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Abstract As many recent applications require integration of structured data and text
data, unifying database (DB) and information retrieval (IR) technologies has become
one of major challenges in our field. There have been active discussions on the system
architecture for DB-IR integration, but a clear agreement has not been reached yet.
Along this direction, we have advocated the use of the tight-coupling architecture
and developed a novel structure of the IR index as well as tightly-coupled query
processing algorithms. In tight-coupling, the text data type is supported from the
storage system just like a built-in data type so that the query processor can efficiently
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handle queries involving both structured data and text data. In this paper, for archival
purposes, we consolidate our achievements reported at non-regular publications over
the last ten years or so, extending them by adding greater details on the IR index and
the query processing algorithms. All the features in this paper are fully implemented
in the Odysseus DBMS that has been under development at KAIST for over 23 years.
We show that Odysseus significantly outperforms two open-source DBMSs and one
open-source search engine (with some exceptional cases) in processing DB-IR inte-
gration queries. These results indeed demonstrate superiority of the tight-coupling
architecture for DB-IR integration.

Keywords Tight-coupling · Information retrieval · DB-IR integration · Odysseus

1 DB-IR integration

Databases (DB) and information retrieval (IR) have been parallel universes. How-
ever, many recent applications such as customer support, health care, digital li-
braries, and advanced web search require integration of structured data and text
data [6, 13, 34, 40]. Seamless integration of structured data and text data is of prime
importance as discussed in the Lowell report [1] and the Claremont report [3]. Thus,
unifying DB and IR technologies has become one of major challenges in our field.

The requirements for DB-IR integration have been actively discussed in the
literature [6, 13, 34]. Among those requirements, we focus on the capability of
efficiently executing the queries involving both structured data and text data. This
capability forms the basis of DB-IR integration, and such queries can be easily found
in many applications.

Example 1 Consider a query that finds papers about “cloud computing” published
after “2005” in digital libraries. The former condition with “cloud computing” is
evaluated on text data such as titles or abstracts. The latter condition with “2005” is
evaluated on structured data such as the “publication_year” attribute of type integer.

For the requirement mentioned above, mainly four alternatives have been ad-
dressed in the literature [6, 13]: (i) IR on top of a relational DBMS (RDBMS),
(ii) a middleware layer on top of an RDBMS and an IR system, (iii) IR supported
via user-defined functions in RDBMSs, and (iv) IR on top of a relational storage
engine. Among them, the first and second alternatives have not been widely adopted.
One example of the first alternative is the SRAM system [16] implemented on
top of MonetDB/X100. Commercial DBMS vendors are using the third alternative
to add IR features into their DBMSs, e.g., Oracle Cartridge [30] and IBM DB2
Extender [26]. We call the third alternative as loose-coupling.

Chaudhuri et al. [13] argue that the fourth alternative would be the right architec-
tural approach to explore. Nevertheless, they admit that, since a relational storage
engine does not support the text data type, trying to use a B+-tree implementation
and a traditional relational storage layer without modification can result in very
poor performance. Thus, design and implementation of a core storage-level DB-IR
platform remains a major research challenge.

For a new architecture of DB-IR integration, we have proposed the tight-coupling
architecture [36–38, 40, 41] and have contended that it is the most efficient approach.
In tight-coupling, unlike the fourth alternative, the storage system of the DBMS
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engine directly supports the text data type. In contrast, in loose-coupling, the text
data type is supported from add-on packages running on top of the query processor.
Due to this characteristic of tight-coupling, the text data type is treated just like a
built-in data type. Hence, tight-coupling allows us to support the text data type as a
“first-class citizen” [1] within the DBMS architecture.

The tight-coupling architecture has been used to incorporate IR and spatial
database features into the Odysseus DBMS [38, 41],1 which has been under de-
velopment at KAIST for 23 years. The tight-coupling with the IR features makes
Odysseus a DBMS and, at the same time, a search engine. Excellence of the tightly-
coupled IR features2 has been demonstrated through the parallel web search engine
implemented using Odysseus, which is capable of managing 100 million web pages
in a non-parallel configuration and should be able to support tens of billions of web
pages in a parallel configuration [40, 42].3

Tight-coupling has many advantages for DB-IR integration over loose-coupling.
The query processor can run sophisticated algorithms for the queries involving both
structured data and text data. By taking advantage of tight-coupling, we earlier pro-
posed two algorithms: (i) IR index join with posting skipping and (ii) attribute embed-
ding [37–40], which are feasible only in tight-coupling. They are fully implemented
into Odysseus to boost DB-IR integration queries.

In this paper, for archival purposes, we consolidate our achievements reported
at non-regular publications such as a patent (2002) [36], a panel presentation
(2003) [37], a demo (2005) [38], and a keynote (2007) [39]. This paper significantly
extends them in two ways. First, we add greater details on the structure of the
patented IR index and the two query processing algorithms. Second, we compare the
performance of processing DB-IR integration queries with two widely-used open-
source DBMSs and one open-source search engine. Odysseus is shown to outperform
other systems by virtue of our tight-coupling architecture. The main contribution of
this paper is addressing DB-IR integration in the performance point of view.

One might think that our achievements presented in this paper are not very novel
at this point of time. Nevertheless, we claim that they were innovative at the time they
were reported in these non-regular publications.

– To the best of our knowledge, the U.S. patent on DB-IR tight coupling (applied
in 1999; granted in 2002) [36] is the first patent that addresses DB-IR integration.
Furthermore, this patent first proposed an index structure created on each
posting list of an inverted index, which we call the subindex. The concept of the
subindex was novel since it was the first time the index was defined on an “in-
stance” rather than on the “schema.” As we discuss in Section 3.1, a posting list
is considered a part of a tuple instance for a relation involving an attribute of the
text type. This notion was used in later work such as the ZigZag join [23] in the
context of XML query processing in 2003.

– The IR index join has been the standard method for processing multiple-
keyword queries. An optimization technique, which we call posting skipping,

1The Odysseus DBMS consists of approximately 450,000 lines of C and C++ high precision codes.
2This work received the best demonstration award at IEEE ICDE 2005 [38].
3The sister paper [42] recently published at ACM SIGMOD discusses application of the Odysseus
DBMS to a massively-parallel search engine architecture.
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allows us to skip unqualified postings in the process of the IR index join. Al-
though posting skipping was first reported in the demo paper [38] in 2005, it had
been fully implemented in 2001. Posting skipping in the IR index join employed
the key idea of the subindex, which had been proposed in the U.S. patent [36]
granted in 2002 (applied even earlier in 1999).

– Attribute embedding is to insert any attribute values into postings for use in query
processing. One may find that attribute embedding sounds very similar to the
payload implemented in Lucene. However, the payload supports only a place-
holder for an attribute value, and the method of processing the queries using the
value of the payload is yet to be implemented in Lucene. Attribute embedding
was fully implemented in 2001 and was first reported at the panel [37] in March
2003. In contrast, the payload of Lucene is still under active development [29].

The rest of this paper is organized as follows. Section 2 introduces Odysseus and
its tight-coupling architecture. Section 3 presents the tightly-coupled IR index and
algorithms in Odysseus. Section 4 discusses the architecture of other DBMSs with
regard to DB-IR integration. Section 5 shows the results of performance evaluation.
Finally, Section 6 concludes the paper.

2 Background

2.1 Overview of Odysseus

Figure 1 shows the system architecture of Odysseus. Odysseus consists of a
storage system (Odysseus/COSMOS) and a query processor (Odysseus/OOSQL).
Odysseus/COSMOS is a sub-system that stores and manages objects in the database.
Most important, Odysseus/COSMOS contains the extensible type layer for tight-
coupling. Thus, IR and spatial database operations are processed at the level of the
storage system. Disk Manager controls raw disks independent of O/S files. Small
Object Manager manages objects smaller than one page, and Large Object Manager
manages those larger than one page and up to 263 bytes. Index Manager manages
the B+-tree index and Multilevel Grid File (MLGF) spatial index. Cursor Man-
ager processes sequential and index scan operations. Recovery Manager manages
recovery functions, and Transaction Manager concurrency control functions and
transactions. Odysseus/OOSQL is a sub-system for processing SQL queries. Query
Analyzer analyzes given SQL queries. Query Plan Generator and Optimizer gener-
ate and optimize query plans. Query Plan Executor executes optimized query plans
to return query results using Odysseus/COSMOS.

The Odysseus DBMS supports most features of the SQL3 standard. Its 64-bit
architecture allows large-scale databases up to 32 ZBytes (1021) per table and up
to 8 EBytes (1018) per record. It supports fast bulk loading and bulk deletion.
Concurrency control and recovery can be done in fine or coarse granularity.

The Odysseus DBMS is tightly-coupled with IR and spatial database features. It
provides extensions of an SQL query language so as to offer users tightly-coupled
IR and spatial database features. The inverted index [36] is integrated for indexing
IR contents; the Multi-Level Grid File (MLGF) [35] for indexing spatial contents.
Due to the tight-coupling architecture, concurrency control and recovery on IR and
spatial contents can be done in fine as well as coarse granularities. Odysseus provides
fast immediate update capability on IR contents. That is, there is no need to halt
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Figure 1 The architecture of the Odysseus DBMS

the system to perform updates on IR contents. The tightly-coupled IR features are
implemented within the extensible type layer of Figure 1. We elaborate on those
features in Section 3.

2.2 Tight-coupling architecture

Here, we define the tight-coupling architecture by using the concept of the extensible
type layer [41], which is the layer that provides facilities required for using new data
types (i.e., non built-in types). That is, the extensible type layer provides new data
types, operations, and indexes.

We now define tight-coupling and loose-coupling based on the location of the
extensible type layer. Tight-coupling is a mechanism of supporting new data types
by locating the extensible type layer inside the storage system; loose-coupling by
locating the extensible type layer on top of the query processor. Figure 2 contrasts
tight-coupling with loose-coupling. In loose-coupling, a Cartridge or Extender in
a commercial DBMS corresponds to the extensible type layer. MySQL has also
adopted tight-coupling, while PostgreSQL a slight variation of loose-coupling. The
architectures of MySQL and PostgreSQL will be explained later in Section 4.

As shown in Figure 2, in loose-coupling, the extensible type layer is isolated from
the DBMS server in order to protect the DBMS server from errors occurring in
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Figure 2 Comparison
between tight-coupling and
loose-coupling [41]

Storage System Storage System

Query ProcessorQuery Processor

Extensible Type Layer

Extensible Type Layer

(a) Tight-coupling. (b) Loose-coupling.

the extensible type layer. Since the extensible type layer in loose-coupling may be
implemented by ordinary users, safety of the extensible type layer is generally not
guaranteed. That is, the extensible type layer may be terminated abnormally due to
incomplete or inadvertent programming. To prevent this abnormal termination from
influencing the DBMS server, the extensible type layer runs in a process separate
from the DBMS server. In contrast, since the extensible type layer in tight-coupling
is implemented by DBMS developers, we consider that safety is guaranteed.

Different programming interfaces are used to implement new data types in tight-
coupling and loose-coupling. In tight-coupling, the storage system API is employed;
in loose-coupling, typically, the SQL interface is employed.

In general, tight-coupling has many advantages over loose-coupling [36–38, 41].
First, performance of query processing is superior. Second, flexible concurrency con-
trol is possible on new data types. Third, implementable data types and operations
are more flexible since the extensible type layer uses the storage system API. In
Section 3, we focus on the advantages of tight-coupling for DB-IR integration. Highly
efficient algorithms for DB-IR integration can be implemented to speed up DB-IR
integration queries.

3 Tightly-coupled IR features

The Odysseus DBMS supports the text type for storing text data (e.g., web docu-
ments) and the IR index for performing keyword search on the text data. Users can
use the text type and the IR index just like other built-in types and indexes when
defining the database schema. Suppose we define a schema involving the text type, an
IR index, the integer type, and a B+-tree index. Figure 3 shows the physical structure
of a data record conforming to the schema. As shown in the figure, the text type is
treated just in the same way as the integer type is. Similarly, an IR index is treated in
the same way as a B+-tree index is.

Figure 3 The structure of a
data record involving the text
type and an IR index

Text Integerdata record

IR Index
(Inverted Index) B+-Tree Index
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In this section, we discuss the tightly-coupled IR features of the Odysseus DBMS.
Section 3.1 explains the structure of the IR index. Section 3.2 explains two algorithms
for processing DB-IR integration queries. Section 3.3 introduces the site-limited
search as an application of the tightly-coupled IR features.

3.1 The IR index

Overview of the IR index Figure 4 shows the structure of the IR index [36] imple-
mented in Odysseus. It is analogous to a traditional inverted index [5] widely used
for information retrieval. The inverted index of Odysseus consists of keywords and
posting lists. A posting list exists for each keyword and consists of postings. A posting
contains the document identifier (docId), the object identifier (OID), the number
of occurrences, and the offsets in the document where the keyword appears. Here,
docIds are logical identifiers, and OIDs are physical ones. Postings are maintained
in the order sorted by the docId. This can be done easily by assigning the docId in
the order of storing the documents in the database. Besides, a B+-tree index is con-
structed on keywords in order to quickly find the posting list for a specific keyword.

The inverted index of Odysseus has two distinct features compared with tradi-
tional ones. These features have first been proposed in a patent [36] in 2002. First,
it uses large objects [11] to store posting lists. We manage the storage space of the

OID

Large Object

Large Object

Large Object

Large Object

Keyword
B+-Tree

B+-Tree

a posting list

a subindex (for each large object)

# of Postings docId # of occurrences offset

a posting

a posting list

Figure 4 The IR index structure using large objects and subindexes
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posting list by using the large object tree, which has been proposed by Biliris [11] for
Exodus. The advantage of this method [36] is that a small amount of disk I/O’s is
required to insert a new posting into or remove it from a posting list without much
sacrificing sequential search performance. That is, insertion or deletion of a posting
does not require reading and writing the entire posting list unlike a BLOB. Second,
it uses subindexes [36] to index postings in each posting list. The subindex is used for
locating the posting with a given docId within a posting list. Using subindexes, we
can quickly find the location of a new posting to be inserted or of an existing posting
to be deleted or modified.

A subindex is a B+-tree created on each large object that stores a posting list.
Figure 5 shows the detailed implementation of the subindex. The key of a subindex
is docId; a leaf node points to an entry of the offset array stored in the large object.
An entry of the offset array stores the byte offset of a specific posting within the
posting list. This offset array enables us to quickly insert or delete a posting. We note
that, if a posting is inserted into or deleted from a posting list, the locations of the
postings after that one are changed. Suppose that the offset array does not exist and
that the leaf nodes of the subindex store the offsets of postings. Then, the leaf nodes
of the subindex must be updated whenever the locations of postings are changed. In
contrast, in Figure 5, a change of the locations affects only the offset array, but not
the subindex. The leaf nodes of the subindex are not guaranteed to be physically con-
tiguous while the entries of the offset array are. Hence, the cost of updating the latter
is much cheaper than that of updating the former. This advantage becomes more
prominent especially when insertion, deletion, and update are done in the bulk mode.

Currently, in information retrieval, it is very common that a skipping list of
pointers to postings is used as an auxiliary structure [28]. The role of a skipping
list is exactly the same as that of the subindex, which allows us to lookup a posting
efficiently and skip unqualified postings.

Implementation of the IR index The IR index of Odysseus is implemented using
tables in the extensible type layer. It consists of three tables as in Figure 6: the
inverted table, docId table, and content table. We call these three tables as the text
metadata tables. In contrast, we call a table containing text attributes as the text
data table. Text metadata tables are created for each text attribute of a text data
table. For example, for the webpages table in Figure 6, text metadata tables are

Figure 5 The detailed
implementation of the
subindex

posting 1 posting 2 posting 3 posting n

offset array

B+-Tree

Key: docId

large object
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Inverted table:
webpages_description_Inverted

keyword reverseKeyword nPostings postingList

B+- treeB+-tree B - treeB+-tree

SubindSubindex

SubindSubindex

large object

IR index is created

webpages_title_Inverted, docId, Content

siteId
(integer)

title
(text)

URL
(varchar)

description
(text)

Text data table: webpages

docId pointerList

docId table:
webpages_description_docIdB+-tree

TID’s of the tuples in
webpages_description_Inverted

content

Content table:
webpages_description_Content

Text value for the
description column

Figure 6 Implementation of the IR index using tables

created separately for the title attribute and the description attribute, where
both attributes are of type text.4

The inverted table stores the inverted index in Figure 4 in a form of a table. The
keyword attribute stores a keyword indexed, and the reverseKeyword attribute
its reversed string; e.g., reverseKeyword is “tenretni” if keyword is “internet.”
reverseKeyword is useful for processing left-wildcard operators. For example,
“*net” is processed by finding the tuples whose reverseKeyword contains “ten”
as a prefix. This can be efficiently processed using the B+-tree index created
on reverseKeyword. We note that the values of reverseKeyword are not
actually stored in the table since they can be derived from those of keyword.
The nPostings attribute stores the number of postings in a posting list, and
the postingList attribute the posting list itself. B+-tree indexes are created on
keyword and reverseKeyword, respectively. In addition, a subindex is created if
the size of a large object exceeds a threshold, which is the size of data where an index
scan begins to outperform a sequential scan.

4The names of the text metadata tables are constructed in such a way that the names of the text data
table and the text attribute are prefixed, and then, Inverted, docId, or Content are appended.
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The docId table points to the posting lists for the keywords extracted from each
document. We use tuple identifiers (TIDs) of the tuples in the inverted table as
pointers. A TID, a part of an OID, is a physical pointer of twelve bytes, and thus,
allows us to directly access the corresponding tuple. The list of TIDs is stored in
the pointerList attribute of type varchar. The docId table is mainly used for
processing immediate update, more specifically deletion. Using the docId table, we
can quickly locate the posting lists affected by a deletion of a document.

The content table stores the values of a text attribute. Since the size of these values
tends to be very large, storing them in the text data table can drastically degrade
clustering of tuples. Thus, we store these values in a separate table, i.e., the content
table; then, the TIDs of tuples in the content table are stored in the text attribute of
the text data table.

Customization of the IR index The Odysseus DBMS supports customization of the
IR index, allowing us to add or remove components of the IR index. Due to this
customization, we can adjust the size of the IR index to fit the requirement. For
example, if proximity operators (finding the documents containing two keywords
within n words) are not required, we do not need to store pairs 〈sentence offset, word
offset〉 in a posting. This can be done easily by specifying an option when defining a
schema. For another example, if left-wildcard operators are not required, we do not
need to create the reverseKeyword attribute in the inverted table and the B+-
tree on that attribute. Besides, we can add or remove other components such as the
subindex and the docId table according to our need. Experimental results indicate
that the size of the compressed IR index, excluding the size of source data, can be
varied in the range of 90 % ∼ 400 % of the size of source data through customization.

Compression of the IR index The Odysseus DBMS supports compression of the IR
index. Since the size of the posting lists takes a large proportion (over 60 %) of the
total size of the IR index, we compress primarily the posting lists of the IR index.
Compression is performed by storing a d-gap instead of a docId in a posting. The d-
gap [43] is defined as the difference between successive docId values. Hence, a docId
can be obtained by summing up d-gaps. The important feature of the d-gap is that it
can be stored using a smaller number of bits than the docId due to its smaller value.
The average compression ratio of the IR index is approximately 60 %. Besides, query
processing time is improved by approximately 20 % at cold start since the amount of
disk I/O’s is decreased due to a smaller size of the posting list; on the other hand,
query processing time gets worse by approximately 5 % at warm start because of the
decompression overhead.

3.2 IR algorithms for DB-IR integration queries

In this section, we present two tightly-coupled DB-IR algorithms: (1) IR index
join with posting skipping and (2) attribute embedding. We then show how DB-
IR integration queries in Example 1 benefit from these algorithms. Since they take
advantage of our patented IR index, the superiority of our index structure can be
proven by their performance. We note that users can easily use these features simply
by issuing SQL queries with a proper schema definition. Insertion and deletion
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(i.e., immediate update) are fully supported in Odysseus, but are discussed here only
briefly because they are beyond the scope of the paper.

3.2.1 IR index join with posting skipping

Overview The IR index join technique has been a standard way of processing
multiple-keyword queries in the IR area. Interestingly, this technique is also useful
for queries involving both keyword and attribute conditions [37, 38]. For this
purpose, an attribute value is also treated as a text and is stored in a newly added
attribute of type text. For example, an integer value 2010 is stored as a text “2010.”
Then, the attribute condition is evaluated as a keyword condition on the text at-
tribute. In this way, a mixture of keyword and attribute conditions can be represented
using a set of purely keyword conditions.5

The performance of the IR index join can be significantly improved if the subindex
explained in Section 3.1 is exploited. Using subindexes, the exact parts of posting lists
that need to be merged—where the docId matches among multiple posting lists—can
be identified. Performance is enhanced since needless parts of the posting lists are
skipped. We call this optimization technique posting skipping.

Algorithm Figure 7 shows the algorithm of the IR index join. We present a binary
join algorithm for ease of explanation. Binary joins can be extended to multi-way
joins by sophisticated join ordering. This algorithm finds the pairs of postings that
have the same docId between two posting lists. To accomplish this, the algorithm
compares the docIds of two postings where the cursor is currently located in each
posting list, and then, moves the cursor of the posting having the smaller docId to a
posting having the docId greater than or equal to the docId of the current posting of
the other posting list. We note that there are two methods of finding the posting to
which the cursor is to be moved. If the difference in docId between the two posting
lists exceeds a specified threshold, we find the posting by using the subindex, i.e., by
performing posting skipping (Lines 6 and 11). Otherwise, we use sequential scan over
the posting list (Lines 8 and 13).

The threshold for posting skipping is a tuning parameter. It indicates the maximum
difference in docId’s between two postings within a posting list where the cost of
sequentially reading the postings between them is smaller than that of performing
posting skipping.

Example 2 Figure 8 shows the process of joining two posting lists to find documents
that contain the keyword “Hadoop” and that are published in the year 2010. Suppose
that a text attribute is added for the integer attribute “year.” The gray-colored parts
of the posting lists are to be sequentially searched since these parts include the
postings having the matching docId values. These gray-colored parts can be easily
found using subindexes. We can skip to the posting whose docId is doc672 in the
posting list for “Hadoop” and to the posting whose docId is doc154 in the posting list
for “2010.”

5We note that =, <, <=, >, and >= operators on numeric values can be translated to IR operators
in Odysseus.
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Figure 7 The algorithm of the IR index join with posting skipping

Constructing a subindex on each posting list (a tuple in Odysseus) is a unique
feature of Odysseus, and this structure has been U.S. patented in 2002 [36]. To take
advantage of our unique structure, we had developed the IR index join [37] and then
posting skipping. IR index join with posting skipping was fully implemented into
Odysseus in 2001. Later in 2003, a few methods adopting the notion of the subindex
were incidentally developed in the area of XML query processing. The methods pro-
posed by Guo et al. [22] and Halverson et al. [23] store XML elements in the inverted
index and create a B+-tree index (corresponding to a subindex) on each posting
list. Using the B+-tree indexes, these methods avoid accessing unnecessary postings
during query execution. Halverson et al. called this method the ZigZag join [23].

3.2.2 Attribute embedding

Overview We describe the attribute embedding technique—an alternative query
processing technique for speeding up queries involving both keyword and attribute
conditions. In this technique, the values of the attributes of documents are embedded
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Keyword
“Hadoop” Posting List

Subindex

doc1

Keyword
“2010” Posting List

doc154 doc249 doc672 doc723

doc154 doc249 doc672 doc728

doc728

skip

skip

Subindex

Figure 8 Processing a DB-IR integration query using the IR index join

into postings; i.e., they are stored in the posting structure shown in Figure 4. This
technique is a kind of materialized join in the context of DB-IR integration. Using
this technique, we are able to evaluate keyword and attribute conditions together by
reading a single posting list, in which the values of the attributes of documents are
embedded. Without attribute embedding, we have to access data records to obtain
the values of the attributes. Accessing the data records is very expensive since it
incurs random disk accesses over a large amount of storage space. Thus, attribute em-
bedding significantly enhances the performance. On the other hand, this technique
incurs additional storage requirement for embedded attributes.

Example 3 Figure 9 shows the process of finding documents that contain the key-
word “Hadoop” and that are published in the year 2010. Since the values of the
attribute “year” are embedded into the posting list for the keyword “Hadoop,” the
query processor can check whether each document was published in the year 2010
while reading only one posting list.

Specifying embedded attributes Users can specify embedded attributes when
defining a table schema by using the option embedded_attributes for a text attribute.
That is, attribute embedding is easily activated just by using a schema definition.

Example 4 The DDL statement below makes the attribute “year” of type integer
embedded in the posting list for the attribute “description” of type text.

Keyword
“Hadoop”

A posting

doc154 2010

docId Attribute
year

doc265 2008 doc728 2010 doc739 2007

Posting List

Figure 9 Processing a DB-IR integration query using attribute embedding
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CREATE TABLE webpages ( year integer, · · ·
description text(embedded_attributes(year))
· · · )

Updating embedded attributes The values of embedded attributes are kept consis-
tent with those of the original attributes of the document. That is, update of the latter
triggers update of the former. This operation requires finding postings generated
from the updated document. It can be easily processed by using the docId table
and the subindex shown in Figure 6. Let us call the docId of the updated document
docIdupdated. We first find the posting lists that contain postings generated from the
updated document. This can be done by searching for the tuple with docIdupdated for
the docId attribute in the docId table. We then select the postings whose docId is
docIdupdated from these posting lists by using subindexes.

3.2.3 Advantages of the tightly-coupled DB-IR algorithms

A primary advantage of the two tightly-coupled DB-IR algorithms with the DBMS
is efficient processing of queries involving both keyword and attribute conditions,
which inherently involves join. We note that, in the tight-coupling architecture, the
query processor can employ the IR index join or attribute embedding to evaluate
both keyword and attribute conditions together. In contrast, in the loose-coupling
architecture, the add-on packages evaluate keyword conditions, and then, the query
processors merge the results of the attribute conditions with those of the keyword
conditions. Here, performance is degraded since a number of intermediate results
that satisfy only the keyword or the attribute condition are retrieved. We contend
that this advantage of the tight-coupling architecture is highly practical since DB-IR
integration requires this kind of queries as discussed in Section 1.

The two algorithms are hard to be ef f iciently implemented in the loose-coupling
architecture since loose-coupling typically employs the SQL interface. To efficiently
implement them, the extensible type layer should have the ability to interpret a
tuple as a list of postings. For example, to support posting skipping, we should be
able to selectively access postings within a posting list (i.e., tuple). However, the SQL
interface lacks this ability since it provides only tuple-level accesses.

3.3 An application: site-limited search

To show usability of the IR features tightly-coupled with the DBMS, we present
implementation of site-limited search using the Odysseus DBMS. Site-limited search
allows us to limit the scope of a query to the web pages collected from a specific site.6

It is a very useful notion in that it can provide customized search service to individual
users limiting the search within their own web pages obviating the need to install a
separate web search engine. Site-limited search is a primary example of a DB-IR

6Google provides a similar service by allowing the users to specify the site URL together with the
query keywords.
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integration query since it involves both keyword and attribute conditions. Here, the
query to the web pages constitutes the keyword condition, and the specific site con-
stitutes the attribute condition. Figure 10 shows the interface for site-limited search
in the web search engine implemented using Odysseus. A search window is displayed
on the upper side of a web page. If users issue a query into that window, the scope of
the query is limited to the site that the current web page being displayed belongs to.

We first define the database schema required for implementing site-limited
search. The schema consists of two tables as in Figure 11: the websites and
webpages tables. The websites table stores the information of sites, and the
webpages table that of web pages. The attribute webpages.siteId repre-
sents the site from which the web page has been collected. This site identifier
is stored also in webpages.siteIdText of type text. Besides, the attribute
webpages.description stores the content of a web page after removing HTML
tags. The keyword condition is resolved against this attribute.

We offer two methods for implementing site-limited search. These methods utilize
the IR index join and attribute embedding explained in Section 3.2, respectively. The

Figure 10 The interface for site-limited search
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Figure 11 The database
schema used to implement
site-limited search

system designer or the query optimizer can choose one of the two methods depending
on the cost.

– IR index join: This method handles site-limited search as a multiple-keyword
query. We note that we can evaluate the site condition by executing keyword
search on siteIdText. SiteIdText is the text type version of SiteId
and has to be declared additionally in the schema. (Let us recall that, from
Section 3.2.1, the IR index join handles only text type attributes.) Hence, we
perform the IR index join between the two posting lists of siteIdText and
description. Thanks to posting skipping, a large number of postings within
the posting list of description can be skipped while performing the IR index
join; i.e., the postings generated from the web pages of other sites are skipped.
Thus, performance is enhanced significantly.

– Attribute embedding: This method handles site-limited search as a query in-
volving both keyword and attribute conditions. We note that we can embed the
values of siteId into the posting lists of description, and the embedding
can be specified in the schema. We can check whether each web page is

Figure 12 Query statements for processing site-limited search
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from a specific site while reading only one posting list rather than two. Thus,
performance is enhanced significantly.

Example 5 Figure 12 shows queries for finding web pages that contain the keyword
“internet” from the site whose siteId is equal to 50,000. Figure 12a shows a query
using the IR index join; Figure 12b a query using attribute embedding with relevant
schema definition. We note that, while processing the query in Figure 12b, the query
processor accesses the embedded attribute, but not the data records.

4 Related work

4.1 DBMSs with IR features

4.1.1 MySQL with MyISAM

In MySQL, IR features are implemented in MyISAM [27], which is a storage
system of MySQL. Thus, MySQL can be considered as tight-coupling like Odysseus.
Odysseus has supported tight-coupling since Apr. 1997 (version 2.0)7 while MySQL
since Sept. 2000 (version 3.23.23). Although IR features are tightly integrated into
MySQL, sophisticated DB-IR algorithms such as the IR index join (between two or
more text attributes) and attribute embedding have not been implemented yet. How-
ever, the IR index join without posting skipping within one attribute (i.e., processing
a query with multiple keywords on the same attribute) has been implemented.

The IR index of MySQL is the closest to our patented IR index. In MySQL,
each posting list is implemented using a B-tree, and postings are stored in the leaf
nodes of the B-tree. Thus, MySQL has a structure similar to our subindex even
if the implementation details have differences. The IR index of Odysseus is more
update-friendly than that of MySQL. In Odysseus, as described in Figure 5, updating
a posting list is cheap since only the offset array needs to be updated. On the other
hand, in MySQL, updating a posting list may involve a large amount of disk I/O’s to
move postings stored in leaf nodes of the B-tree.

Another notable difference is that Odysseus is an object-relational DBMS, and
thus, supports the notion of the OID, which is an essential feature for web search
engines. Odysseus can retrieve a list of OID’s as a search result whereas MySQL
should retrieve a list of attribute values (e.g., the identifier or the title). Retrieving
a list of OID’s does not require accessing data records. MySQL, however, cannot
avoid accessing data records since the attribute value is stored inside a data record.
We note that accessing data records is expensive since it incurs random I/O’s. The
advantage of using the list of OID’s is that we only need to access the data records of
those web pages that need to be displayed.

4.1.2 PostgreSQL with Tsearch2

Tsearch2 [33] is a package8 for adding IR features to the PostgreSQL DBMS. In
Tsearch2, new text data types, functions, and operators are implemented in the

7A patent was applied in 1999 [36].
8Tsearch2 is bundled with PostgreSQL since PostgreSQL Version 8.3.
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C language. Then, the C code, which is compiled into shared libraries, is integrated
into the PostgreSQL server through dynamic loading [19]. For IR indexing, Tsearch2
uses the GIN (Generalized Inverted iNdex) index [20] implemented in PostgreSQL.
Tsearch2/PostgreSQL can be viewed as a slight variation of loose-coupling since
its IR algorithms are implemented using the user-level APIs although it supports
IR indexing at the storage system level. In general, not every algorithm can be
implemented using the user-level APIs due to their restricted capability. Specifically,
the user-level API of PostgreSQL provide only tuple-level accesses, so the IR index
join and attribute embedding are hard to be implemented since these algorithms need
to manipulate inside of tuples (i.e., posting lists).

4.1.3 Commercial DBMSs

In Oracle Cartridge and IBM DB2 Extender, new data types are added by using user-
defined types, and their operations by using user-defined functions [7, 21]. However,
Cartridge and Extender have differences in extensible indexing schemes that are
employed for adding indexing schemes on new data types. Extensible indexing in
Oracle is called cooperative indexing because the Cartridge module and the DBMS
server cooperate to provide an indexing scheme [7, 18]. Extender employs the notion
of key transform for extensible indexing [14] to exploit the B-tree index for new types.
The details are omitted here since they are not a focus of this paper.

4.2 IR search engines with DBMS features

Among several open-source projects for search engines, Apache Lucene [4] has been
the most representative one. Apache Solr is a search engine platform built upon
Lucene. Lucene does not have full DBMS features, but has some DBMS-like features
with regard to DB-IR integration. It supports fielded searching that enables us to
specify a keyword condition on each field (attribute), which corresponds to struc-
tured query languages for DBMSs. In addition, it supports multiple-index searching,
which is similar to the IR index join with posting skipping. A data structure, called a
skip list, is used to boost query performance. We conjecture that, using the skip list,
Lucene has implemented a technique similar to posting skipping or the ZigZag join.

Lucene now offers a mechanism, called a payload, that attaches arbitrary bytes
to a token in the search index. It “looks” very similar to attribute embedding in
that it can be used for storing attribute values in a posting. However, in the current
version of Lucene (version 3.6.1), the payload supports only a placeholder, but the
sophisticated method of checking the value of the payload for query processing is yet
to be implemented. Its current usage is to store the weight of a term and to use the
weight to boost the ranking of a document that contains the term [29].

Although Lucene has some DBMS-like features, it is not a full-blown DBMS.
Thus, we believe the usability of Odysseus is better than that of Lucene. In Odysseus,
users can develop applications simply by defining a schema and writing SQL queries.
In contrast, to implement the same features in Lucene, programmers should write
Java applications using the Lucene APIs. Especially, a significant amount of pro-
gramming efforts will be required for implementing a technique similar to attribute
embedding. Thus, in general, developing applications is much more systematic and
less error-prone in Odysseus than in Lucene.
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4.3 Research on DB-IR integration

In this section, we briefly review well-known studies on DB-IR integration. These
studies are related to our research in a broad perspective, but their focuses are quite
different from ours.

– Zobel and Moffat [44] presented a really nice survey on text search engines.
They mainly discussed query evaluation for single-keyword queries and phrase
queries as well as index construction and maintenance, but did not discuss query
evaluation for DB-IR integration queries.

– Cheng and Chang [15] proposed a new web-search model, entity search, and its
query processing method. Entity search can be considered as DB-IR integration
since it enables us to specify search fields for unstructured data. That is, users
can execute structured queries over unstructured data. Here, the type of an entity
serves as a field. The focus of this paper is an index structure for entities rather
than documents such as Web pages.

– Theobald et al. [32] described an XML-IR system called TopX. The system
handles an XML query language extended with IR features. This work can
be considered as one of DB-IR integration systems since it handles both path
conditions (DB features) and text conditions (IR features). However, this work is
quite different from ours since their DB-IR integration deals with XML queries,
more specifically, path operations.

– Bast and Weber [9] described CompleteSearch, an interactive search engine
that offers users several features including the autocompletion feature. Since this
engine is mainly based on prefix search (IR features) and join (DB features), it
can be considered as one of DB-IR integration systems. However, their DB-IR
integration is quite different from ours in that it focuses on autocompletion. The
same authors proposed a system called ESTER [10] for combined full-text and
ontology search, and ESTER shares some concepts with CompleteSearch.

– Heman et al. [24] built a search engine on top of their relational DBMS
MonetDB/X100. They argued that their approach is reasonable since modern
DBMSs have benefited from recent hardware developments. This work belongs
to the first category introduced in Section 1, which is IR on a relational DBMS.

– Several methods were developed to support keyword search in relational data-
bases. DBXplorer proposed by Agrawal et al. [2] and DISCOVER proposed by
Hristidis and Papakonstantinou [25] are the representative systems. The logical
units of information may be fragmented and scattered across multiple tables.
Thus, the key issue of these systems is to join the tuples from these multiple tables
on the fly so that the tuples contain all the keywords specified. In this way, the
systems enable users to perform keyword search on a relational database without
knowing the schema of the database. These studies are orthogonal to ours since
the forms of the queries considered are totally different. Only a set of keywords
is given as a query in these systems whereas an SQL statement in Odysseus.

Finally, we introduce some well-known research projects related to DB-IR in-
tegration. They mostly concentrate on information extraction or entity search, and
this direction has been regarded as one area of DB-IR integration [34] while it is
different from the focus of our approach. The primary goal of this direction is to
impose a structure on unstructured data such as the Web contents. For example, by
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extracting speakers and departments (i.e., entities) from the Web pages for seminar
announcements in a university, structured (i.e., database-style) queries can be issued
over those extracted entities; an example query is finding all speakers who gave
a talk at a specific department. On the other hand, we have concentrated on the
performance of DB-IR integration queries in the setting where the data are already
organized into the documents with multiple attributes of either a built-in type or the
text type. Since the projects mentioned below do not provide a software package but
a demo system with their proprietary data set, a direct comparison between Odysseus
and the projects is not possible.

– Libra: For supporting entity search on the Web, Microsoft Research Asia devel-
oped information extraction methods. These methods include pattern-matching
algorithms tailored to typical Web-page layouts. The methods were used to build
a portal site (http://libra.msra.cn) for scholarly search on the extracted records
about authors, papers, conferences, and communities.

– Cimple/DBLife: The Cimple project [17] is jointly carried out by the University
of Wisconsin and Yahoo! Research. Similar to Libra, it aims at generating and
maintaining community-specific portals with structured information gathered
from the Web. Cimple’s flagship application is the DBLife portal (http://dblife.
cs.wisc.edu). For gathering and reconciling different types of entities on the
Web, Cimple has a suite of DB-style extractors based on pattern matching and
dictionary lookups.

• KnowItAll/TextRunner: The KnowItAll project [8] is carried out by the Univer-
sity of Washington. Its query model involves multiple entities and a relationship
between the entities. For example, “What countries are located in Africa?” trans-
lates to the query Argument1 = “type: Country,” Relation = “is located in,” and
Argument2 = “Africa.” This project provides a demo system TextRunner (http://
openie.cs.washington.edu).

– YAGO: The YAGO project [31] is carried out by Max Plank Institute. It shares
the goal with KnowItAll and TextRunner, but emphasizes high accuracy and
consistency. To this end, YAGO primarily gathers its knowledge from Wikipedia
and WordNet. In addition, it employs text-mining-based techniques as well.

5 Performance evaluation

In this section, we evaluate the performance of Odysseus by using real data.
Section 5.1 compares the two query processing algorithms presented in Section 3.
Section 5.2 presents the performance comparison with two open-source DBMSs—
MySQL and PostgreSQL. Section 5.3 presents the performance comparison with
Lucene, which is the most representative open-source search engine.

Approximately 16 million web pages have been crawled and then converted to
documents conforming to the database schema in Figure 11. The size of the source
data is approximately 100 GBytes.

The main goal of our experiments is to compare the performance of processing
DB-IR integration queries shown in Figure 12. Odysseus supports various types of
queries including multiple-keyword queries and phrase queries, but they are not
discussed in this paper because they are out of scope of this paper. We use a query-
independent ranking scheme, PageRank [12]. The documents are sorted in the order
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of PageRank and are indexed according to the order. Thus, no sorting is required for
ranking in the middle of query processing. Unlike the typical setting of a Web search
engine where only top-k results are retrieved, we decide to retrieve all relevant
results in the experiments. This is because we want to see performance trends as
the number of query results varies.

We measure the cold start time and the warm start time, which are two standard
measures for database system performance. The cold start time is defined as the wall
clock time for executing a query when no data are in the DBMS buffer. Thus, the
data are accessed from disk. The warm start time is defined as the wall clock time for
executing a query when all the relevant data are in the DBMS buffer. Thus, the data
are accessed from main memory. The cold start time essentially measures the disk
time; the warm start time the CPU time for processing a query.

For the three DBMS (Odysseus, MySQL, and PostgreSQL), the experiment
programs are written using their call-level interface in C/C++. For Lucene, the
programs are written using its Java APIs since Lucene is purely Java-based.

All experiments are conducted on a Linux PC with 3.6 GHz dual-core CPU,
1 GB of main memory, and four 1.5 TB disks. The transfer rate of the disks is
61∼125 MB/sec (95 MB/sec on the average), and the bandwidth is 187.5 MB/sec.

5.1 Comparison between the two tightly-coupled algorithms

We compare the IR index join with attribute embedding. For this comparison, 800
site-limited queries are generated as follows: a keyword and a site identifier are
randomly chosen from a given subset of the data set, and they are inserted into the
template query in Figure 12. The same set of queries will be used for subsequent
experiments.

Since the two algorithms perform differently according to the selectivity of a
query, we elaborate on the performance trend as selectivity varies. For a given site-
limited query, the posting selectivity is defined as the number of query results to
the total number of documents containing the keyword. More specifically, given a
keyword K and a site S, the posting selectivity is defined by (1), where postings_K (or
postings_S) is the set of the postings in the posting list for K (or S).

posting selectivity (K, S) = |postings_K ∩ postings_S|
|postings_K| (1)

Because the execution time is heavily dependent on the size of the posting lists
involved, to avoid variations with the size, we normalize the execution time as in (2)
instead of adding the size as a new parameter. Here, we set the standard size for
normalization to be 10,000. The base time means a fixed time spent regardless of
the queries. At cold start, the base time is not negligible because it includes the
time for accessing the keyword B+-tree and locating the posting lists from disk. It
is determined to be 70 ms, which is the shortest execution time. On the other hand,
at warm start, the base time is negligible and is set to be 1 ms.

Tn = (To − base time) × 10000
|postings_K| + base time

Tn : normalized time To : original time
(2)
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Figure 13 Comparison between the two tightly-coupled algorithms

Figure 13 shows scatter plots between the posting selectivity and the normalized
wall clock time. Each point represents a query. Let’s look into the warm-start case of
Figure 13b first for ease of explanation. The performance of attribute embedding is
not affected by the posting selectivity since all postings are touched regardless of the
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Figure 14 Rule-of-thumb
optimization for DB-IR
integration queries
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posting selectivity.9 The performance of the IR index join improves as the posting
selectivity decreases since more postings can be skipped by posting skipping. The
threshold parameter (explained in Section 3.2) for posting skipping is empirically set
to be 1000 throughout the paper.

The points for the IR index join are observed to fall into the diagonal strip which
is enclosed by two lines in the figure. In other words, the performance of the IR index
join is not totally determined by the posting selectivity, though it is a dominant factor.
In fact, the performance is also affected by the distribution of the query results within
the posting lists. That is, if query results are clustered, posting skipping becomes very
effective, achieving good performance; however, if query results are scattered with
small gaps, posting skipping is not triggered frequently. Therefore, performance at a
specific posting selectivity is represented by a range due to different distributions.

The performance of attribute embedding is shown to be not much different
between at cold start and at warm start. This is because attribute embedding performs
only sequential scan. In Odysseus, the performance of sequential scan is highly
optimized, obviating significant overhead at cold start (see Section 5.2.1).

In general, we conclude that IR index join with posting skipping has better
performance for low-selectivity queries while attribute embedding has uniform
performance regardless of posting selectivity. The choice between the two methods
can be done depending on the characteristics and usage pattern of the application.
As a rule of thumb, we suggest an optimization rule in Figure 14. Here, we always
suggest the IR index join at warm start to simplify the rule even though attribute
embedding outperforms the IR index join at high selectivity. We note that, if we
consider the unnormalized (i.e., real) execution time, a loss caused by choosing the
IR index join is very small because the execution time itself is usually small (<10 ms)
at high selectivity.

5.2 Comparison of Odysseus and open-source DBMSs

Odysseus, MySQL, and PostgreSQL are compared for the performance of processing
DB-IR integration queries. We built three web search systems using these three
DBMSs. We use MySQL version 5.1 and PostgreSQL version 8.4, which are the
currently recommended versions. Odysseus and MySQL adopt tight-coupling, while
PostgreSQL a variation of loose-coupling.

9The result at cold start in Figure 13a appears to be a bit cluttered because of normalization errors,
which are likely to happen in short-running queries.
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As an example of DB-IR integration queries, we use site-limited search, which in-
volves both keyword and attribute conditions. The keywords are classified according
to the number of documents in which a keyword appears: the small keyword set is
composed of the ones appearing in [0, 10000) documents, the medium keyword set
in [10000, 100000) documents, the large keyword set in [100000, 1000000) documents,
and huge keyword set in [1000000, ∞) documents. The sites are classified according
to the number of documents crawled from a site: the small site set is composed of the
ones having less than 10,000 documents, and the large site set the ones having more
than 10,000 documents.

To make the comparison as fair as possible, we use the same parameter values for
all three DBMSs: the DBMS buffer size is 76 MB, the sort buffer size is 100 MB, the
page size is 4 KB except for MySQL.10

5.2.1 Single-keyword queries

As a baseline, we first show the performance of processing single-keyword queries
in Figure 15. One hundred keywords are randomly selected from each keyword
set. As noted earlier, Odysseus can retrieve a list of OID’s as a search result,
whereas MySQL and PostgreSQL should retrieve the attribute value itself. For a
fair comparison, we substract the time for retrieving the attribute value in MySQL
and PostgreSQL.

In Figure 15, Odysseus improves the performance by 7.1∼21.4 times at cold start
and by 5.0∼27.2 times at warm start compared with PostgreSQL. MySQL improves
the performance by 2.0∼6.2 times at cold start and by 1.1∼3.1 times at warm start
compared with PostgreSQL. These results demonstrate the superiority of the tight-
coupling architecture of Odysseus (and MySQL) compared with the loose-coupling
architecture of PostgreSQL. In the loose-coupling architecture, the performance de-
grades due to the overhead of calling functions implemented in the external module
(i.e., the tsearch2 module). Furthermore, user-defined types and functions employed
in the loose-coupling architecture incur the overhead of accessing the database
catalog.

In order to provide good sequential search performance, in Odysseus, we maintain
sequential contiguity of posting lists by using the notion of the physical extent (typ-
ically, set to 64 Kbytes) and by using the notion of the train, a physically contiguous
sequence of disk pages retrieved as a unit.

5.2.2 Site-limited search

Figure 16 shows the wall clock time for processing site-limited search. We vary both
keywords and sites used in the experiment. For each pair of a keyword set and a site
set, we generate one hundred queries randomly and present the average wall clock
time. The X axis represents the initials of the keyword set and the site set; e.g., LS
denotes the pair of the large keyword set and the small site set. In this way, we control
the size of the posting lists involved in site-limited search.

We compare six query processing methods by selecting two methods from each of
three DBMSs. Odysseus-Join, MySQL-IR, and PostgreSQL-IR indicate the methods

10The page size of MySQL cannot be changed and is set to be the default value of 1 KB.
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(a) Cold Start (b) Warm Start

Figure 15 The wall clock time for processing single-keyword queries

that execute the SELECT query in Figure 12a. Odysseus-Embedding, MySQL-BTree,
and PostgreSQL-BTree indicate the methods that execute the SELECT query in
Figure 12b. Odysseus-Join and Odysseus-Embedding exploit IR index join with
posting skipping and attribute embedding, respectively.

Figure 16 shows that Odysseus improves the performance by 27.8∼623 times at
cold start and by 138∼3650 times at warm start compared with PostgreSQL. MySQL
improves the performance by 1.46∼1.71 times at cold start and by 15.1∼19.6 times
at warm start compared with PostgreSQL. Odysseus improves the performance by
19.1∼385 times at cold start and by 9.18∼190 times at warm start compared with
MySQL. Odysseus performs the best owing to (i) IR index join with posting skipping
and (ii) attribute embedding. These results indeed demonstrate the effectiveness of
our tightly-coupled algorithms for DB-IR integration.

In MySQL and PostgreSQL, due to lack of such advanced features, performance
degrades mainly because they have to spend time retrieving intermediate results that

(a) Cold Start (b) Warm Start

Figure 16 The wall clock time for processing site-limited search queries
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satisfy only one condition. MySQL-IR and PostgreSQL-IR first evaluate one key-
word condition in Figure 12a using the inverted index, and then, evaluate the other
keyword condition by fetching each intermediate result obtained from the first step.
MySQL-BTree and PostgreSQL-BTree first evaluate the attribute condition (i.e., the
site condition) in Figure 12b using the B(B+)-tree, and then, evaluate the keyword
condition by fetching each intermediate result obtained from the first step.

For MySQL-IR and PostgreSQL-IR, their optimizers use only one inverted index
which appears earlier in the schema definition. Since p.siteIdText appears earlier
than p.description, the query optimizers always pick up the inverted index on
p.siteIdText. It turns out that using the inverted index on p.siteIdText is
more advantageous than using that on p.description since the condition on
p.siteIdText is more selective than that on p.description. That is, for a given
site-limited query, the number of documents that satisfy the site condition is less than
or equal to the number of documents that satisfy the keyword condition. Despite that
we give MySQL and PostgreSQL this advantage, Odysseus significantly outperforms
MySQL and PostgreSQL.

MySQL and PostgreSQL perform poorly since they cannot exploit two inverted
indexes but only one for the query in Figure 12a or none for the query in Figure 12b.
This limitation is inevitable in PostgreSQL since it is based on loose-coupling. On the
other hand, since MySQL adopts tight-coupling, we expect that MySQL would per-
form comparable to Odysseus if our sophisticated algorithms were also implemented
into MySQL.

Some might be curious why MySQL-IR and MySQL-BTree (or PostgreSQL-IR
and PostgreSQL-BTree) show similar performance. The only difference between
two methods is the index—the inverted index or the B(B+)-tree index—used for ob-
taining the intermediate results satisfying the site condition. Both methods do not use
the inverted index on the p.description attribute. We observe that the type of the
index does not make a big difference in performance of evaluating the site condition
itself.

In summary, Odysseus significantly outperforms MySQL and PostgreSQL for
both single-keyword queries and site-limited queries. In general, Odysseus can
execute queries involving both keyword and attribute conditions very fast—which
is exactly the advantage of the tight-coupling architecture.

5.3 Comparison of Odysseus and Lucene

The purpose of this comparison is to show that Odysseus provides higher per-
formance for processing DB-IR integration queries than Lucene. We use Lucene
version 3.6, which is the currently recommended version. For Lucene, only the
IR index join, which corresponds to Odysseus-Join, is implemented and compared
with the two methods of Odysseus. The IR index join is not specific to Odysseus
but is a common query processing technique also supported by Lucene. Moreover,
it is commonly known that specialized search engines may have better search
performance than database systems. Thus, in fact, this comparison is even more
favorable to Lucene than to Odysseus. On the other hand, a method corresponding
to Odysseus-Embedding is hard to implement in Lucene as discussed in Section 4.2.

We implement the experiment programs for Lucene using its Java APIs. For
data loading, a Document object is created so that it has the schema in Figure 11
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and is filled with attribute values; then, every Document object is added to an
IndexWriter object to build an IR index. For query processing, a QueryParser
object translates a query string to a Query object, which is an internal structure of
Lucene; then, the Query object is passed to an IndexSearcher object for searching
the documents that satisfy the query conditions. Lucene is known to use a data
structure called the skip list to speed up multiple-index searching although the details
of the skip list are not reported in the literature.

We now explain the comparison results. First, Figure 17 shows the performance of
processing single-keyword queries in Odysseus and Lucene. The queries used are the
same as those in Figure 15. Odysseus is shown to outperform Lucene for processing
these basic IR queries by 3.1∼6.2 times at cold start and by 1.5∼3.9 times at warm
start.

Then, Figure 18 shows the performance of processing site-limited search queries in
Odysseus and Lucene. The queries used are the same as those in Figure 16. Odysseus
improves the performance by up to 7.4 times at cold start. However, Lucene shows a
better performance than Odysseus at warm start. This is because our IR index is op-
timized for disk accesses while the skip list seems to be optimized for main-memory
accesses. We claim that cold start is more prevalent than warm start in practical envi-
ronments since, typically, all data cannot be loaded into main memory owing to their
huge size.

Surprisingly, it is observed that the performance of Lucene is almost constant
regardless of the length of posting lists involved. We conjecture that the performance
of Lucene is mainly dependent on the number of query results possibly because of
the skip list. We note that the number of query results does not vary that much across
the keyword-site sets.

In addition to the performance, yet another important advantage of Odysseus
is that it provides higher-level interface than Lucene. The high-level functionalities
such as SQL, schemas, or indexes that are provided by Odysseus allow developers to
easily implement query processing modules in search engines because they provide
stronger expressive power than primitive functions in Lucene, facilitating easy (and
much less error-prone) application development and maintenance [42].

(a) Cold Start (b) Warm Start

Figure 17 The wall clock time for processing single-keyword queries

World Wide Web (201 ) 18: –5 491 520 517



(a) Cold Start (b) Warm Start

Figure 18 The wall clock time for processing site-limited search queries

6 Conclusions

In this paper, we have contended that the tight-coupling architecture has many
advantages for DB-IR integration over the loose-coupling architecture. We have
verified our arguments by using the Odysseus DBMS that has tightly-coupled IR
features. Especially, two tightly-coupled DB-IR algorithms—IR index join with
posting skipping and attribute embedding—have been proven to be very effective for
DB-IR integration queries. The IR index join is effective for highly selective queries
whereas attribute embedding has uniform performance regardless of the selectivity.
We have compared three DBMSs and one search engine for the performance of
processing DB-IR integration queries—more specifically, site-limited search queries.
As a result, Odysseus outperforms MySQL and PostgreSQL up to orders of magni-
tude by virtue of the IR index join and attribute embedding, which are only possible
in the tight-coupling architecture; Odysseus significantly outperforms Lucene but
with some exceptional cases (i.e., site-limited search queries at warm start). Overall,
we believe that tight-coupling with IR features will be the right direction in database
systems for supporting DB-IR integration. In this perspective, Odysseus is the first
DBMS that truly implements DB-IR integration.
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