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A B S T R A C T

We propose methods to enable the relational model to meet scalability and functionality needs of a large-scale social networking services (SNS)

system. NewSQL has emerged recently indicating that shared-nothing parallel relational DBMSs can be used to guarantee the ACID properties

of transactions while keeping the high scalability of NoSQL. Leading commercial SNS systems, however, rely on a graph – not relational – data

model with key–value storage and, for certain operations, suffer overhead of unnecessarily accessing multiple system nodes. Exploiting higher

semantics with the relational data model could be the remedy. The solution we offer aims to perform a transaction as a set of independent

local transactions whenever possible based on the conceptual semantics of the SNS database schema. First, it hierarchically clusters entities

that are sitting on a path of frequently navigated one-to-many relationships, thereby avoiding inter-node joins. Second, when a multi-node delete

transaction is performed over many-to-many relationships, it defers deletion of related references until they are accessed later, thereby amortizing

the cost of multi-node updates. These solutions have been implemented in Odysseus/SNS — an SNS system using a shared nothing parallel DBMS.

Performance evaluation using synthetic workload that reflects the real SNS workload demonstrates significant improvement in processing time.

We also note that our work is the first to present the entity-relationship schema and its relational representation of the SNS database.

1. Introduction

The social networking services (SNS) system is an online platform that supports the cultivation and maintenance of social

relationships among users through open communication and information sharing. Some of the commercial SNS systems have grown

very large in scale, with several hundred million or even a billion active users. Thus, these SNS systems need an efficient ‘‘scale-out’’

base system to store and process massive data produced by an ever increasing number of users in a distributed environment.

Fig. 1 shows how large-scale data management systems have evolved. Ever since MapReduce came about, the NoSQL system

became popular as a highly scalable system. The NoSQL system typically uses the key–value storage format, in which all data values

under the same key are stored together and accessed together fast. It, however, lacks the high-level functionality of the relational

model because of its low-level storage format and compromises the ACID properties [1]. In this regard, there has been a transition

from NoSQL to NewSQL recently [2,3]. A NewSQL system is essentially a relational DBMS (with a support for SQL, index, and

schema) that provides the same kind of scalability as that of NoSQL while guaranteeing the ACID properties of transactions. MySQL

Cluster is one representative example. Its base architecture is a shared-nothing parallel DBMS, which has been shown to outperform

MapReduce in terms of processing large-scale database and query load [4,5].

The base system used by leading commercial SNS systems (e.g., Facebook) is standing half way between NoSQL and NewSQL

— it stores data in a massively-parallel DBMS (specifically, MySQL Cluster), which is NewSQL, but represents data using a graph

(or object-association) model [6,7] in the key–value format, which is NoSQL. This graph model represents data at such a low level
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Fig. 1. Evolution of data management systems.

that it ends up with distributing objects randomly over different machines, and therefore, incurs a significant overhead of accessing

multiple machines to retrieve the objects (more on this issue in Section 2.1). This problem of the graph data model can be much

alleviated by using a higher-level data model like the entity-relationship model or relational model, which can aggregate the objects

into entity sets and their relationships or relations.

In this paper we demonstrate that the relational data model (as opposed to the graph data model) can be used to implement a

scale-out SNS system based on the parallel DBMS while resolving the problems of the graph data model. Using the semantics of the

relational model, we process global transactions as separate local (i.e., single-node) transactions as much as possible. In particular,

we address the problem of inter-node join in different machines, and the problem of multi-node updates that require accesses to

tuples stored in multiple machines. To resolve these problems, we propose the following solutions. We first start with a conceptual

(entity-relationship) schema that captures the semantics of common SNS operations. Then, we exploit the notion of hierarchical

clustering that relates entities in multiple relations by modelling one-to-many relationships to sequences of identifying relationships,

through which a relation inherits the primary key of the root relation of the path — called the identifying key. Then, by distributing

entities hashed by the identifying key, we partition related entities into the same node and as a result avoid inter-node joins,

thereby implementing the operation as a single-node transaction. For many-to-many relationships, unlike one-to-many, inter-node

joins are unavoidable. In this case, we use a deferred update strategy whereby, when an entity in one node is deleted, deletion of the

references to it in other nodes are deferred until they are actually accessed later and, as a result, decompose a multi-node transaction

into multiple single-node-update transactions(to be defined in Section 3.3). As explained in Section 3, the decomposed execution of

a transaction does not affect the consistency of the original multi-node delete transaction. These ideas have been implemented in

Odysseus/SNS [8], an SNS system using a shared-nothing parallel DBMS, which is an extension of the Odysseus DBMS [8].

For performance evaluation, we measured the processing time of SNS operations implemented in our system using the proposed

methods. The experiments were conducted in a small-scale computer cluster using a synthetic workload (i.e., data, queries)

proportionately scaled according to the real SNS system workload. The results show that our system significantly reduces the

processing time of newsfeed and timeline operations, which together account for about 80% of the query load, and also greatly

reduces the processing time of delete operations. The former is attributed to the idea of clustering by identifying keys, and the

latter to the idea of deferred delete strategy. This scalability comes largely from the fact that, with clustering, a typical query can

be processed by forwarding it to only one or a few specific nodes without having to access the data distributed in a large number

of nodes.

Contributions of this paper can be summarized as follows. First, this paper is the first to present the conceptual (entity-

relationship) schema and its relational representation of social networking services operations. Second, we propose a method of

removing inter-node joins over one-to-many relationships by hierarchical clustering. Third, we propose a deferred delete strategy

to handle a multi-node transaction over a many-to-many relationship as multiple single-node-update transactions.

The rest of this paper is organized as follows. Section 2 provides relevant background information. Section 3 discusses our SNS

database schema design and the proposed query processing methods with the relational data model. Section 4 presents performance

evaluation. Section 5 concludes the paper.

2. Background

Table 1 highlights the differences between the graph data model and the relational data model in terms of the storage format,

strengths, and weaknesses.

2.1. Graph data model

In the graph model, vertices represent objects (e.g., users, posts, comments) and edges represent associations between objects,

as illustrated in Fig. 2. Vertices and edges may contain data in the key–value format. According to Bronson et al. [7], the key–value

storage has the following format:
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Table 1

Differences between the graph data model and the relational data model.

Graph (key–value) data model Relational data model

Storage format Un-structured

∙ Data about an object are stored in the
value field of a lower-level format without

schema.

Structured

∙ Values of the attributes defined in the
schema are stored in a normalized form.

Strong points High scalability

∙ Access tuples independently by using the
primary key.

High functionality

∙ Can cluster related data by exploiting the
high-level semantics of the schema.

∙ Can support joins within a single node.
∙ Can take advantage of secondary indexes
in some cases.

Weak points Low functionality

∙ Expressive power is weak (i.e., it cannot
represent high-level semantics that the

relational model does).

∙ Cannot effectively cluster related data.
∙ Hard to support secondary indexes.

Low scalability

∙ In case the tuples to be joined are in
different nodes, expensive inter-node join is

incurred.

Fig. 2. An example of the graph data model.

Fig. 3. An example of graph data in the key–value format.

• for a vertex, (id, (object_type, (attribute, value)*)

• for an edge, ((id1, association_type, id2), (time, (attribute, value)*))

where the key is the object ID (i.e., id) for a vertex and the triplet (id1, association_type, id2) for an edge, and the value (or ‘payload’’)

is the data comprising the object or the association (see Fig. 3 for an illustration)

Data distribution and storage rely on hashing. For vertices, the hashing key is the object ID (i.e., id) and, for edges, the source

object ID (i.e., id). Fig. 4 illustrates the data storage distributed over three machines.

This graph model (with key–value storage) has serious drawbacks stemming from the low-level functionality of the model. It is

such a simple low-level model that it misses out much of the semantics that can be represented in a higher-level model like the

relational model. For instance, we can only represent that two individual vertices (instances) are related to each other by using

edges, but we cannot represent the concept of a set of objects sharing the same type (or format) and their structural relationships
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Fig. 4. An example of graph data in the key–value format distributed over three nodes.

Fig. 5. An example of the timeline operation on graph data in the key–value format.

(e.g., one-to-many, many-to-many), and thus, we cannot take advantage of these semantics to effectively cluster the data. Moreover,

in the graph model, vertices and edges are randomly distributed over different machines unnecessarily, thereby incurring random

access to them. Further, the key–value storage makes it difficult to support secondary indexes [1,9]. As an example, Fig. 5 illustrates

the overhead of having to access all three machines in order to view a user’s timeline.

2.2. Relational data model

Fig. 6 shows the relational model view of the data shown in the graph model view of data in Fig. 3. As we can see in the figure,

the relational model brings the advantage that data are aggregated into relations, relationships are represented through foreign keys,

and joins can be processed using the foreign keys.

For data distribution and storage, we can partition a relation and distribute the tuples by the primary key. Simple distribution,

however, does not guarantee that the related tuples are clustered in the same machine (or node) (see Fig. 7). As a result, if the

tuples to be joined are stored in different nodes, then we have to access multiple nodes, that is, inter-node join is needed, as shown

in Fig. 7. The problem of inter-node join is the network cost incurred to access multiple nodes to perform join across them. We thus

need a method to cluster the related data (i.e., tuples to be joined) in the same node.

3. Database design with the relational model

3.1. SNS entity-relationship schema

Fig. 23 in Appendix shows the conceptual schema of entities and relationships representing the types of SNS objects and

associations where weak entity types and their identifying relationship types are shown as rectangles and diamonds in double-

lines and only primary keys (underlined by a solid line) or partial keys (underlined by a broken line) are shown as attributes. For

the sake of easy implementation, we simplify Figs. 8 to 23 through the following methods. We model the post_id attributes of the
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Fig. 6. An example of the relational model view of data.

Fig. 7. An example of relational data distribution and storage.

User–Post and Group–Post entity types as the primary keys implementing them as globally unique identifiers. We do the same for

the comment_id attributes of the User–Post–Comment and Group–Post–Comment entity types. Then, we integrate the User–Post

and Group–Post entity types into the Post entity type whose primary key is post_id and the User–Post–Comment and Group–Post–

Comment entity types into the Comment entity type whose primary key is comment_id. We also integrate the relationship types

that relate those entity types: the write user–post and the write Group–Post relationship types into the write post relationship type,

the recommend user–post and recommend group–post relationship types into the recommend post relationship type, the write user–

post–comment and write group–post–comment relationship types into the write comment relationship type, and the recommend

user–post–comment and recommend group–post–comment relationship types into the recommend comment relationship type. In

addition, to avoid clutter, we focus on the entity and relationship types that we explain in this section by omitting the entity and

relationship types for thumbnail and photo.

Table 2 shows commonly used SNS operations categorized by the service type. The primary operations in Table 2 are executed

most commonly in SNS. The timeline and newsfeed operations, in particular, comprise a majority of SNS operations. Timeline shows

10 recent posts and related comments owned by a certain user or the groups created by the user. Newsfeed shows 10 recent posts

and related comments owned by a certain user, all of the user’s friends, and all groups the user is a member of. Fig. 9 shows
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Fig. 8. SNS entity-relationship schema.

Table 2

Social networking services operations.

Class Type Description

Primary Post

View timeline

View newsfeed

Write/delete/modify/recommend post

Write/delete/modify/recommend comment

View photo

Secondary General

Sign up/deactivate

Login/logout

Create/delete group

Join/unjoin group

Make/accept friend request

Unfriend a friend

Information

User

View/modify user profile

View the friend list of user

View the group list of user

Group
View the user list of a group

Search for a member of a group

Search

Find users

Find groups

Find posts on a timeline

the sequences of entity types accessed via relationship types in order to perform these operations. Both operations access multiple

relationship types, and, therefore, the database design should make these multi-relationship operations efficient.

3.2. One-to-many relationship

As explained in Section 2.2, expensive inter-node joins occur if entities to be accessed together via one-to-many relationships

are stored in different nodes, and they incur severe performance penalty due to network communication overhead. The novel

solution we propose avoids inter-node joins by modelling those one-to-many relationships as sequences of identifying relationships

and hierarchically clustering the entities related by those identifying relationships. Each sequence of identifying relationship types

has a root entity type. An identifying key is the primary key of the root entity type. The identifying key is inherited in all entity

types connected via the sequence of identifying relationship types. Then, by distributing entities over multiple nodes based on the

identifying key as the partitioning attribute (through hashing), we can store entities that have the same identifying key–value in

the same node. Hence, the entities that are connected by a sequence of identifying relationships are hierarchically clustered (i.e., all
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Fig. 9. SNS timeline and newsfeed operations.

entities connected to a root entity via a sequence identifying relationships are clustered) in one node and we can avoid inter-node

joins when processing the multi-relationship operations.1

Fig. 10 shows a sub-schema including only one-to-many relationship types from the SNS entity-relationship schema in Fig. 8.

Here, the Post entity type can be considered a weak entity type. The reason is as follows. There are two one-to-many identifying

relationship type paths between the User entity type and the Post entity type: (1) User-user–Post-own-Post and (2) User-create-

Group-group–Post-own-Post. Although these two paths seem to share the post entity type and do not form hierarchies, actually

those two paths are independent since the set of entities from the Group–Post entity type is disjoint from that from the User–Post

entity type in Fig. 23. That is, the Post entity type can be a weak entity type in each path. The Comment entity type also can be

considered a weak entity type for the same reason. Hence, we model the Post and Comment entity types as if they were weak entity

types. Then, we select the relationship types that are frequently traversed by SNS primary operations (See Fig. 9) among those that

relate the Post, Comment, and User (or Group) entity types and model the selected ones as if they were identifying relationship

types. Those are shown in Fig. 10 as the diamonds and rectangles with double-lines.

The primary key user_id attribute of the root entity type User is inherited being cascaded through the sequence of identifying

relationship types, that is, from User to Post and to Comment and from User to Group to Post and to Comment as shown in Fig. 11.

Then, a tuple is stored in the node corresponding to the hash value of its identifying key, which is user_id in this example (see

Fig. 12). As a result, a set of hierarchically related tuples are stored in the same node. By the same token, a query is allocated to

the node corresponding to the same hash value, as indicated in the predicate of the following example: ‘‘select * from User, Post,

Comment where User.user_id = 1 and User.user_id = Post.user_id and Post.post_id = Comment.post_id’’.

Fig. 13 shows the sequences of identifying relationships traversed to execute timeline and newsfeed operations. For the timeline

operation (see Fig. 13(a)), all the related data for processing the timeline operation are totally clustered in a single node by the

identifying relationships. Therefore, we need to access only one node to process the timeline operation. For the newsfeed operation

(see Fig. 13(b)), however, the related data are clustered by the sequence of identifying relationships except for the sequences of

User—is_friend_of—User and User—is_member_of—Group. Thus, we have to access a significantly smaller number of nodes to process

the newsfeed operation than without clustering. As a result, we can effectively decrease the number of nodes to be accessed by the

timeline and newsfeed operations, which comprise a majority of SNS operations.

The hierarchical clustering method based on identifying relationships can be used for any large-scale systems whose entities are

distributed over multiple nodes based on hashing. For any such systems, we identify frequently traversed sequences of one-to-many

relationships and model them as sequences of identifying relationships. This way, we can realize hierarchical clustering of entities

in one node making a transaction accessing all entities related by a sequence of identifying relationships a single-node transaction.

Examples are E-commerce systems such as Amazon, Ebay, and Auction where User, Transaction, and Item can be modelled as entity

types related by a sequence of identifying relationships (User–Transaction and Transaction–Item).

1 The concepts of the identifying relationship and clustering can be generalized to ternary relationships. However, since all relationships in the SNS database

(See Fig. 8) are binary, all discussions on ternary relationship are out of our focus, so that in this paper, we focus on binary relationships.
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Fig. 10. An example of modelling one-to-many relationship types as identifying relationship types.

Fig. 11. An example of mapping identifying relationship types to relational schema.

Fig. 12. An example of partitioning relations by identifying key.

3.3. Many-to-many relationship

Fig. 14 shows many-to-many relationships in the simplified SNS entity-relationship schema (Fig. 8). Unlike in an one-to-many

relationship, in a many-to-many relationship, tuples that are accessed together cannot be stored in the same relation. Thus, inter-

node joins cannot be avoided. More importantly, multi-node updates (which require two-phase commit) are needed for update
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Fig. 13. SNS timeline and newsfeed operations (clustered by identifying relationships).

Fig. 14. Many-to-many relationships in the SNS entity-relationship schema of Fig. 8.

transactions. Our solution to this problem is (a) to decompose a global transaction into a set of single-node-update transactions

without two-phase commit (defined later in this section) through careful analysis of transaction semantics.

Instead of introducing a third relationship table, in Odysseus/SNS, we simplify the relational schema for a many-to-many

relationship by representing it directly through a set (or list) type, which is an object-relational feature available in the DBMS.

Fig. 15 shows a mapping for a many-to-many relationship, is_member_of between User and Group. This direct mapping has the

effect of performing pre-joins between the entity relations (i.e., User, Group) and the relationship relation (i.e., is_member_of) to

pre-populate related tuples in each tuple of the entity relations.

For delete transactions, we use a deferred delete strategy to complete the transactions without two-phase commit. The delete

operations (deactivate, delete a group, and delete a post in the experiment in Section 4) need to delete both of a tuple and the

references to it. The deferred delete strategy immediately delete the tuple in one node and defer deletion of the references to that

tuple in other node until they try to access that tuple. For instance, Fig. 16 shows the scenario of an example deferred delete

transaction. When the tuple 𝑡 (with user_id 1) is deleted from the M-side relation, the id 1 must be dropped from the list of id’s

in each related tuple of the N-side relation. The tuples updated on the N-side have the group_id 1 and 3, respectively, and both

tuples contain the user id 1 in their member_list. Hence, a two-phase commit over multiple nodes would be required to complete

the deletion operation. However, under the deferred delete strategy, at the time 𝑡 is deleted, the transaction ends without deleting

the references to 𝑡 in the N-side tuples and, instead, delete a reference later when some transaction tries to access the tuple 𝑡

through the member_list of the N-side relation (e.g., when executing the view member list operation). We note that the delete

operations under the deferred delete strategy are single-node-update transactions. Although the operations accessing the tuples

from the references are two-node transactions, the update is processed in only one node without two-phase commit. Hence, we call

these type of operations single-node-update transactions. In effect, we are decomposing a multi-node transaction into multiple single-

node or single-node-update transactions executed on demand. We note that the deferred delete does not affect the consistency of

the original multi-node delete using two-phase commit since, at the time the tuple 𝑡 is deleted, the references to 𝑡 in the N-side
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Fig. 15. Mapping a many-to-many relationship using a set type.

Fig. 16. An example of deferred delete of a relationship.

Fig. 17. An example of inserting a new relationship.

tuples are effectively immediately invalidated (i.e., they are pointing to a non-existing tuple). That is, deleting the references to 𝑡

in the N-side tuples can be considered only a post–transaction operation (amounting to garbage collection) that does not affect the

transaction semantics.

For insert transactions, deferred commit is not an option. As shown in Fig. 17, we need to update the list in the tuples on both

sides of the relationship. (The same situation happens for ‘‘unclustered’’ one-to-many relationships, that is, those not modelled as

identifying relationships.) However, the overhead of this two-phase commit is not significant because update transactions like this

one involve only two-node transactions since all relationships in the SNS database (see Fig. 8) are binary. (Identifying relationships

for clustering a sequence of relations through the identifying key are an exception, but they involve only single-node transactions

that do not need two-phase commit.)

4. Performance evaluation

The objective of performance evaluation is to examine the benefit of the methods proposed in reducing the overhead of multi-

node access in a global transaction. The first set of experiments (Section 4.2) examines how much the query response times of

important SNS operations are reduced with respect to a designated reference operation in Odysseus/SNS when compared with SNS-

A — a widely used commercial SNS. The second set of experiments examines how Odysseus/SNS’s performance is affected when the

query arrival rate is increased (i.e., ‘‘scaled up’’) (Section 4.3) and when the number of system nodes is varied (i.e., ‘‘scaled out’’)

(Section 4.4).

4.1. Workload model

Odysseus/SNS used in the experiments consists of nine nodes — one master node (with 2.93 GHz quadcore CPU, 4 GB memory,

and a 500 GB hard disk) and eight slave nodes (each with 3.2 GHz quadcore CPU, 8 GB memory, and a 2 TB hard disk). Each
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Table 3

Workload parameters and the sources of their values (if available).

Parameter Description Value

𝑁𝑠𝑒𝑟𝑣𝑒𝑟𝑠 Total number of servers 60 thousand [10]

𝑁𝑙𝑜𝑔_𝑠𝑒𝑟𝑣𝑒𝑟𝑠
a Total number of log servers 2 thousand [11]

𝑁𝑛𝑜𝑑𝑒𝑠 Total number of nodes (i.e., data servers)

𝑁𝑢𝑠𝑒𝑟𝑠 Total number of users 350 million [12]

𝑁𝑔𝑟𝑜𝑢𝑝𝑠 Total number of groups 620 million [13]

𝑁𝑝𝑜𝑠𝑡𝑠 Total number of posts stored

𝑁𝑐𝑜𝑚𝑚𝑒𝑛𝑡𝑠 Total number comments stored

𝑁𝑝ℎ𝑜𝑡𝑜𝑠 Total number of photos stored 260 million [14]

𝑁𝑃𝐷𝑤𝑟𝑖𝑡𝑒_𝑝𝑜𝑠𝑡 Number of writing post per day

𝑁𝑃𝐷𝑤𝑟𝑖𝑡𝑒_𝑐𝑜𝑚𝑚𝑒𝑛𝑡 Number of writing comment per day 300 million [12]

𝑁𝑃𝐷𝑚𝑜𝑑𝑖𝑓𝑦_𝑝𝑜𝑠𝑡 Number of modifying post per day

𝑁𝑃𝐷𝑚𝑜𝑑𝑖𝑓𝑦_𝑐𝑜𝑚𝑚𝑒𝑛𝑡 Number of modifying comment per day

𝑁𝑃𝐷𝑑𝑒𝑙𝑒𝑡𝑒_𝑝𝑜𝑠𝑡 Number of deleting post per day

𝑁𝑃𝐷𝑑𝑒𝑙𝑒𝑡𝑒_𝑐𝑜𝑚𝑚𝑒𝑛𝑡 Number of deleting comment per day

𝑁𝑃𝐷𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑_𝑝𝑜𝑠𝑡 Number of recommending post per day 105 million [12]

𝑁𝑃𝐷𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑_𝑐𝑜𝑚𝑚𝑒𝑛𝑡 Number of recommending comment per day

𝑁𝑃𝐷𝑣𝑖𝑒𝑤_𝑡𝑖𝑚𝑒𝑙𝑖𝑛𝑒 Number of viewing user/group timeline per day

𝑁𝑃𝐷𝑣𝑖𝑒𝑤_𝑛𝑒𝑤𝑠𝑓𝑒𝑒𝑑 Number of viewing newsfeed per day

𝑁𝑃𝐷𝑣𝑖𝑒𝑤_𝑓𝑢𝑙𝑙_𝑝ℎ𝑜𝑡𝑜 Number of viewing full photo image per day

𝑁𝑃𝐷𝑢𝑝𝑙𝑜𝑎𝑑_𝑝ℎ𝑜𝑡𝑜 Number of uploading photo per day 142.8 million [14]

𝑁𝑃𝐷𝑣𝑖𝑒𝑤_𝑝ℎ𝑜𝑡𝑜 Number of viewing photo per day 90 billion [14]

𝑁𝑃𝐷𝑎𝑙𝑙_𝑞𝑢𝑒𝑟𝑖𝑒𝑠 Total number of queries per day

𝑅𝑚𝑜𝑑𝑖𝑓𝑦_𝑝𝑜𝑠𝑡 Rate of modification after post 13.2%b

𝑅𝑚𝑜𝑑𝑖𝑓𝑦_𝑐𝑜𝑚𝑚𝑒𝑛𝑡 Rate of modification after comment 8.6%b

𝑅𝑑𝑒𝑙𝑒𝑡𝑒_𝑝𝑜𝑠𝑡 Rate of deletion after post 9.7%b

𝑅𝑑𝑒𝑙𝑒𝑡𝑒_𝑐𝑜𝑚𝑚𝑒𝑛𝑡 Rate of deletion after comment 9.1%b

𝑅𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑_𝑝𝑜𝑠𝑡 Rate of recommendation of post among all

recommendations

74.9%b

𝑅𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑_𝑐𝑜𝑚𝑚𝑒𝑛𝑡 Rate of recommendation of comment among all

recommendations

25.1%b

𝑅𝑣𝑖𝑒𝑤_𝑡𝑖𝑚𝑒𝑙𝑖𝑛𝑒 Rate of user/group timeline viewing among all

post viewings

28.7%b

𝑅𝑣𝑖𝑒𝑤_𝑛𝑒𝑤𝑠𝑓𝑒𝑒𝑑 Rate of newsfeed viewing among all post viewingsc 71.3%b

𝑅𝑣𝑖𝑒𝑤_𝑡ℎ𝑢𝑚𝑏𝑛𝑎𝑖𝑙 Rate of thumbnail viewing among all photo

viewings

84.4% [14]

𝑅𝑣𝑖𝑒𝑤_𝑓𝑢𝑙𝑙_𝑝ℎ𝑜𝑡𝑜 Rate of full photo viewing among all photo

viewings

5.2% [14]

𝑅𝑝ℎ𝑜𝑡𝑜_𝑖𝑛_𝑝𝑜𝑠𝑡 Rate of photo being contained in a post 75% [15]

FRIENDS_PER_USER Average number of friends per user 44d

GROUPS_PER_USER Average number of groups per user 12 [12]

POSTS_PER_PAGE Number of posts per message board page 10e

aHadoop HDFS cluster for log server (as opposed to MySQL cluster for data server) in SNS-A.
bRates obtained through a web-based survey participated by 108 users.
c𝑅𝑣𝑖𝑒𝑤_𝑡𝑖𝑚𝑒𝑙𝑖𝑛𝑒 + 𝑅𝑣𝑖𝑒𝑤_𝑛𝑒𝑤𝑠𝑓𝑒𝑒𝑑 = 100%.
dAn average obtained from SNAP dataset [16].
eA default number of posts per page on SNS-A.

slave runs its own local DBMS and communicates with the master over the network, and performs tasks assigned by the master and

returns the result it.

We built a workload model for generating a synthetic SNS workload (data set, query set) that reflects the real-life scale workload

per node. The ‘‘real-life scale workload’’ was constructed based on the SNS-A system’s published statistics and reports [6,10–15] as

well as our own survey. The parameters used in the workload model are shown in Table 3, where the sources of published/surveyed

parameters are indicated.

Almost all published parameter values are dated around the year 2010, which was selected as a common time point for the

values. We then followed their distributions (e.g., power law) and scaled the size of the data set to that used in LinkBench(more

specifically, the total number of objects, which is 1.2 billion per node) [6]. As a result, the size of the database is 0.23 TBytes per

node.2

SNS objects

The data set parameters (𝑁𝑢𝑠𝑒𝑟𝑠, 𝑁𝑔𝑟𝑜𝑢𝑝𝑠, 𝑁𝑝𝑜𝑠𝑡𝑠, 𝑁𝑐𝑜𝑚𝑚𝑒𝑛𝑡𝑠, 𝑁𝑝ℎ𝑜𝑡𝑜𝑠) in Table 3 reflect the data scale of an SNS system. Among

them, the base values of 𝑁𝑢𝑠𝑒𝑟𝑠, 𝑁𝑔𝑟𝑜𝑢𝑝𝑠, and 𝑁𝑝ℎ𝑜𝑡𝑜𝑠 were obtained from the published sources of SNS-A (see ‘Value’’ in Table 3),

and the base values of 𝑁𝑝𝑜𝑠𝑡𝑠 and 𝑁𝑐𝑜𝑚𝑚𝑒𝑛𝑡𝑠 were derived as follows.

2 This is equivalent to 13.03 petabytes in total if we use 58,000 nodes in the entire system as in a real-life system (see Table 3).
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Table 4

The proportions and numbers of SNS objects in the data set.

SNS object type Base number of objects Proportion Actual number of objects per node

User 350 million 0.03% 470.34 thousand

Group 620 million 0.05% 826.80 thousand

Post 347 billion 30.04% 466.44 million

Comment 547 billion 47.37% 735.54 million

Photo 260 million 22.51% 349.44 million

The total number of all objects(except photos) per node = 1.2 billion (LinkBench [6]). The number of system nodes = 8.

Table 5

Instantiation of SNS objects in the data set.

SNS object type Attribute Instantiation

User

Name Randomly selected from list on the Web [17]

Job Randomly selected from list on the Web [18]

Password 10-digit random number

Phone number 10-digit random number

Nickname ‘‘Name’’ followed by 4-digit random number

Group Name 5-character random alphabet string followed by

5-digit random number

Post Content String of random length extracted from the book

‘‘Pride and Prejudice’’ [19], where the random

length follows the distribution in Nierhoff [20]

(see Fig. 18).

Comment Content String of random length extracted in the same way

as Post using the same distribution but scaled

down to 37, which is the average length of

comments (obtained from 100 randomly selected

comments randomly selected from popular

timelines on SNS-A)

Photo N/A Image randomly selected from a website [21] and

set to the size of 8KB for thumbnail image and

64KB for full image, the same as in Beaver et

al. [14]

• 𝑁𝑝𝑜𝑠𝑡𝑠 = 𝑁𝑝ℎ𝑜𝑡𝑜𝑠∕𝑅𝑝ℎ𝑜𝑡𝑜−𝑖𝑛−𝑝𝑜𝑠𝑡 = 260 million/0.75 = 347 billion

• 𝑁𝑐𝑜𝑚𝑚𝑒𝑛𝑡𝑠 = 𝑁𝑝𝑜𝑠𝑡𝑠 × (𝑁𝑃𝐷𝑤𝑟𝑖𝑡𝑒_𝑐𝑜𝑚𝑚𝑒𝑛𝑡∕𝑁𝑃𝐷𝑤𝑟𝑖𝑡𝑒_𝑝𝑜𝑠𝑡) = 347 billion × (300 million/190 million) = 547 billion (see SNS

relationships below for the value of 𝑁𝑃𝐷𝑤𝑟𝑖𝑡𝑒_𝑝𝑜𝑠𝑡)

Table 4 shows the base values and the proportions of SNS objects of different types. We then scaled up the numbers of objects

of individual types in Odysseus/SNS so that the total number of objects (except photos) per node is 1.2 billion according to the

LinkBench benchmark [6].

Individual SNS objects were instantiated as summarized in Table 5. SNS entities (i.e., users, groups, posts, comments) are

instantiated as tuples in the corresponding relations, and photos are instantiated as files.

SNS relationships

All SNS relationships follow the power law [22–25], so each relationship is instantiated randomly according to the power law

distribution, where the mean values are set as summarized in Table 6. For one-to-many (1:N) relationships, the mean of N-side

distribution is calculated from the numbers in Tables 3 and 4. For many-to-many (M:N) relationships, the means of the distributions

on the M-side and N-side, denoted as 𝑀 and 𝑁 , respectively, are obtained as follows (see Table 3 for the workload parameters and

values).

• Is_member_of:

𝑀 = 𝐺𝑅𝑂𝑈𝑃𝑆_𝑃𝐸𝑅_𝑈𝑆𝐸𝑅 = 12

𝑁 = 𝐺𝑅𝑂𝑈𝑃𝑆_𝑃𝐸𝑅_𝑈𝑆𝐸𝑅 ×
𝑁𝑢𝑠𝑒𝑟𝑠

𝑁𝑔𝑟𝑜𝑢𝑝𝑠

= 12 × 350 million
620 million

= 7

• Is_friend_of:

𝑀 = 𝑁 = 𝐹𝑅𝐼𝐸𝑁𝐷𝑆_𝑃𝐸𝑅_𝑈𝑆𝐸𝑅 = 44

• Recommend_post:

𝑀 =
𝑁𝑃𝐷𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑_𝑝𝑜𝑠𝑡

𝑁𝑃𝐷𝑤𝑟𝑖𝑡𝑒_𝑝𝑜𝑠𝑡

=
𝑁𝑃𝐷𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑_𝑝𝑜𝑠𝑡

𝑁𝑃𝐷𝑝ℎ𝑜𝑡𝑜𝑠_𝑢𝑝𝑑𝑎𝑡𝑒𝑑∕𝑅𝑝ℎ𝑜𝑡𝑜_𝑖𝑛_𝑝𝑜𝑠𝑡
= 105 million

142.8 million∕0.75
= 0.55

12
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Fig. 18. Distribution of the lengths of posts [20].

Table 6

Instantiation of SNS relationships in the data set.

(a) One-to-many (1:N) relationships.

1-side relation N-side relation Relationship Mean of N-side distribution

User Post write_post 991 (=𝑁𝑝𝑜𝑠𝑡𝑠∕𝑁𝑢𝑠𝑒𝑟𝑠)

User Comment Write_comment 1562 (=𝑁𝑐𝑜𝑚𝑚𝑒𝑛𝑡𝑠∕𝑁𝑢𝑠𝑒𝑟𝑠)

User Group Create 1.77 (=𝑁𝑔𝑟𝑜𝑢𝑝𝑠∕𝑁𝑢𝑠𝑒𝑟𝑠)

User, Group Post Own 357 (=𝑁𝑝𝑜𝑠𝑡𝑠∕(𝑁𝑢𝑠𝑒𝑟𝑠 +𝑁𝑔𝑟𝑜𝑢𝑝𝑠))
Post Comment Own 1.5 (=𝑁𝑐𝑜𝑚𝑚𝑒𝑛𝑡𝑠∕𝑁𝑝𝑜𝑠𝑡𝑠)

(b) Many-to-many (M:N) relationships.

M-side relation N-side relation Relationship Mean of M-side distribution Mean of N-side distribution

User Group is_member_of 7 12

User User is_friend_of 44 44

User Post recommend_post 0.55 547

User Comment recommend_comment 0.03 183

𝑁 = 𝑁𝑝𝑜𝑠𝑡𝑠 ×
𝑁𝑃𝐷𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑_𝑝𝑜𝑠𝑡

𝑁𝑃𝐷𝑤𝑟𝑖𝑡𝑒_𝑝𝑜𝑠𝑡

× 1
𝑁𝑢𝑠𝑒𝑟𝑠

= 347 billion × 105 million
190 million

× 1
350 million

= 547

• Recommend_comment:

𝑀 =
𝑁𝑃𝐷𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑_𝑐𝑜𝑚𝑚𝑒𝑛𝑡

𝑁𝑃𝐷𝑤𝑟𝑖𝑡𝑒_𝑐𝑜𝑚𝑚𝑒𝑛𝑡

= 35.1 million
300 million

= 0.03(𝑠𝑒𝑒 SNS queries below for 𝑁𝑃𝐷𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑_𝑐𝑜𝑚𝑚𝑒𝑛𝑡)

𝑁 = 𝑁𝑐𝑜𝑚𝑚𝑒𝑛𝑡𝑠 × (𝑁𝑃𝐷𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑_𝑝𝑜𝑠𝑡

×
𝑅𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑_𝑐𝑜𝑚𝑚𝑒𝑛𝑡

𝑅𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑_𝑝𝑜𝑠𝑡
) × 1

𝑁𝑃𝐷𝑤𝑟𝑖𝑡𝑒_𝑐𝑜𝑚𝑚𝑒𝑛𝑡

× 1
𝑁𝑢𝑠𝑒𝑟𝑠

= 547 billion × (105 million × 0.251
0.749

) × 1
300 million

× 1
350 million

= 183

SNS queries

For the SNS query set, 10,000 queries of primary operations (see Table 2) are randomly generated in proportion to the distribution

of the frequencies of SNS-A queries. (Queries of the secondary operations are not included because they are executed too infrequently

to avail any workload statistics.) The frequencies of queries per day for each operation are obtained as follows (see Table 3 for the

workload parameters and values).

• 𝑁𝑃𝐷𝑤𝑟𝑖𝑡𝑒_𝑝𝑜𝑠𝑡 =
𝑁𝑃𝐷𝑢𝑝𝑙𝑜𝑎𝑑_𝑝ℎ𝑜𝑡𝑜

𝑅𝑝ℎ𝑜𝑡𝑜_𝑖𝑛_𝑝𝑜𝑠𝑡
= 142.8 million

0.75 = 190 million

• 𝑁𝑃𝐷𝑤𝑟𝑖𝑡𝑒_𝑐𝑜𝑚𝑚𝑒𝑛𝑡 = 300 million
• 𝑁𝑃𝐷𝑚𝑜𝑑𝑖𝑓𝑦_𝑝𝑜𝑠𝑡 = 𝑁𝑃𝐷𝑤𝑟𝑖𝑡𝑒_𝑝𝑜𝑠𝑡 × 𝑅𝑚𝑜𝑑𝑖𝑓𝑦_𝑝𝑜𝑠𝑡 =

𝑁𝑃𝐷𝑢𝑝𝑑𝑎𝑡𝑒_𝑝ℎ𝑜𝑡𝑜

𝑅𝑝ℎ𝑜𝑡𝑜_𝑖𝑛_𝑝𝑜𝑠𝑡
× 𝑅𝑚𝑜𝑑𝑖𝑓𝑦_𝑝𝑜𝑠𝑡 =

142.8 million
0.75 × 0.132 = 25.13 million

• 𝑁𝑃𝐷𝑚𝑜𝑑𝑖𝑓𝑦_𝑐𝑜𝑚𝑚𝑒𝑛𝑡 = 𝑁𝑃𝐷𝑤𝑟𝑖𝑡𝑒_𝑐𝑜𝑚𝑚𝑒𝑛𝑡 × 𝑅𝑚𝑜𝑑𝑖𝑓𝑦_𝑐𝑜𝑚𝑚𝑒𝑛𝑡 = 300 million × 0.086 = 25.8 million
• 𝑁𝑃𝐷𝑑𝑒𝑙𝑒𝑡𝑒_𝑝𝑜𝑠𝑡 = 𝑁𝑃𝐷𝑤𝑟𝑖𝑡𝑒_𝑝𝑜𝑠𝑡 × 𝑅𝑑𝑒𝑙𝑒𝑡𝑒_𝑝𝑜𝑠𝑡 =

𝑁𝑃𝐷𝑢𝑝𝑙𝑜𝑎𝑑_𝑝ℎ𝑜𝑡𝑜

𝑅𝑝ℎ𝑜𝑡𝑜_𝑖𝑛_𝑝𝑜𝑠𝑡
× 𝑅𝑑𝑒𝑙𝑒𝑡𝑒_𝑝𝑜𝑠𝑡 =

142.8 million
0.75 × 0.097 = 18.46 million

• 𝑁𝑃𝐷𝑑𝑒𝑙𝑒𝑡𝑒_𝑐𝑜𝑚𝑚𝑒𝑛𝑡 = 𝑁𝑃𝐷𝑤𝑟𝑖𝑡𝑒_𝑐𝑜𝑚𝑚𝑒𝑛𝑡 × 𝑅𝑑𝑒𝑙𝑒𝑡𝑒_𝑐𝑜𝑚𝑚𝑒𝑛𝑡 = 300 million × 0.091 = 27.3 million
• 𝑁𝑃𝐷𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑_𝑝𝑜𝑠𝑡 = 105 million
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Table 7

The proportions of different query operations.

SNS query type Proportion

Write post 1.25%

Write comment 1.97%

Modify post 0.13%

Modify comment 0.17%

Delete post 0.15%

Delete comment 0.18%

Recommend post 0.69%

Recommend comment 0.2%

View timeline 16.62%

View newsfeed 49.08%

View full photo 29.57%

• 𝑁𝑃𝐷𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑_𝑐𝑜𝑚𝑚𝑒𝑛𝑡 = 𝑁𝑃𝐷𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑_𝑝𝑜𝑠𝑡 ×
𝑅𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑_𝑐𝑜𝑚𝑚𝑒𝑛𝑡

𝑅𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑_𝑝𝑜𝑠𝑡
= 105 million × 0.251

0.749 = 35.1 million

• 𝑁𝑃𝐷𝑣𝑖𝑒𝑤_𝑡𝑖𝑚𝑒𝑙𝑖𝑛𝑒 = 𝑁𝑃𝐷𝑣𝑖𝑒𝑤_𝑝ℎ𝑜𝑡𝑜 ×
𝑅𝑣𝑖𝑒𝑤_𝑡ℎ𝑢𝑚𝑏𝑛𝑎𝑖𝑙

𝑅𝑝ℎ𝑜𝑡𝑜_𝑖𝑛_𝑝𝑜𝑠𝑡
× 𝑅𝑣𝑖𝑒𝑤_𝑡𝑖𝑚𝑒𝑙𝑖𝑛𝑒 ×

1
𝑃𝑂𝑆𝑇𝑆_𝑃𝐸𝑅_𝑃𝐴𝐺𝐸

= 90 billion × 0.844
0.85 × 0.287 × 1

10 = 2.9 billion

• 𝑁𝑃𝐷𝑣𝑖𝑒𝑤_𝑛𝑒𝑤𝑠𝑓𝑒𝑒𝑑 = 𝑁𝑃𝐷𝑣𝑖𝑒𝑤_𝑝ℎ𝑜𝑡𝑜 ×
𝑅𝑣𝑖𝑒𝑤_𝑡ℎ𝑢𝑚𝑏𝑛𝑎𝑖𝑙

𝑅𝑝ℎ𝑜𝑡𝑜_𝑖𝑛_𝑝𝑜𝑠𝑡
×𝑅𝑣𝑖𝑒𝑤_𝑛𝑒𝑤𝑠𝑓𝑒𝑒𝑑 ×

1
𝑃𝑂𝑆𝑇𝑆_𝑃𝐸𝑅_𝑃𝐴𝐺𝐸

= 90 billion× 0.844
0.75 × 0.713 × 1

10 = 7.22 billion

• 𝑁𝑃𝐷𝑣𝑖𝑒𝑤_𝑓𝑢𝑙𝑙_𝑝ℎ𝑜𝑡𝑜 = 𝑁𝑃𝐷𝑣𝑖𝑒𝑤_𝑝ℎ𝑜𝑡𝑜 × 𝑅𝑣𝑖𝑒𝑤_𝑓𝑢𝑙𝑙_𝑝ℎ𝑜𝑡𝑜 90 billion × 0.052 = 4.5 billion

The query arrival rate per day to the SNS-A system,𝑁𝑃𝐷𝑡𝑜𝑡𝑎𝑙, is the summation of the frequencies of all SNS operations, which equals

15.22 billion per day. For each query operation 𝑞𝑜, the proportion of its query frequency is
𝑁𝑃𝐷𝑞𝑜

𝑁𝑃𝐷𝑡𝑜𝑡𝑎𝑙
, as summarized in Table 7.

Performance measure

The performance measure is the average query response time for each SNS query operation in Table 2. Queries are issued by a

separate machine, which issues queries to the master through network. We first measure the performance of Odysseus/SNS both in

warm start and in cold start. For warm start, the query arrival rate is varied from 1.0 to 3.5 million queries per day with Poisson

distribution.

We note that the proportionally scaled-down query arrival rate for an 8-node Odysseus/SNS, which is equivalent to SNS-A’s

15.22 billion queries per day (= 𝑁𝑃𝐷𝑡𝑜𝑡𝑎𝑙 above in SNS queries) for 58,000 nodes (= 𝑁𝑛𝑜𝑑𝑒𝑠, obtained as 𝑁𝑠𝑒𝑟𝑣𝑒𝑟𝑠 −𝑁𝑙𝑜𝑔_𝑠𝑒𝑟𝑣𝑒𝑟𝑠; see

Table 3), is 2.09 million queries per day. For cold start, the query arrival rate is varied from 0.2 to 1.0 million queries per day

(1.0 million is the maximum query arrival rate that Odysseus/SNS can handle with cold start). We expect that the average query

response time of Odysseus/SNS in the real-world environment will show between those of warm start and cold start(as a reference,

SNS-A processes 95% of queries in memory [26].)

We then compare the ‘‘relative’’ performance among various query operations of SNS-A with that among those of Odysseus/SNS.

Direct comparison with SNS-A is not relevant because of the difference in the scale (e.g., number of nodes) and the computing

environment. Thus, when comparing with SNS-A, the query response times are normalized by that of the reference operation

(‘‘recommend comment’’ for primary query operations, ‘‘login’’ for secondary query operations) for SNS-A and Odysseus/SNS to

compare relative performances among various query operations regardless of the scales. We choose the reference operation that is

simple so that it operates similarly independent of the architecture. The focus of this comparison is on examining the effects of the

particular techniques that are used in Odysseus/SNS but not in SNS-A. To measure the query response time in SNS-A, queries are

repeated at different times to cover users in different time zones of the world clock.3 In each measurement, to measure the server

processing time only, the round trip time (i.e., ping time) between the web server and SNS-A is subtracted from the elapsed time.

4.2. Query response times in Odysseus/SNS and SNS-A

Fig. 19 shows the query response times in each system for the primary query operations. For Odysseus/SNS, the arrival rates

are at 2.0 million queries per day for warm start and 1.0 million queries for cold start, and Fig. 20 shows those for the secondary

query operations. For Odysseus/SNS at warm start and cold start, we also show standard deviations in error bars.

In Fig. 19, the normalized processing times of newsfeed and timeline, which together take about 66% of query load, are

significantly reduced (by 53.8 ∼ 68.0% for newsfeed; 71.0 ∼ 90.1% for timeline) in Odysseus/SNS compared with those of SNS-A.

This reduction is a direct benefit of clustering relations by an identifying key as we have explained in Section 3.2 (Fig. 13).

In addition, the processing time of ‘‘delete a post’’ in Fig. 19 and ‘‘delete a group’’ and ‘‘deactivate’’ in Fig. 20 show that the

processing times of delete operations are drastically reduced (by 87.5 ∼ 96.5% for delete a post; by 57.5 ∼ 87.3% for delete a group;

85.3 ∼ 86.3% for deactivate), which is attributed to the deletion cost amortized under the deferred delete strategy. With this strategy,

‘‘view friend lists’’ and ‘‘view user lists’’ take a bit longer ‘‘after deactivate’’ if they find that the user has deactivated the account.

Likewise, ‘‘view group lists’’ may take a bit longer after ‘‘delete a group’’ if it finds that the group has been deleted. This increase of

response time is a direct consequence of amortization. Comparing the response time between the cases of deferred deletion occurring

(case 2) and not occurring (case 1) showed no more than 39% difference, which was not significant.

3 We measured the query response time of each operation six times on Jan. 28th, 2017, with a 4-h interval(i.e., at 0, 4, 8, 12, 16, and 20 o’clock PT). In

the case of ‘‘sign up’’ and ‘‘deactivate’’, we measured it only once (at 0 o’clock) since repeated trial of those operations is not allowed by SNS-A.
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Fig. 19. Average query response times of the primary query operations.

4.3. Query response times of Odysseus/SNS as the query arrival rate is varied

Fig. 21 shows the result for all primary query operations as the query arrival rate is varied from 1.0 to 3.5 million queries per

day at warm start and from 0.2 to 1.0 million queries per day at cold start. The results for the secondary query operations are

similar and omitted here to avoid redundancies. For every query operation, the query response time increases as the query arrival

rate increases. This trend makes sense considering the queuing effect on each node as the query arrival rate increases. Experiments

show that Odysseus/SNS can process up to 3.5 million queries per day, which is larger than the 2.09 million queries per day that we

have estimated for an 8-node equivalent of SNS-A’s query load (see ‘‘Performance measure’’ in Section 4.1). This result demonstrates

Odysseus/SNS’s ability to handle query arrival rates typical of the SNS workload.
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Fig. 20. Average query response times of the secondary query operations. Since cases 1 and 2 are not differentiated for SNS-A, we show the same data for both

cases.

4.4. Query response times of Odysseus/SNS as the number of system nodes increases

Fig. 22 shows the response time of primary query operations when the number of nodes varies, divided into three groups. For

every query operation, it clearly shows that the query response time hardly changes as the number of nodes varies. (The mean

and standard deviation of the range (i.e., maximum–minimum) over minimum for all query operations are only 3.00% and 1.90%,

respectively.)4 The reason for this is that, in most cases, the number of nodes that need to be accessed to execute a query is limited

to be a small number and does not increase as the number of nodes increases, which is characteristic of SNS operations. We believe

4 We present only the warm-start results since cold-start results are rather unstable due to random disk accesses.
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Fig. 21. Average response times of query operations in Odysseus/SNS as the query arrival rate is varied.

that the ideas (i.e., avoiding inter-node joins and multi-node two-phase commit) implemented in Odysseus/SNS also helps with

scalability, due to its positive effect on reducing the number of nodes accessed during global transaction processing. The result thus

suggests the potential of Odysseus/SNS to scale out as the number of system nodes increases.

5. Conclusions

In this paper we have discussed an approach to implementing a large-scale social networking services (SNS) system by using

a relational DBMS. In particular, we have shown a case where we can build a scaled-out system using a shared-nothing parallel

17



K.-Y. Whang, I. Na, T.-S. Yun et al. Data & Knowledge Engineering 125 (2020) 101756

Fig. 22. Average response times of query operations in Odysseus/SNS when the number of nodes is varied.

DBMS. We have first proposed the entity-relationship conceptual model and its relational representation of the SNS database, and

then, by using the high-level semantics provided by the schema, have proposed the methods processing global transactions involving

multiple nodes as local transactions on single nodes as much as possible resulting in (1) avoiding joins across different nodes (for

queries via one-to-many relationships) and (2) amortizing the cost of updates across different nodes (for deletion via many-to-many

relationships). This paper is the first to present the entity-relationship schema and its relational representation of the SNS database.

Performance evaluation, conducted using a synthetic workload of the scale of Linkbench [6], demonstrated the significant benefit

of the methods, especially in timeline and newsfeed – the two dominant SNS query operations – and in various delete operations.
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Fig. 23. Entire SNS entity-relationship schema.

Appendix

See Fig. 23.
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