs, e.g., Oracle Cartridge [30] and IBM DB2
Extender [26]. We call the third alternative as loose-coupling.

Chaudhuri et al. [13] argue that the fourth alternative would be the right architec-
tural approach to explore. Nevertheless, they admit that, since a relational storage
engine does not support the text data type, trying to use a B*-tree implementation
and a traditional relational storage layer without modification can result in very
poor performance. Thus, design and implementation of a core storage-level DB-IR
platform remains a major research challenge.

For a new architecture of DB-IR integration, we have proposed the tight-coupling
architecture [36-38, 40, 41] and have contended that it is the most efficient approach.
In tight-coupling, unlike the fourth alternative, the storage system of the DBMS

@ Springer

World Wide Web (2015) 18:491-520 493

engine directly supports the text data type. In contrast, in loose-coupling, the text
data type is supported from add-on packages running on top of the query processor.
Due to this characteristic of tight-coupling, the text data type is treated just like a
built-in data type. Hence, tight-coupling allows us to support the text data type as a
“first-class citizen” [1] within the DBMS architecture.

The tight-coupling architecture has been used to incorporate IR and spatial
database features into the Odysseus DBMS [38, 41],! which has been under de-
velopment at KAIST for 23 years. The tight-coupling with the IR features makes
Odysseus a DBMS and, at the same time, a search engine. Excellence of the tightly-
coupled IR features? has been demonstrated through the parallel web search engine
implemented using Odysseus, which is capable of managing 100 million web pages
in a non-parallel configuration and should be able to support tens of billions of web
pages in a parallel configuration [40, 42].3

Tight-coupling has many advantages for DB-IR integration over loose-coupling.
The query processor can run sophisticated algorithms for the queries involving both
structured data and text data. By taking advantage of tight-coupling, we earlier pro-
posed two algorithms: (i) IR index join with posting skipping and (ii) attribute embed-
ding [37-40], which are feasible only in tight-coupling. They are fully implemented
into Odysseus to boost DB-IR integration queries.

In this paper, for archival purposes, we consolidate our achievements reported
at non-regular publications such as a patent (2002) [36], a panel presentation
(2003) [37], a demo (2005) [38], and a keynote (2007) [39]. This paper significantly
extends them in two ways. First, we add greater details on the structure of the
patented IR index and the two query processing algorithms. Second, we compare the
performance of processing DB-IR integration queries with two widely-used open-
source DBMSs and one open-source search engine. Odysseus is shown to outperform
other systems by virtue of our tight-coupling architecture. The main contribution of
this paper is addressing DB-IR integration in the performance point of view.

One might think that our achievements presented in this paper are not very novel
at this point of time. Nevertheless, we claim that they were innovative at the time they
were reported in these non-regular publications.

— To the best of our knowledge, the U.S. patent on DB-IR tight coupling (applied
in 1999; granted in 2002) [36] is the first patent that addresses DB-IR integration.
Furthermore, this patent first proposed an index structure created on each
posting list of an inverted index, which we call the subindex. The concept of the
subindex was novel since it was the first time the index was defined on an “in-
stance” rather than on the “schema.” As we discuss in Section 3.1, a posting list
is considered a part of a tuple instance for a relation involving an attribute of the
text type. This notion was used in later work such as the ZigZag join [23] in the
context of XML query processing in 2003.

— The IR index join has been the standard method for processing multiple-
keyword queries. An optimization technique, which we call posting skipping,

IThe Odysseus DBMS consists of approximately 450,000 lines of C and C++ high precision codes.
2This work received the best demonstration award at IEEE ICDE 2005 [38].

3The sister paper [42] recently published at ACM SIGMOD discusses application of the Odysseus
DBMS to a massively-parallel search engine architecture.

@ Springer

494 World Wide Web (2015) 18:491-520

allows us to skip unqualified postings in the process of the IR index join. Al-
though posting skipping was first reported in the demo paper [38] in 2005, it had
been fully implemented in 2001. Posting skipping in the IR index join employed
the key idea of the subindex, which had been proposed in the U.S. patent [36]
granted in 2002 (applied even earlier in 1999).

— Attribute embedding is to insert any attribute values into postings for use in query
processing. One may find that attribute embedding sounds very similar to the
payload implemented in Lucene. However, the payload supports only a place-
holder for an attribute value, and the method of processing the queries using the
value of the payload is yet to be implemented in Lucene. Attribute embedding
was fully implemented in 2001 and was first reported at the panel [37] in March
2003. In contrast, the payload of Lucene is still under active development [29].

The rest of this paper is organized as follows. Section 2 introduces Odysseus and
its tight-coupling architecture. Section 3 presents the tightly-coupled IR index and
algorithms in Odysseus. Section 4 discusses the architecture of other DBMSs with
regard to DB-IR integration. Section 5 shows the results of performance evaluation.
Finally, Section 6 concludes the paper.

2 Background
2.1 Overview of Odysseus

Figure 1 shows the system architecture of Odysseus. Odysseus consists of a
storage system (Odysseus/COSMOS) and a query processor (Odysseus/OOSQL).
Odysseus/COSMOS is a sub-system that stores and manages objects in the database.
Most important, Odysseus/COSMOS contains the extensible type layer for tight-
coupling. Thus, IR and spatial database operations are processed at the level of the
storage system. Disk Manager controls raw disks independent of O/S files. Small
Object Manager manages objects smaller than one page, and Large Object Manager
manages those larger than one page and up to 2% bytes. Index Manager manages
the B+-tree index and Multilevel Grid File (MLGF) spatial index. Cursor Man-
ager processes sequential and index scan operations. Recovery Manager manages
recovery functions, and Transaction Manager concurrency control functions and
transactions. Odysseus/OOSQL is a sub-system for processing SQL queries. Query
Analyzer analyzes given SQL queries. Query Plan Generator and Optimizer gener-
ate and optimize query plans. Query Plan Executor executes optimized query plans
to return query results using Odysseus/COSMOS.

The Odysseus DBMS supports most features of the SQL3 standard. Its 64-bit
architecture allows large-scale databases up to 32 ZBytes (10*!') per table and up
to 8 EBytes (10'®) per record. It supports fast bulk loading and bulk deletion.
Concurrency control and recovery can be done in fine or coarse granularity.

The Odysseus DBMS is tightly-coupled with IR and spatial database features. It
provides extensions of an SQL query language so as to offer users tightly-coupled
IR and spatial database features. The inverted index [36] is integrated for indexing
IR contents; the Multi-Level Grid File (MLGF) [35] for indexing spatial contents.
Due to the tight-coupling architecture, concurrency control and recovery on IR and
spatial contents can be done in fine as well as coarse granularities. Odysseus provides
fast immediate update capability on IR contents. That is, there is no need to halt

@ Springer

World Wide Web (2015) 18:491-520 495

Odysseus/OO0SQL
Odysseus/OOSQL User Interface

| Query Analyzer |

Query Plan Generator and Optimizer

| Query Plan Executor |

Odysseus/COSMOS| Extensible Type Layer |

Odysseus/COSMOS User Interface

Index Manager
| Cursor Manager | | 9

(B*-Tree, MLGF)

Recovery

. i Transaction
Manager | Small Object Manager | | Large Object Manager |

Manager

| Disk Manager |

v
Database

Figure 1 The architecture of the Odysseus DBMS

the system to perform updates on IR contents. The tightly-coupled IR features are
implemented within the extensible type layer of Figure 1. We elaborate on those
features in Section 3.

2.2 Tight-coupling architecture

Here, we define the tight-coupling architecture by using the concept of the extensible
type layer [41], which is the layer that provides facilities required for using new data
types (i.e., non built-in types). That is, the extensible type layer provides new data
types, operations, and indexes.

We now define tight-coupling and loose-coupling based on the location of the
extensible type layer. Tight-coupling is a mechanism of supporting new data types
by locating the extensible type layer inside the storage system; loose-coupling by
locating the extensible type layer on top of the query processor. Figure 2 contrasts
tight-coupling with loose-coupling. In loose-coupling, a Cartridge or Extender in
a commercial DBMS corresponds to the extensible type layer. MySQL has also
adopted tight-coupling, while PostgreSQL a slight variation of loose-coupling. The
architectures of MySQL and PostgreSQL will be explained later in Section 4.

As shown in Figure 2, in loose-coupling, the extensible type layer is isolated from
the DBMS server in order to protect the DBMS server from errors occurring in

@ Springer

496 World Wide Web (2015) 18:491-520

Figure 2 Comparison

between tight-coupling and | Extensible Type Layer'
loose-coupling [41]
Query Processor Query Processor
[Extensible Type Layer
Storage System Storage System
(a) Tight-coupling. (b) Loose-coupling.

the extensible type layer. Since the extensible type layer in loose-coupling may be
implemented by ordinary users, safety of the extensible type layer is generally not
guaranteed. That is, the extensible type layer may be terminated abnormally due to
incomplete or inadvertent programming. To prevent this abnormal termination from
influencing the DBMS server, the extensible type layer runs in a process separate
from the DBMS server. In contrast, since the extensible type layer in tight-coupling
is implemented by DBMS developers, we consider that safety is guaranteed.

Different programming interfaces are used to implement new data types in tight-
coupling and loose-coupling. In tight-coupling, the storage system API is employed;
in loose-coupling, typically, the SQL interface is employed.

In general, tight-coupling has many advantages over loose-coupling [36-38, 41].
First, performance of query processing is superior. Second, flexible concurrency con-
trol is possible on new data types. Third, implementable data types and operations
are more flexible since the extensible type layer uses the storage system API. In
Section 3, we focus on the advantages of tight-coupling for DB-IR integration. Highly
efficient algorithms for DB-IR integration can be implemented to speed up DB-IR
integration queries.

3 Tightly-coupled IR features

The Odysseus DBMS supports the fext type for storing text data (e.g., web docu-
ments) and the IR index for performing keyword search on the text data. Users can
use the text type and the IR index just like other built-in types and indexes when
defining the database schema. Suppose we define a schema involving the text type, an
IR index, the integer type, and a B*-tree index. Figure 3 shows the physical structure
of a data record conforming to the schema. As shown in the figure, the text type is
treated just in the same way as the integer type is. Similarly, an IR index is treated in
the same way as a BT-tree index is.

Figure 3 The structure of a IR Index
data record involving the text (Inverted Index) B*-Tree Index
type and an IR index
v v
data record Text | mmeweee Integer

@ Springer

World Wide Web (2015) 18:491-520 497

In this section, we discuss the tightly-coupled IR features of the Odysseus DBMS.
Section 3.1 explains the structure of the IR index. Section 3.2 explains two algorithms
for processing DB-IR integration queries. Section 3.3 introduces the site-limited
search as an application of the tightly-coupled IR features.

3.1 The IR index

Overview of the IR index Figure 4 shows the structure of the IR index [36] imple-
mented in Odysseus. It is analogous to a traditional inverted index [5] widely used
for information retrieval. The inverted index of Odysseus consists of keywords and
posting lists. A posting list exists for each keyword and consists of postings. A posting
contains the document identifier (docld), the object identifier (OID), the number
of occurrences, and the offsets in the document where the keyword appears. Here,
doclds are logical identifiers, and OIDs are physical ones. Postings are maintained
in the order sorted by the docld. This can be done easily by assigning the docld in
the order of storing the documents in the database. Besides, a BT -tree index is con-
structed on keywords in order to quickly find the posting list for a specific keyword.

The inverted index of Odysseus has two distinct features compared with tradi-
tional ones. These features have first been proposed in a patent [36] in 2002. First,
it uses large objects [11] to store posting lists. We manage the storage space of the

a subindex (for each large object)

B*-Tree
a posting list
> Large Object
> Large Object
Keyword
B*-Tree
> Large Object
> Large Object
)/ \
\
/a posting list
of Postings | docld | OID | # of occurrences| offset | ------f ------
/
a posting

Figure 4 The IR index structure using large objects and subindexes

@ Springer

498 World Wide Web (2015) 18:491-520

posting list by using the large object tree, which has been proposed by Biliris [11] for
Exodus. The advantage of this method [36] is that a small amount of disk I/O’s is
required to insert a new posting into or remove it from a posting list without much
sacrificing sequential search performance. That is, insertion or deletion of a posting
does not require reading and writing the entire posting list unlike a BLOB. Second,
it uses subindexes [36] to index postings in each posting list. The subindex is used for
locating the posting with a given docld within a posting list. Using subindexes, we
can quickly find the location of a new posting to be inserted or of an existing posting
to be deleted or modified.

A subindex is a BT-tree created on each large object that stores a posting list.
Figure 5 shows the detailed implementation of the subindex. The key of a subindex
is docld; a leaf node points to an entry of the offset array stored in the large object.
An entry of the offset array stores the byte offset of a specific posting within the
posting list. This offset array enables us to quickly insert or delete a posting. We note
that, if a posting is inserted into or deleted from a posting list, the locations of the
postings after that one are changed. Suppose that the offset array does not exist and
that the leaf nodes of the subindex store the offsets of postings. Then, the leaf nodes
of the subindex must be updated whenever the locations of postings are changed. In
contrast, in Figure 5, a change of the locations affects only the offset array, but not
the subindex. The leaf nodes of the subindex are not guaranteed to be physically con-
tiguous while the entries of the offset array are. Hence, the cost of updating the latter
is much cheaper than that of updating the former. This advantage becomes more
prominent especially when insertion, deletion, and update are done in the bulk mode.

Currently, in information retrieval, it is very common that a skipping list of
pointers to postings is used as an auxiliary structure [28]. The role of a skipping
list is exactly the same as that of the subindex, which allows us to lookup a posting
efficiently and skip unqualified postings.

Implementation of the IR index The IR index of Odysseus is implemented using
tables in the extensible type layer. It consists of three tables as in Figure 6: the
inverted table, docld table, and content table. We call these three tables as the text
metadata tables. In contrast, we call a table containing text attributes as the fext
data table. Text metadata tables are created for each text attribute of a text data
table. For example, for the webpages table in Figure 6, text metadata tables are

Figure 5 The detailed Key: docld

implementation of the

subindex ~~ B-Tree™\
offset array .
e ————— large object

posting 1| posting 2| posting 3| === [postingn

L 1
{

@ Springer

World Wide Web (2015) 18:491-520 499

Content table: docld table:
webpages_description_Content -iree webpages_description_docld

content docld pointerList
Text value for the TID’s of the tuples in
description column webpages_description_Inverted
o + Inverted table:
Bllieo Bialieo webpages_description_Inverted
keyword | reverseKeyword | nPostings postingList
Subindex
AN large object
Subindex
Text data table: webpages IR index is created
siteld title URL description
(integer) | (text) | (varchar) """ (text)

webpages _title_Inverted, docld, Content

Figure 6 Implementation of the IR index using tables

created separately for the title attribute and the description attribute, where
both attributes are of type text.*

The inverted table stores the inverted index in Figure 4 in a form of a table. The
keyword attribute stores a keyword indexed, and the reverseKeyword attribute
its reversed string; e.g., reverseKeyword is “tenretni” if keyword is “internet.”
reverseKeyword is useful for processing left-wildcard operators. For example,
“*net” is processed by finding the tuples whose reverseKeyword contains “ten”
as a prefix. This can be efficiently processed using the B¥-tree index created
on reverseKeyword. We note that the values of reverseKeyword are not
actually stored in the table since they can be derived from those of keyword.
The nPostings attribute stores the number of postings in a posting list, and
the postingList attribute the posting list itself. B™-tree indexes are created on
keyword and reverseKeyword, respectively. In addition, a subindex is created if
the size of a large object exceeds a threshold, which is the size of data where an index
scan begins to outperform a sequential scan.

4The names of the text metadata tables are constructed in such a way that the names of the text data
table and the text attribute are prefixed, and then, Inverted, docId, or Content are appended.

@ Springer

500 World Wide Web (2015) 18:491-520

The docld table points to the posting lists for the keywords extracted from each
document. We use tuple identifiers (TIDs) of the tuples in the inverted table as
pointers. A TID, a part of an OID, is a physical pointer of twelve bytes, and thus,
allows us to directly access the corresponding tuple. The list of TIDs is stored in
the pointerList attribute of type varchar. The docld table is mainly used for
processing immediate update, more specifically deletion. Using the docld table, we
can quickly locate the posting lists affected by a deletion of a document.

The content table stores the values of a text attribute. Since the size of these values
tends to be very large, storing them in the text data table can drastically degrade
clustering of tuples. Thus, we store these values in a separate table, i.e., the content
table; then, the TIDs of tuples in the content table are stored in the text attribute of
the text data table.

Customization of the IR index The Odysseus DBMS supports customization of the
IR index, allowing us to add or remove components of the IR index. Due to this
customization, we can adjust the size of the IR index to fit the requirement. For
example, if proximity operators (finding the documents containing two keywords
within n words) are not required, we do not need to store pairs (sentence offset, word
offset) in a posting. This can be done easily by specifying an option when defining a
schema. For another example, if left-wildcard operators are not required, we do not
need to create the reverseKeyword attribute in the inverted table and the B*-
tree on that attribute. Besides, we can add or remove other components such as the
subindex and the docld table according to our need. Experimental results indicate
that the size of the compressed IR index, excluding the size of source data, can be
varied in the range of 90 % ~ 400 % of the size of source data through customization.

Compression of the IR index The Odysseus DBMS supports compression of the IR
index. Since the size of the posting lists takes a large proportion (over 60 %) of the
total size of the IR index, we compress primarily the posting lists of the IR index.
Compression is performed by storing a d-gap instead of a docld in a posting. The d-
gap [43] is defined as the difference between successive docld values. Hence, a docld
can be obtained by summing up d-gaps. The important feature of the d-gap is that it
can be stored using a smaller number of bits than the docld due to its smaller value.
The average compression ratio of the IR index is approximately 60 %. Besides, query
processing time is improved by approximately 20 % at cold start since the amount of
disk I/O’s is decreased due to a smaller size of the posting list; on the other hand,
query processing time gets worse by approximately 5 % at warm start because of the
decompression overhead.

3.2 IR algorithms for DB-IR integration queries

In this section, we present two tightly-coupled DB-IR algorithms: (1) IR index
join with posting skipping and (2) attribute embedding. We then show how DB-
IR integration queries in Example 1 benefit from these algorithms. Since they take
advantage of our patented IR index, the superiority of our index structure can be
proven by their performance. We note that users can easily use these features simply
by issuing SQL queries with a proper schema definition. Insertion and deletion

@ Springer

World Wide Web (2015) 18:491-520 501

(i.e., immediate update) are fully supported in Odysseus, but are discussed here only
briefly because they are beyond the scope of the paper.

3.2.1 IR index join with posting skipping

Overview The IR index join technique has been a standard way of processing
multiple-keyword queries in the IR area. Interestingly, this technique is also useful
for queries involving both keyword and attribute conditions [37, 38]. For this
purpose, an attribute value is also treated as a text and is stored in a newly added
attribute of type text. For example, an integer value 2010 is stored as a text “2010.”
Then, the attribute condition is evaluated as a keyword condition on the text at-
tribute. In this way, a mixture of keyword and attribute conditions can be represented
using a set of purely keyword conditions.?

The performance of the IR index join can be significantly improved if the subindex
explained in Section 3.1 is exploited. Using subindexes, the exact parts of posting lists
that need to be merged—where the docld matches among multiple posting lists—can
be identified. Performance is enhanced since needless parts of the posting lists are
skipped. We call this optimization technique posting skipping.

Algorithm Figure 7 shows the algorithm of the IR index join. We present a binary
join algorithm for ease of explanation. Binary joins can be extended to multi-way
joins by sophisticated join ordering. This algorithm finds the pairs of postings that
have the same docld between two posting lists. To accomplish this, the algorithm
compares the doclds of two postings where the cursor is currently located in each
posting list, and then, moves the cursor of the posting having the smaller docld to a
posting having the docld greater than or equal to the docld of the current posting of
the other posting list. We note that there are two methods of finding the posting to
which the cursor is to be moved. If the difference in docld between the two posting
lists exceeds a specified threshold, we find the posting by using the subindex, i.e., by
performing posting skipping (Lines 6 and 11). Otherwise, we use sequential scan over
the posting list (Lines 8 and 13).

The threshold for posting skipping is a tuning parameter. It indicates the maximum
difference in docld’s between two postings within a posting list where the cost of
sequentially reading the postings between them is smaller than that of performing
posting skipping.

Example 2 Figure 8 shows the process of joining two posting lists to find documents
that contain the keyword “Hadoop” and that are published in the year 2010. Suppose
that a text attribute is added for the integer attribute “year.” The gray-colored parts
of the posting lists are to be sequentially searched since these parts include the
postings having the matching docld values. These gray-colored parts can be easily
found using subindexes. We can skip to the posting whose docld is doc672 in the
posting list for “Hadoop” and to the posting whose docld is doc154 in the posting list
for “2010.”

5We note that =, <, <=, >, and >= operators on numeric values can be translated to IR operators
in Odysseus.

@ Springer

502 World Wide Web (2015) 18:491-520

Algorithm IR _Index_Join
Input: Two posting lists plist] and plist2
Output: Query results (pairs of postings with the same docld)
/* currPostingl denotes the posting where the cursor is currently located in plist1 */
/* currPosting2 denotes the posting where the cursor is currently located in plist2 */
01 Set currPostingl and currPosting?2 to be the first posting in plist1 and plist2, respectively;
02 while (there remain postings in both plist! and plist2) do
/* posting.docld denotes the docld of the posting */

03 while (currPosting1.docld != currPosting2.docld) do

04 if (currPostingl.docld < currPosting2.docld) then

05 if (currPosting2.docld - currPostingl.docld > threshold) then

06 Skip to the first posting where docld = currPosting2.docld

in plist1 by using the subindex; /* perform posting skipping */
07 else

08 Scan sequentially to the first posting
where docld = currPosting2.docld in plistI;
09 else if (currPostingl.docld > currPosting2.docld) then
10 if (currPostingl.docld - currPosting2.docld > threshold) then
11 Skip to the first posting where docld = currPostingl.docld

in plist2 by using the subindex; /* perform posting skipping */
12 else

13 Scan sequentially to the first posting
where docld = currPostingl.docld in plist2;
14 Return the pair of currPostingl and currPosting2 as the query result;
15 Advance currPostingl and currPosting2 to the next posting, respectively;

Figure 7 The algorithm of the IR index join with posting skipping

Constructing a subindex on each posting list (a tuple in Odysseus) is a unique
feature of Odysseus, and this structure has been U.S. patented in 2002 [36]. To take
advantage of our unique structure, we had developed the IR index join [37] and then
posting skipping. IR index join with posting skipping was fully implemented into
Odysseus in 2001. Later in 2003, a few methods adopting the notion of the subindex
were incidentally developed in the area of XML query processing. The methods pro-
posed by Guo et al. [22] and Halverson et al. [23] store XML elements in the inverted
index and create a B*-tree index (corresponding to a subindex) on each posting
list. Using the B*-tree indexes, these methods avoid accessing unnecessary postings
during query execution. Halverson et al. called this method the ZigZag join [23].

3.2.2 Attribute embedding

Overview We describe the attribute embedding technique—an alternative query
processing technique for speeding up queries involving both keyword and attribute
conditions. In this technique, the values of the attributes of documents are embedded

@ Springer

World Wide Web (2015) 18:491-520 503

Subindex
Keyword - -
“Hadoop” Posting List
|doc154 doc249<—SKIP__ 31 000672 v |dOGT28 v
Keyword))
“©010” Posting List
| doct [«—SKIP 3006154 e |d0c249 d0CE72 < |dOCT2Ad0GT 28 =
Subindex

Figure 8 Processing a DB-IR integration query using the IR index join

into postings; i.e., they are stored in the posting structure shown in Figure 4. This
technique is a kind of materialized join in the context of DB-IR integration. Using
this technique, we are able to evaluate keyword and attribute conditions together by
reading a single posting list, in which the values of the attributes of documents are
embedded. Without attribute embedding, we have to access data records to obtain
the values of the attributes. Accessing the data records is very expensive since it
incurs random disk accesses over a large amount of storage space. Thus, attribute em-
bedding significantly enhances the performance. On the other hand, this technique
incurs additional storage requirement for embedded attributes.

Example 3 Figure 9 shows the process of finding documents that contain the key-
word “Hadoop” and that are published in the year 2010. Since the values of the
attribute “year” are embedded into the posting list for the keyword “Hadoop,” the
query processor can check whether each document was published in the year 2010
while reading only one posting list.

Specifying embedded attributes Users can specify embedded attributes when
defining a table schema by using the option embedded_attributes for a text attribute.
That is, attribute embedding is easily activated just by using a schema definition.

Example 4 The DDL statement below makes the attribute “year” of type integer
embedded in the posting list for the attribute “description” of type text.

Keyword A posting .)
“Hadoon” J Posting List
doc154 2010 | sesesens |dOC265| 2008 |:wrserer |dOC728) 2010 | srereseres doc739 2007

docld Attribute
year

Figure 9 Processing a DB-IR integration query using attribute embedding

@ Springer

504 World Wide Web (2015) 18:491-520

CREATE TABLE webpages (year integer, - - -
description text(embedded_attributes(year))

)

Updating embedded attributes The values of embedded attributes are kept consis-
tent with those of the original attributes of the document. That is, update of the latter
triggers update of the former. This operation requires finding postings generated
from the updated document. It can be easily processed by using the docld table
and the subindex shown in Figure 6. Let us call the docld of the updated document
docldypaatea- We first find the posting lists that contain postings generated from the
updated document. This can be done by searching for the tuple with docIdypdated for
the docId attribute in the docld table. We then select the postings whose docld is
docldypdated from these posting lists by using subindexes.

3.2.3 Advantages of the tightly-coupled DB-IR algorithms

A primary advantage of the two tightly-coupled DB-IR algorithms with the DBMS
is efficient processing of queries involving both keyword and attribute conditions,
which inherently involves join. We note that, in the tight-coupling architecture, the
query processor can employ the IR index join or attribute embedding to evaluate
both keyword and attribute conditions together. In contrast, in the loose-coupling
architecture, the add-on packages evaluate keyword conditions, and then, the query
processors merge the results of the attribute conditions with those of the keyword
conditions. Here, performance is degraded since a number of intermediate results
that satisfy only the keyword or the attribute condition are retrieved. We contend
that this advantage of the tight-coupling architecture is highly practical since DB-IR
integration requires this kind of queries as discussed in Section 1.

The two algorithms are hard to be efficiently implemented in the loose-coupling
architecture since loose-coupling typically employs the SQL interface. To efficiently
implement them, the extensible type layer should have the ability to interpret a
tuple as a list of postings. For example, to support posting skipping, we should be
able to selectively access postings within a posting list (i.e., tuple). However, the SQL
interface lacks this ability since it provides only tuple-level accesses.

3.3 An application: site-limited search

To show usability of the IR features tightly-coupled with the DBMS, we present
implementation of site-limited search using the Odysseus DBMS. Site-limited search
allows us to limit the scope of a query to the web pages collected from a specific site.°
It is a very useful notion in that it can provide customized search service to individual
users limiting the search within their own web pages obviating the need to install a
separate web search engine. Site-limited search is a primary example of a DB-IR

%Google provides a similar service by allowing the users to specify the site URL together with the
query keywords.

@ Springer

World Wide Web (2015) 18:491-520 505

integration query since it involves both keyword and attribute conditions. Here, the
query to the web pages constitutes the keyword condition, and the specific site con-
stitutes the attribute condition. Figure 10 shows the interface for site-limited search
in the web search engine implemented using Odysseus. A search window is displayed
on the upper side of a web page. If users issue a query into that window, the scope of
the query is limited to the site that the current web page being displayed belongs to.

We first define the database schema required for implementing site-limited
search. The schema consists of two tables as in Figure 11: the websites and
webpages tables. The websites table stores the information of sites, and the
webpages table that of web pages. The attribute webpages.siteId repre-
sents the site from which the web page has been collected. This site identifier
is stored also in webpages.siteIdText of type text. Besides, the attribute
webpages.description stores the content of a web page after removing HTML
tags. The keyword condition is resolved against this attribute.

We offer two methods for implementing site-limited search. These methods utilize
the IR index join and attribute embedding explained in Section 3.2, respectively. The

3 SAMSUNGVs Digital World - Microsoft Internet Explorer

Fle Edt ‘Wiew Favortes Tools Help ﬁ."
D B @G Lo e @] 2-% B-LE B

€] htep://acacia kaist. 3¢ ke fopenframe. php?URL=http: e 3534 1% 40T REE NAe%aT %2773+ v | E) G0 Lnks *

oDys swimes

T S @® Keyword Search O Natusal Language Search Si te' Li mitEd S%rch

~
w PRODUCTS SUPPORT FEATURES PRESS CENTER ABOUT SAMSUNG Select Country /Region ¥

V' PRODUCT REGISTRATION 5 CART f COMMUNITY = SEARCH (c0]

DigitAll
magazine

[+]

with samsung . . ! g =] Download Center
it's not that hard o im . - iai r ircuit Ci ut Diowritoad Drivers, Manuals
Sottware and Firmware

* M * Senvice Location

* FAQ |/ Support

Global Links

+ Investor Relations
* Business Partners
+ Careers

Affiliated Companies

Figure 10 The interface for site-limited search

@ Springer

506 World Wide Web (2015) 18:491-520
Figure 11 The database H Attribute name | Attribute type I Description ||
schema used to implement - - — -
site-limited search siteld integer SltSe identifier
URL varchar ite URL
title text Site title
description text Site description

(a) The websites table.

[[Attribute name | Attribute type | Description Il
siteld integer Site identifier
siteIdText text Site identifier
URL varchar Page URL
title text Page title
description text Part of page content

(b) The webpages table.

system designer or the query optimizer can choose one of the two methods depending
on the cost.

IR index join: This method handles site-limited search as a multiple-keyword
query. We note that we can evaluate the site condition by executing keyword
search on siteIdText. SiteIdText is the text type version of SiteId
and has to be declared additionally in the schema. (Let us recall that, from
Se