
J Supercomput (2017) 73:2657–2681
DOI 10.1007/s11227-016-1949-7

Moving metadata from ad hoc files to database tables
for robust, highly available, and scalable HDFS

Heesun Won1,2 · Minh Chau Nguyen2 ·
Myeong-Seon Gil3 · Yang-Sae Moon3 ·
Kyu-Young Whang1

Published online: 27 March 2017
© Springer Science+Business Media New York 2017

Abstract As a representative large-scale data management technology, Apache
Hadoop is an open-source framework for processing a variety of data such as SNS,
medical, weather, and IoT data. Hadoop largely consists of HDFS, MapReduce, and
YARN.Among them,we focus on improving theHDFSmetadatamanagement scheme
responsible for storing and managing big data. We note that the current HDFS incurs
many problems in system utilization due to its file-based metadata management. To
solve these problems, we propose a novel metadata management scheme based on
RDBMS for improving the functional aspects of HDFS. Through analysis of the latest
HDFS, we first present five problems caused by its metadata management and derive
three requirements of robustness, availability, and scalability for resolving these prob-
lems. We then design an overall architecture of the advanced HDFS, A-HDFS, which
satisfies these requirements. In particular, we define functional modules according to
HDFS operations and also present the detailed design strategy for adding or modifying

B Kyu-Young Whang
kywhang@cs.kaist.ac.kr; kywhang@mozart.kaist.ac.kr

Heesun Won
hswon@etri.re.kr

Minh Chau Nguyen
chau@etri.re.kr

Myeong-Seon Gil
gils@kangwon.ac.kr

Yang-Sae Moon
ysmoon@kangwon.ac.kr

1 School of Computing, KAIST, Daejeon, Korea

2 BigData Intelligence Research Department, ETRI, Daejeon, Korea

3 Department of Computer Science, Kangwon National University, Chuncheon, Korea

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-016-1949-7&domain=pdf


2658 H. Won et al.

the individual components in the corresponding modules. Finally, through implemen-
tation of the proposedA-HDFS, we validate its correctness by experimental evaluation
and also show that A-HDFS satisfies all the requirements. The proposed A-HDFS sig-
nificantly enhances the HDFS metadata management scheme and, as a result, ensures
that the entire system improves its stability, availability, and scalability. Thus, we can
exploit the improved distributed file system based on A-HDFS for various fields and,
in addition, we can expect more applications to be actively developed.

Keywords Hadoop · HDFS · Advanced HDFS · Distributed file systems · Metadata
management

1 Introduction

Apache Hadoop [1] is a representative low-cost, high-efficiency distributed system
proposed for big data management, gaining a lot of attention since it was first intro-
duced. Even thoughHadoop is an open-source softwarewith its functions continuously
evolving, it has become a de facto base technology for storing and analyzing a large
volume of data. We can exploit Hadoop in a variety of applications such as SNS, med-
ical, image, and weather services. Recently, a number of studies on IoT (Internet of
Things), an increasingly growing topic, have been conducted based on Hadoop [20–
23]. The latest version of Hadoop consists of HDFS(Hadoop Distributed File System)
[3] responsible for data storing andmanagement, YARN (Yet Another ResourceNego-
tiator) [2] responsible for resource management and job execution management, and
MapReduce [4] working as a programming model for data processing and analysis.
In this paper, we focus on HDFS to improve its functional aspects.

HDFS, a framework inside Hadoop, can substitute legacy storage systems, which
are not suitable for management of a large volume of data. It is a low-cost and high-
efficiency distributed file system that consists of a large-scale cluster using commodity
computer nodes. Since HDFS can store large-scale files by splitting big data into
multiple blocks and easily extending its nodes, it is gaining growing attention as a
representative technique for big data storage. Even recently, many companies such
as IBM [11], Amazon [12], Cloudera [13], Hortonworks [14], and MapR [15] have
developedHDFS-based storage systems and have provided them as their own products
or new technologies to users. Furthermore, since the advent of HDFS, there have
been many successful studies and products on newly distributed file systems such as
Cassandra [16], Ceph [17], Lustre [18], and OneFS [19].

However, the existingHDFS incursmany problems caused by storing andmanaging
metadata into ordinary files. In this paper, we propose an advanced HDFS, called A-
HDFS, for solving those problems. The problems of the existing HDFS become much
severe in system scalability and stability as the number of system objects such as users,
files, and directories increases. According to our analysis, most of these problems
result from inefficient file-based metadata management. In this paper, we identify five
problems through analysis of the existing HDFS.

123



Moving metadata from ad hoc files to database tables for… 2659

Problem 1 (Metadata Limitation Problem) Since the existing HDFS loads all the
metadata into the main memory of NameNode, the number of files (or directories)
might be limited. ��
Problem 2 (Slow Bootstrapping Problem) The existing HDFS manages the metadata
in complex image and log files, and this incurs a long bootstrapping time since com-
plicated integration of these complex configuration files should be done at the time of
system (re)boot. ��
Problem 3 (Complex Management Problem) The existing system can search or mod-
ify the metadata only through commands, and this command-based scheme is highly
inefficient for a large-scale distributed environment, which should manage a variety
of metadata of different objects. ��
Problem 4 (Location-aware Accesses Problem) Since Hadoopmanages themetadata
in a single NameNode (or one or more separate NameNodes in a federation mode),
all the access requests to HDFS need to pass through the corresponding NameNode.
This access structure severely restricts the Hadoop scalability. ��
Problem 5 (Access Limitation Problem) Since Hadoop does not permit user appli-
cations to access the HDFS metadata, these applications cannot exploit HDFS for
various purposes such as HDFS status monitoring or usage statistics. ��

To solve these five problems, this paper derives three requirements for improving
HDFS functions. First, robustness related to Problems 2 and 3,means that an integrated
metadata management system is required for resolving the instability of the original
HDFS.Second,availability related toProblems2, 4 and5,means that anopenmetadata
management system is required for resolving the application limitations caused by the
current closed metadata management system. Third, scalability related to Problems 1
and 4 means that, since the existing NameNode-centered metadata management has
difficulty in constructing a large-scale cluster that is geographically distributed, a new
management scheme for solving this difficulty is required.

To satisfy these three requirements, we propose a new HDFS, A-HDFS, which
adopts RDBMS for metadata management. By exploiting RDBMS, which has already
proven its efficiency and stability, Hadoop can ensuremore efficient systemoperations,
stable metadata management, and high scalability. For the design and implementation
of A-HDFS, we first analyze the latest HDFS source codes and present a two-step
design for confirming that A-HDFS works correctly. In Step 1, we design and imple-
ment the Writing Process, which stores the HDFS metadata into RDBMS without
affecting the existing HDFS operations. In Step 2, we discard all the original HDFS
metadata files, but we instead develop the Reading Process for A-HDFS to work cor-
rectly just through the integrated MetaDatabase newly constructed. Following this
two-step design, we develop the entire system of the proposed A-HDFS by modifying
the actual source codes, and we also prove that the developed system satisfies each of
the three requirements by experimental evaluation. The experimental results confirm
that A-HDFSmakes the metadata management more convenient and reflects the meta-
data information changes to the running system immediately. Moreover, the results

123



2660 H. Won et al.

show that the system utilization is improved by allowing external applications to easily
access the integrated MetaDatabase and that the cluster size is largely extendible.

The contribution of this paper is as follows. First, while previous efforts have
focused on only the performance improvement of Hadoop [25–28,33], we instead
focus on the functional improvement of Hadoop, and this improvement can be a basis
for maximizing the actual system utilization. Second, we derive three major require-
ments, robustness, availability, and scalability, as the solution of the five problems
in the legacy HDFS and present how to satisfy these requirements by proposing a
novel architecture of A-HDFS and its detailed working mechanism. More precisely,
we achieve these three requirements by replacing an old file-based metadata manage-
ment with a new RDBMS-based metadata management, which will be explained and
evaluated in detail in Sects. 3 and 5. Third, we increase the overall computing resource
utilization by assigning the metadata management function to Secondary NameNode,
which has no significant function in the current Hadoop. Fourth, through actual imple-
mentation and experimental evaluation, we prove that the proposed A-HDFS satisfies
all three requirements and its functions work correctly.

The rest of this paper is organized as follows. Section 2 describes related work
and previous research efforts. Section 3 analyzes the problems of existing system
and derives the requirements for solving these problems. Based on the requirement
analysis of Sect. 3, we propose in Sect. 4 A-HDFS, which uses an RDBMS-based
metadata management scheme. Through actual implementation, we present in Sect. 5
the experimental results, which validate that the A-HDFS functions fully satisfy all
the requirements of Sect. 3. Finally, Sect. 6 concludes the paper with future work.

2 Related work

2.1 Apache Hadoop

ApacheHadoop [1] is an open-source framework for storing, managing, and analyzing
a large volume of data. Hadoop consists of three large components: HDFS (Hadoop
DistributedFileSystem) [3],MapReduce [4], andYARN(YetAnotherResourceNego-
tiator) [2]. First,MapReduce is a programmingmodel proposedbyGoogle.At the same
time, it is a software framework for performing job execution management in Hadoop.
In the MapReduce model, we write a distributed program using two primitive func-
tions: Map and Reduce. In Hadoop 1.x, JobTracker and TaskTracker are responsible
for job processing and resource management, respectively. This architecture, how-
ever, incurs a severe functional overhead in MapReduce, especially in JobTracker. To
solve this problem, Hadoop 2.0 introduces the new resource management framework,
YARN, to remove the bottleneck caused by inefficient distribution functions in the ini-
tial Hadoop. YARN efficiently manages and controls various resources and computing
tasks inside the system while providing the extension with a variety of applications, as
well as MapReduce. YARN mainly consists of ResourceManager and NodeManager
for cluster resource management, and ApplicationManager and ApplicationMaster for
job execution management. As we can see in these components, YARN splits the role

123



Moving metadata from ad hoc files to database tables for… 2661

of the existing JobTracker into ResourceManager and ApplicationManager, ensuring
the stability and scalability of the entire cluster [2].

Finally, HDFS is a distributed file system proposed by Google as a variant imple-
mentation of GFS (Google File System) [5]. HDFS is basically designed for handling
large-scale files rather than small ones. HDFSmainly consists of NameNode as a mas-
ter role and DataNode as a slave role. NameNode is responsible for the entire cluster
management and uses the metadata to manage all the data distributed in DataNodes.
In addition, it might include Secondary NameNode for the purpose of failure recovery
and backup of NameNode.

2.2 Metadata management in HDFS

HDFS stores a single data file into multiple blocks and, accordingly, the metadata
relating to each data file are highly complex compared to the legacy file system, with
the internal structure for managing data files becoming much more complicated. Each
data file contains a variety ofmetadata information such as the directory address for the
file location, permissions to file owners and groups, and storage locations for blocks
split from the file. The current Hadoop manages the metadata of an entire cluster in a
system backup file, called FSImage, and a log file, called EditLog. Also, it maintains
a few separate XML files for the purpose of the configuration and policy management
of the Hadoop system [24].

As the abbreviation of a file system image, FSImage stores themetadata information
of files including locations of files and directories, ACL (access control list), and block
information on each file. We note that FSImage resembles the iNode information in
a Linux system [29] and can be considered a main metadata file for managing the
iNode information with the system status information in HDFS. Thus, many console
commands are processed by referring to the metadata of FSImage, and Secondary
NameNode can take over the failed NameNode by using its FSImage periodically
copied from NameNode. EditLog is a log file that accumulates every event occurring
in HDFS after the most recent FSImage and is used for systemmonitoring and backup
together with FSImage. By using the EditLog file, we can trace all the events occurring
in Hadoop and obtain up-to-date metadata information, which reflects the most recent
file and system status. Based on these twofiles, themetadata for files and directories are
managed in a similar way as iNode in Linux, and they are loaded in the main memory
of the NameNode server. Thus, using these memory-resident metadata, the Hadoop
system can retrieve files, directories, and blocks being accessed by current users [3].

Besides FSImage and EditLog files, a few XML files are used for various system
configurations. These XML files are mainly required for configuring HDFS, YARN,
MapReduce, and KMS (Key Management System). The XML configuration files are
as follows.

• Cluster configuration: core-site.xml, hadoop-policy.xml
• HDFS configuration: hdfs-site.xml, https-site.xml
• YARN configuration : yarn-site.xml, capacity-scheduler.xml
• MapReduce configuration: mapred-site.xml
• KMS configuration: kms-acls.xml, kms-site.xml

123



2662 H. Won et al.

Fig. 1 Read/write operation procedures of the metadata in the existing HDFS

Five site-related XML files, i.e., core-site.xml, hdfs-site.xml, yarn-site.xml,
mapred-site.xml, and kms-site.xml, manage the network-related metadata such
as the network addresses of nodes, port numbers, and server names. The site
information usually contains mandatory configuration parameters required for the
initial Hadoop installation. If the information is changed, the Hadoop system
often needs to be rebooted [30]. Next, hadoop-policy.xml in cluster configura-
tion manages the ACL information between Hadoop and other services. As a
key management server for secure communication between a specified server and
Hadoop, KMS stores the metadata for the distribution and management of security
keys.

As shown in Fig. 1, FSImage and EditLog, which are frequently changed in
many Hadoop operations, are accessed and managed by PersistenceManager, Names-
paceManager, Datanode&BlockManager, and ClientInteraction components in the
NameNode. The procedures of reading and writing the HDFS metadata are related
to these four components and work as in the following steps. Steps (1) and (1′) are
executed only once at the Hadoop start time.

(1) NameNode reads the metadata information from FSImage and EditLog files to
start up the Hadoop system.

(1′) NameNode loads and maintains the metadata into the main memory.
(2) A client (user) inputs a command to use HDFS.
(3) NameNode retrieves the metadata related to the command and updates the meta-

data information in the main memory if necessary.
(4) NameNode writes the client’s command into the EditLog file.
(5) Secondary NameNode integrates the EditLog to the FSImage periodically and

refreshes EditLog to keep the log file to a specified size.

3 Problem and requirement analysis

In this section, we first analyze five problems of metadata management in the current
HDFS and then derive three requirements to solve these problems. In particular, we
note that the current HDFS manages the metadata based on files, and we explain the
restriction and limitation of this file-based metadata management in detail.

Problem 1, called Metadata Limitation Problem, is caused by the size restriction
of metadata for a file (or a directory) in HDFS. HDFS loads all the metadata of

123



Moving metadata from ad hoc files to database tables for… 2663

files and directories into the main memory of NameNode; thus, the metadata size
should be smaller than the main memory size. For a large Hadoop cluster, a NameN-
ode server manages hundreds to thousands of DataNodes in general. For example,
in 2012 the Hadoop system of Ebay consisted of 532 nodes [39]. In this case, there
can be a large number of files and directories, but the actual number of files (or
directories) might be limited due to the memory limitation of NameNode [28]. In
particular, the amount of ACL information is also limited by this reason, and this
ACL limitation makes it impossible to construct a large Hadoop cluster for support-
ing a large number of users, which will be the base of Multitenant Hadoop [10].
Recently, the number of applications running inHadoop has been increasing fast. Prob-
lem 1, which restricts the extension of HDFS, should thus be resolved in the proposed
A-HDFS.

Problem 2, called Slow Bootstrapping Problem, is caused by file-based metadata
management. It occurs because all the metadata are maintained by file formats such
as images, logs, and XML files. If a Hadoop user changes the information of files or
directories, the current HDFS reflects it on the main memory only upon logging the
change history to EditLog (without changing the FSImage file itself). For example,
when user A requests the ACL modification of his/her file for user B, the change can-
not occur immediately; instead, user B needs to wait for the process of main memory
and log history reflection to access user A’s file. Thus, there might be a discrepancy in
the metadata between NameNode and its Secondary NameNode until the Secondary
NameNode integrates EditLog to FSImage. Moreover, if certain parameters of the
cluster configuration need to be changed, the administrator should modify the related
XML files manually and reboot the entire Hadoop system to apply that modification.
However, rebooting the whole system, which serves a large number of users and appli-
cations, creates a big difficulty in practice [32]; thus, altering important parameters
related to the cluster configuration causes a very troublesome problem in a running
Hadoop system. If we can solve Problem 2, the metadata changes can be applied to
the system on the fly, and a more efficient operation and management are possible in
the Hadoop system.

Problem 3, called Complex Management Problem, is caused by the same reason
as Problem 2; i.e., it is caused by the file-based metadata management. In the current
HDFS, searching and updating the metadata can be done by system commands only.
Also, all important metadata such as file owners, ACL of files and directories, and file
modification times are stored in a single file, FSImage, so the metadata management
becomes much more complex as the number of files or directories increases, or as
the number of users increases. Moreover, the system security becomes vulnerable
since all the important metadata are maintained in only a few files [31]. To solve
this Complex Management Problem, we need to construct an integrated metadata
management environment and provide easy maintenance functions with appropriate
system authorities.

Problem 4, called Location-aware Access Problem, is also caused by file-based
metadata management. More precisely, this problem arises because HDFS manages
all metadata files in a single node, and all data accesses should be done through the

123



2664 H. Won et al.

NameNode regardless of geographically distributed users and DataNodes.1 Because
it is difficult to construct a large-scale Hadoop cluster in a single region, it is more
efficient to operate small-scale data centers distributed in as many regions as possible
[8]. For example, a CDN (content delivery network) service system consists of a big
Hadoop cluster and multiple distributed edge servers [40], each of which corresponds
to a small data center. However, such a system configuration cannot be possible in the
current metadata management scheme because only a NameNode stores the metadata
of DataNodes, and all data accesses should be made through the NameNode even for
different locational users and distributed DataNodes. If the metadata can be shared
among multiple NameNodes, many independent Hadoop systems are able to work
together as a single big system. This multi-NameNodes approach makes it possible to
adopt the location-unaware access strategy through the distributed operations of mul-
tiple data centers and to reduce the operational overhead of NameNode by operating
multiple NameNodes.

Problem 5, called Access Limitation Problem, is a big constraint in developing
applications running on top of HDFS. Since the current applications must run only
on the Hadoop system, they need to do complex and unnecessary installation and
configuration processes first. Also, they can use only simple interoperations or a few
functions through APIs provided by Hadoop. Due to these unnecessary initialization
processes and access limitations, the applications are not sufficient to utilize the whole
system efficiently. To solve these problems, we construct an integrated meta-database
by separating the metadata fromHDFS and open the meta-database to the applications
so that they can exploit the HDFS metadata easily with appropriate access rights. This
openness feature also makes the existing applications utilize the Hadoop system more
efficiently.

Based on the five problems of HDFS mentioned so far, we define three require-
ments for A-HDFS newly proposed in this paper. In Table 1, we summarize these
requirements and explain them in detail.

First, as the requirement for Problems 2 and 3, robustness indicates that the Hadoop
system needs to provide a stable and integrated metadata management environment.
To satisfy this requirement, we need to consider an easier way of managing a large
volume of metadata generated from HDFS. Also, we need to consider a stable way
of reflecting metadata changes to the Hadoop system quickly. In particular, as we
mentioned in Problem3, the currentHDFS is vulnerable to security compromise due to
the file-based metadata management. Therefore, to satisfy the robustness requirement,
we need to introduce a new metadata storing and managing scheme, which is strongly
secure, easily manageable, and highly stable. If we can ensure robustness, we can
alleviate the system operation instability caused by the metadata changes of Problem 2
and the complicated metadata management of Problem 3.

Second, as the requirement for Problems 2, 4, and 5, availability indicates increasing
HDFSutilization.We can satisfy this requirement if we resolve the problems caused by
the closedmetadatamanagement of the currentHDFS. For this, we need to separate the

1 In a federation mode of multiple NameNodes [37], each NameNode is still responsible for a large number
of DataNodes. Thus, all data accesses in a set of DataNodes are also done through a NameNode even in
such a federation mode.

123



Moving metadata from ad hoc files to database tables for… 2665

Table 1 Definitions of A-HDFS requirements and related problems

Requirements Explanation Related problems

Robustness We need to manage the metadata in an integrated
manner rather than through the current file-based
management for stability, simplicity, and efficiency

Problems 2 and 3

Availability By the openness feature of the meta-database, we can
apply the Hadoop system to a variety of applications
and purposes

Problems 2, 4, and 5

Scalability We need to make the Hadoop system to be scalable to
support a large-scale cluster with a large number of
files and a large number of users

Problems 1 and 4

metadata stored inside Hadoop into an external storage system andmanage the storage
stably and independently. In this paper, we first analyze the operational procedures,
metadata files, and the corresponding source codes of the current Hadoop system and
then present a novel method to bring all the metadata into RDBMS, an external storage
space. If we manage the metadata in a separate RDBMS like above, we can resolve
the current HDFS problems of searching and modifying configuration information
from multiple files. Furthermore, other Hadoop systems or applications can access
the metadata easily; thus, we are expected to construct geographically distributed data
centers and develop various HDFS-based applications more easily.

Third, as the requirement for Problems 1 and 4, scalability extends the current
HDFS to be more scalable for a large-scale distributed system. In general, the current
Hadoop system constructs a cluster by connecting many nodes in an internal network
and operates a single NameNode to manage those nodes. Against the NameNode
failure, the Secondary NameNode is additionally used for failure recovery and high
availability, but it is merely an auxiliary server to wait and back up NameNode peri-
odically without any particular function. As the number of nodes, the number of files,
and the number of users increase, the metadata size will increase and, accordingly,
NameNode will suffer from the heavy load of managing a large size of metadata.
In other words, the hardware environment of NameNode restricts the scalability of a
whole cluster, and this can be a critical problem of the Hadoop system targeting big
data. To satisfy scalability, we need to modify the current Hadoop operating structure
from the memory-based structure to a separate and independent storage system struc-
ture, which is free from memory limitation. As a storage system, we adopt RDBMS
since it is the most general-purpose and concrete system. By using RDBMS, we can
solve two problems: first, we can support unlimited size of metadata with an unlimited
number of files, and this solves Problem 2; second, we can extend the Hadoop cluster
from a small region of a large data center to multiple distributed regions of many small
data centers, and this solves Problem 4.

The problems and requirements described so far can be representative criteria to
improve the functionality ofHDFS. In Sect. 4,wefirst determine a newoperating struc-
ture and its components to satisfy the requirements upon analyzing the current HDFS,
and we then present an overall architecture of A-HDFS and its detailed functions.

123



2666 H. Won et al.

4 RDBMS-based metadata management for A-HDFS framework

4.1 Overall architecture

In this section, we propose a new HDFS framework, A-HDFS, which exploits the
RDBMS-based scheme to satisfy the requirements introduced in Sect. 3. This frame-
work solves current HDFS problems of the file-basedmetadata management and plays
an important role of integrating all themetadata scattered inmany places of theHadoop
system into a separate storage system.As the storage system for the integratedmetadata
management, we adopt RDBMS, which has already proven its efficiency, stability, and
security in a number of places over a long period. The existingmetadata files, especially
FSImage and EditLog, have complicated structures, which store all the information
of complex metadata objects having different characteristics from each other in a sin-
gle file. Therefore, it is not easy to even recognize which information is contained
in the file, and it is also inefficient to search and manage specific information from
the file. Moreover, it is difficult for other applications to access and use such compli-
cated metadata structures. In contrast, RDBMS of this paper is highly convenient in
many aspects of installation, operation, and utilization compared with the file-based
management, and it can support various applications efficiently and effectively. Fig-
ure 2 shows the overall architecture of the proposed A-HDFS exploiting RDBMS for
Multitenant Hadoop.

As shown in Fig. 2, we construct an integrated MetaDatabase in RDBMS instead
of metadata files such as FSImage and EditLog. First, A-HDFS processes HDFS
commands given by users by reading MetaDatabase rather than the original HDFS
metadata. Also, it reflects the metadata information changes to MetaDatabase. In this
way, we reorganize all of the FSImage, EditLog, and XML files of the current Hadoop
system into theMetaDatabse ofRDBMSandmodifyHDFS components tomanage the

Fig. 2 The overall architecture of A-HDFS

123



Moving metadata from ad hoc files to database tables for… 2667

stored objects of MetaDatabase. Moreover, to ensure correct operations of A-HDFS,
we present a two-step design scheme by focusing on read and write operations on the
metadata. The detailed two-step procedures of Fig. 2 can be found in Figs. 5 and 7, and
their detailedworkingmechanisms are explained in Sects. 4.3.1 and 4.3.2, respectively.

4.2 Relational schema for HDFS metadata

As we mentioned earlier, we use RDBMS or, more specifically, RDBMS tables, for
the efficient metadata management of A-HDFS. For this, we analyze all the metadata
files of the current HDFS, categorize the information contained in each file according
to its property and purpose, and finally define new relational schema that holds all the
metadata. Figure 3 shows the metadata information used for the existing file-based
management. As shown in the figure, the information on files (or directories) is mainly
stored in FSImage and EditLog. For a single file (or a single directory), we note that the
HDFS metadata contain various information such as nodes, blocks, and permissions.
Thus, we group the information fields generated from a file (or a directory) according
to their characteristics and define those groups as RDBMS tables. In case of system
information data, such as cluster configuration and network setup data, we design them
separate tables since they are not directly related with files or directories.

Figure 4 shows the entire table schemaofA-HDFSnewly designed for the integrated
metadata management. The mapping relationship between Figs. 3 and 4 is shown in
Table 2. Table 2 shows how we map the metadata of Fig. 3 to the relational tables
of Fig. 4. We extract information fields such as File ID, Path, and Permission from
FSImage and EditLog files and reflect those fields in the table structures as their
attributes. We also make system-related tables by referring configuration XML files.
Based on Fig. 4 and Table 2, we summarize the major metadata information of A-
HDFS as follows.

• System information: inter-connection information of clusters and nodes, security
configuration among clusters, service ACL, etc.

• File anddirectory information: ID, storage location, owner andowner group, access
right by user and group, the number of data blocks, block locations, block size,
creation/update times, etc.

Kerberos [6,34] has been introduced to complement a simple user authentication
process of the initial Hadoop, and it has been an essential security mechanism [27]
that should be used to securely manage all system components such as clusters, nodes,
data, and users. Our Hadoop also uses the security mechanism of Kerberos, but note
that we retrieve the user and group information from the integrated MetaDatabase
rather than XML files.

4.3 A-HDFS with RDBMS-based MetaDatabase

Hadoop consists of a huge amount of source codes, and its configuration and opera-
tional procedures are very complex. As a result, even if we add or modify a function
cautiously, there might be a risk that the system will not work correctly. Therefore,

123



2668 H. Won et al.

Fig. 3 The representative metadata of the current file-based HDFS

in this paper we adopt a stepwise improvement approach to confirm that the system
works properly in each step. More specifically, we develop A-HDFS by two steps: the
first step is to store the original metadata into MetaDatabase tables without reading
or using the tables, and the second one is to read and use the MetaDatabase tables, as
well as the first storing function.

4.3.1 Step 1: RDBMS-based metadata writing process

In Step 1, we design A-HDFS focusing on the writing process that stores the current
HDFS metadata into RDBMS. In this step, we duplicate the metadata both in the

123



Moving metadata from ad hoc files to database tables for… 2669

Fig. 4 The metadata table schema of A-HDFS

Table 2 Mapping from the file-based metadata to relational tables

Files Original metadata Related tables

FSImage File information (ID, path, blocks list,
permission, owner, etc.), Block
information (ID, location, creation time,
etc), ACL information, XATTR
information, Snapshot information, etc.

HDFS_DATA, HDFS_GLOBAL,
HDFS_XATTR, HDFS_BLOCK_DATA,
HDFS_DATA_ACL, HDFS_SNAPSHOT,
HDFS_CACHE_DIR,
HDFS_CACHE_POOL,
HDFS_SS_DATA, HDFS_DATANODE,
HDFS_DL_TOKEN,
HDFS_MASTER_KEY,
HDFS_BLOCK_DATANODE_REL

EditLog Command information including: Command
Name (e.g. OP_MKDIR, OP_DELETE)
and corresponding information of each
command (e.g., file path, access time)

(*) MetaManager reflects metadata changes
into the corresponding MetaDatabase
tables

System
XMLs

Configuration information (HDFS, YARN,
MapReduce, etc.)

SYSTEM_SERVICE_ACL

123



2670 H. Won et al.

Fig. 5 Step 1: RDBMS-based metadata writing process

original metadata files and RDBMS tables. That is, we still maintain the metadata in
FSImage, EditLog, and XML files, and at the same time we store the corresponding
metadata into MetaDatabase. Through this duplication approach, we first confirm if
the original metadata are stored in RDBMS correctly and also check if there are data
losses or corruptions by comparing the original metadata with the MetaDatabase.
Figure 5 shows an operation flow of the proposed Step 1 with the new or improved
components, and the explanation of each step is given by (1)–(5) as follows. As in
Fig. 1, steps (1) and (1′) are executed only once at the Hadoop start time.

(1) NameNode reads the metadata information from FSImage and EditLog files to
start up the Hadoop system.

(1′) NameNode loads and maintains the metadata into the main memory.
(2) A client (user) inputs a command to use A-HDFS.
(3) NameNode retrieves the metadata related with the command and updates the

metadata information in the main memory if necessary.
(4) NameNode writes the client’s command into EditLog and transfers the change to

the Secondary NameNode.
(5) Secondary NameNode backs up the modified metadata by integrating EditLog to

FSImage, and simultaneously reflects the modified information to the RDBMS
tables.

Prior to explaining new or improved components of Step 1, we review the original
function of each module in further detail. This is for the easier understanding of each
module changes that will occur in Step 1. Please refer to the major modules in Fig. 1.
Their explanation is as follows.

• NamespaceManager manages the metadata of the current directories and files
in the main memory and processes user-given commands. The corresponding
major classes are FSDirectory, FSPermissionChecker, FSDirMkdirOp, FSDirRe-
nameOp, FSEditLog, etc.

• PersistenceManager makes the memory-resident metadata consistent with the
metadata of EditLog and FSImage files by reflecting the changes of the main
memory into those files. The corresponding major classes are HdfsData, HdfsDat-
aBlock, etc.

123



Moving metadata from ad hoc files to database tables for… 2671

Fig. 6 The class hierarchy of A-HDFS modules modified or added in Step 1

• Datanode&BlockManager manages the DataNode and block information among
the memory-resident metadata. The corresponding major classes are BlockInfo,
BlockManager, DatanodeStorageInfo, etc.

• Merger working at SecondaryNameNode checks themetadata changes of EditLog
and FSImage in (Primary) NameNode and backs up those changes.

Based on the major modules above, we analyze the original HDFS process for
storing metadata into files and design a new mechanism of storing data in both files
and RDBMS tables together. We design the proposed system to store the metadata
into RDBMS through Secondary NameNode, which is for minimizing the functional
overhead of NameNode by reducing its workload. Also, we can achieve another pur-
pose of increasing the utilization of Secondary NameNode, which is mainly in waiting
state without any specific operation, by assigning table management roles to its new
major functions.

We create two new modules, BDASWriter and ServiceInteraction in Secondary
NameNode, and change the original PersistenceManager to store the metadata
into RDBMS tables. Figure 6 shows the class hierarchy of these modules. First,
BDASWriter is a new module for storing NameNode metadata into RDBMS through
SecondaryNameNode. Thismodulemaintains a connection toRDBMS, and it consists
of two classes: (1) DbAdmin of creating tables using DDL (Data Definition Language)
and (2) DbAdapter of executing SQL to store, modify, and delete the metadata to/from
RDBMS. Next, ServiceInteraction is a new module for transferring command objects
delivered from the NameNode to the Secondary NameNode. Here, a command object
includes a command given by a client and the corresponding metadata. This module
serializes command objects using Protocol Buffer [7] for transferring them between

123



2672 H. Won et al.

two different processes of NameNode and Secondary NameNode, and it transfers the
metadata inside the delivered command objects back to BDASWriter. Finally, Per-
sistenceManager is a modified module that stores the changed metadata information
delivered from the main memory into EditLog in NameNode and, at the same time
transfers the information to the ServiceInteraction module in Secondary NameNode
by modifying the FSEditLog class.

4.3.2 Step 2: RDBMS-based metadata reading process

In Step 2, we use the RDBMS-based metadata management only; that is, we delete
all the original metadata files and use the RDBMS tables only. More specifically, we
first store the HDFS metadata into RDBMS successfully through Step 1, and we next
remove all the unnecessary metadata files from the Hadoop system. We then design
HDFS operation procedures by reading the metadata information from the integrated
MetaDatabase. Figure 7 shows how the client commands are processed using the
integrated MetaDatabase. Compared with Fig. 5, it removes metadata files including
FSImage and EditLog, and it instead manages the information using MetaDatabase in
an integrated manner. The detailed explanation of each step is given through (1)–(5)
as follows.
(1) A client inputs a command to use A-HDFS.
(2) Hadoop reads the related metadata information from MetaDatabase to process

the command.
(2’) Hadoop loads the retrieved metadata into the main memory.
(3) Hadoop delivers the metadata modified by the client command to PersistenceM-

anager.
(4) PersistenceManager transfers the received metadata to MetaManager.
(5) MetaManager stores the modified metadata information into MetaDatabase.

As shown in Fig. 7, Step 2 is the final step for integrating metadata to RDBMS
following Step 1. In Sect. 4.3.1, we see that the Step 1 procedure of A-HDFS is
similar to that of the original HDFS that uses the metadata files. In contrast, Step 2
reads and writes the metadata only through RDBMS; thus, it is not necessary to read
the metadata from FSImage and EditLog on starting up the Hadoop system. Also, we
note that even if themetadata aremodified, the following two processes can be omitted:

Fig. 7 Step 2: RDBMS-based metadata reading process

123



Moving metadata from ad hoc files to database tables for… 2673

Fig. 8 The class hierarchy of A-HDFS modules added, modified, and removed in Step 2

(1) the recording process of metadata changes into EditLog and (2) the duplication
checking/backup process of them in MetaManager.

To develop these operation procedures in Step 2, we modify all modules except
for ClientInteraction in NameNode, and we remove Merger merging metadata files
in MetaManager. Figure 8 shows the class hierarchy of A-HDFS modules added,
removed, or modified in Step 2. In particular, the biggest difference compared with
Step 1 is the modification of NamespaceManager and Datanode&BlockManager. The
original HDFS brings the metadata information from the memory-resident iNode,
which is created from the existing metadata files. On the other hand, in Step 2, A-
HDFS reads all themetadata information fromMetaDatabse.We do not create any new
modules here, but for reading and writing information from MetaDatabase, we need
to modify classes in most modules. Thus, it is effortful to reflect these modifications
to the actual Hadoop source codes. In this paper, we reflect the created and modified
modules described in Steps 1 and 2 to the latest version of Hadoop source code, and
we confirm the proposed A-HDFS to work correctly through various experiments. We
explain these experimental results in Sect. 5.

4.4 Enhancement analysis of A-HDFS

In this section, we describe how the technical elements embedded in A-HDFS through
Steps 1 and 2 satisfy the three requirements. In addition, we also present how these
elements resolve the existing system problems.

123



2674 H. Won et al.

First, we can surely satisfy robustness by using RDBMS instead of files. RDBMS,
as an already proven system of supportingACID (atomicity, consistency, isolation, and
durability) [9] properties, can ensure the stability of a transaction, which is a logical
execution unit. Since the current HDFSmanages the metadata based on main memory
and/or files, if there are some losses of the metadata changes due to system or network
errors, it is often difficult to recover the changes to the previous stable status or to redo
the executions. For example, if problems or errors occur during the booting process
bringing the metadata files to the main memory, or if they occur inside metadata
files such as LogEdit and FSImage, the system operation itself may not be possible.
Therefore, the adaptation of RDBMS with stable data storing and managing scheme
is the most effective method for satisfying robustness. In particular, RDBMS makes
the metadata more easily manageable by formalizing the complex metadata files.
Thus, using the RDBMS-based management, we can also resolve Problem 2 (Slow
Bootstrapping Problem) and Problem 3 (Complex Management Problem) related to
robustness.

Second, we can satisfy the availability by managing the metadata information in
separate MetaDatabase tables rather than many files. In this paper, we design a step-
wise scheme completely moving all the metadata inside the existing system into an
external storage space through Steps 1 and 2. According to this stepwise scheme, we
show that unnecessary file search and operation processes can be omitted. During
the booting process, the Hadoop system requires to load the necessary information
from scattered and separated metadata files into the main memory. In this case, if the
cluster size becomes bigger or the amount of data increases, the metadata size to be
loaded increases; thus, the booting time also becomes longer. The proposed A-HDFS
system shortens the system booting time by loading the necessary information only,
and it reads and writes the necessary information only required for system operations.
By this scheme, we can significantly improve the system availability for users and
we can resolve Problem 2 (Slow Bootstrapping Problem). In addition, since informa-
tion sharing with other environments exploiting the HDFS metadata becomes easier,
it is useful to interoperate with the existing systems/applications and to develop new
applications. This information sharing scheme can resolve Problem 4 (Location-aware
Accesses Problem) and Problem 5 (Access Limitation Problem).

Third, scalability can be satisfied by two technical aspects: one for exploiting
RDBMS and another for constructing a separate metadata management system. We
can resolve Problem 1 (Metadata Limitation Problem) by the read-on-demand tech-
nique, which reads the necessary metadata only for handling a given command like
Step 2, instead of using the memory-resident metadata limited by the NameNode
memory size. However, this technique is difficult to realize on top of the file-based
storing method. In particular, Hadoop stores complicated metadata in a single file.
Thus, just searching for some required metadata may cause the degradation of sys-
tem stability as well as its performance. Therefore, if we exploit RDBMS, which has
expandable storage capacity and easymanagement for search, update, and deletion, we
can operate the system without the metadata size limitation for an object. Moreover,
if multiple NameNodes of Hadoop clusters in different regions can share such stable
MetaDatabase, we can construct a very large Hadoop environment consisting of mul-
tiple clusters across distributed regions [8]. This means that we can extend the current

123



Moving metadata from ad hoc files to database tables for… 2675

Hadoop environment to a larger scale one without location restriction. In conclusion,
the proposed A-HDFS enables us to construct a scale-free Hadoop environment with
supporting unlimited numbers or unlimited sizes of files and directories and to operate
a number of clusters with location-unaware accesses.

5 Experimental evaluation

To demonstrate the validity and practical use of the proposed A-HDFS, we performed
its actual implementation by modifying Hadoop 2.7.0. In this section, we present the
experimental results on the implementedA-HDFS. Themajor goals of the experiments
are as follows: (1) validation of the metadata maintenance ability for robustness, (2)
examination of the operation of file service andmetadata access for availability, and (3)
demonstration of the namespace management superiority of A-HDFS for scalability.

5.1 Experimental setup

In the experiment, we configure a 24-node Hadoop cluster as shown in Fig. 9. Each
node has two processors with 2.4 GHz CPU, 3 GB RAM, 1GB Ethernet NIC, and
200 GB HDD. All nodes work on CentOS 6, our modified Hadoop, and Java 1.6.0.
The first 20 nodes play as Hadoop slaves (DataNode for HDFS and NodeManager
for YARN), while Node 21 plays as a Hadoop master (NameNode for HDFS and
ResourceManager for YARN). SecondaryNameNode (MetaManager), Key Distribu-
tion Center (KDC) for the Kerberos security, and MariaDB for MetaDatabase are
installed in Nodes 22, 23, and 24, respectively.

5.2 Robustness evaluation

Wefirst verify the robustness of theA-HDFS prototype in the aspects of corruption and
recovery ability. For this, we implement a new administration interface named “hdfs
metadatabase check/recover/backup” for calling database engine functions related to
metadata corruption checking, metadata recovery, and metadata backup in manual or
periodical modes. We think these three features can reflect the robustness of managing
metadata in a file system. In this experiment, we compare A-HDFS with the origi-
nal HDFS (O-HDFS in short) by measuring the average time required for checking
corruption, backing up, and recovering the metadata. Figure 10 shows the evaluation
result on corruption checking, metadata backup, and recovery processes. As shown in
the figure, A-HDFS performs the corruption checking and recovering processes much
more quickly than O-HDFS with the same amount of file/directory entries. The reason
for this superior performance is that O-HDFS always needs to reload FSImage files
and perform again all transactions in EditLog files, respectively, whereas A-HDFS just
needs to access the metadata tables with the support of the database engine itself. In
case of the metadata backup, however, A-HDFS is slightly worse than O-HDFS. This
is because A-HDFS performs a more complicated metadata backup process compared
with O-HDFS, which simply duplicates the metadata folder as the backup process.

123



2676 H. Won et al.

Fig. 9 Configuration of the experimental Hadoop cluster

Fig. 10 Robustness evaluation between A-HDFS and O-HDFS

5.3 Availability evaluation

We next examine the availability of A-HDFS in the aspect of file service and metadata
access ability. Here, we perform two experiments for showing the superiority of A-
HDFS in availability. The first one is the bootstrapping time of a cluster, and the second
one is the metadata access time from the third parties.

123



Moving metadata from ad hoc files to database tables for… 2677

Fig. 11 Comparison of bootstrapping times of A-HDFS and O-HDFS

In the first experiment, we measure the bootstrapping time of a cluster by using
A-HDFS and O-HDFS, respectively. The detailed restarting procedure is as follows.
First, we upload a fixed number of file entries to the cluster. Second, we randomly
change the value of block replication for each file in the file set. Third, we restart
the cluster and measure its bootstrapping time. We vary the number of file entries
from 100K to 6M, repeat the restarting procedure ten times for each number, and take
their average as the result. Figure 11 shows the experimental result of bootstrapping
times. As shown in the figure, A-HDFS significantly reduces the bootstrapping time
compared with O-HDFS. This is because O-HDFS spends much time in reloading
all the metadata into the main memory while A-HDFS does not need this bulk pro-
cess by accessing MetaDatabase on the fly and by amortizing the bootstrapping time
over the long Hadoop operational time. In particular, if the number of file entries is
large, the time difference becomes much larger. This is trivial since the amount of
metadata uploaded into the main memory also increases as the number of file entries
increases.

In the second experiment, we measure the metadata access time from the third
parties. For this, we first construct a third party application that searches files or direc-
tories by changing the search criterion to type, permission, size, and block location.We
execute this third party application in three different cases: (1) O-HDFS of accessing
metadata files, (2)O-HDFSof accessingmetadata inmainmemory, and (3)A-HDFSof
accessingMetaDatabase. Figure 12 shows the experimental result of these three cases.
As shown in the figure, A-HDFS significantly outperforms two O-HDFS cases for all
four criteria. This is because A-HDFS can exploit the indexing scheme of RDBMS,
while O-HDFS does not. More precisely, O-HDFS spends much time because it has
no function of searching files or directories for a given criterion and, thus, it should
look at a list of all files or directories first and filter them based on the given criterion.
In contrast, A-HDFS is extremely fast since it uses RDBMS indexes, which are built
on important criteria. In summary, the third parties can efficiently access the metadata
in A-HDFS compared with O-HDFS by exploiting the fruitful indexing features of
RDBMS.

123



2678 H. Won et al.

Fig. 12 Comparison of third party metadata access times of A-HDFS and O-HDFS

Fig. 13 Memory usage comparison of A-HDFS and O-HDFS

5.4 Scalability evaluation

We finally evaluate the scalability of A-HDFS in the aspects of namespace manage-
ment. For this, we use a benchmark tool, LoadGenerator [35], which is a stand-alone
tool using the DFS client libraries to stress the NameNode. LoadGenerator creates a
number of threads, which run in a loop, randomly picking HDFS operations. We use
it to generate a large number of file and directory entries in NameNode for memory
usage comparison purposes.

Figure 13 shows the scalability test of using LoadGenerator, where we measure the
memory usage by varying the number of file (or directory) entries. We note that as the
number of entries increases, the amount of memory required in O-HDFS increases
rapidly while that of A-HDFS is fixed to a significantly small amount. This is because
O-HDFSmaintains the metadata of files or directories in the mainmemory of NameN-
ode, but A-HDFS does them in a separate RDBMS server. That is, O-HDFS uses the
main memory of NameNode to maintain all the metadata, and its memory usage
increases in proportion to the number of file entries. In contrast, A-HDFS moves the
memory overhead from NameNode to a separate system that manages MetaDatabase.
We believe that this approach of using MetaDatabase will increase the scalability of
an entire Hadoop cluster, as well as NameNode.

123



Moving metadata from ad hoc files to database tables for… 2679

Fig. 14 Operational performance comparison of A-HDFS and O-HDFS

We also perform a metadata access test using NNBench [36], which generates
metadata access requests for create, delete, open, and rename operations. For a fair
comparison, we install MetaDatabase inside NameNode for A-HDFS since the orig-
inal metadata of O-HDFS are resident in the main memory of NameNode. The test
results show that the average metadata access time of A-HDFS is 2.42 times longer
than that of O-HDFS, since it maintains the metadata in RDBMS rather than in the
main memory. Figure 14 shows the detailed experimental result of all four operations.
As shown in the figure, A-HDFS is 1.67 times longer than O-HDFS in create files,
2.44 times longer in delete files, 2.62 times longer in open files, and 2.95 times longer
in rename files. This is an obvious result due to the use ofMetaDatabase. Note that, for
each operation, we need to access the metadata, which are in the main memory in O-
HDFS but in MetaDatabase tables in A-HDFS. Accordingly, the memory access time
in O-HDFS is evidently shorter than the RDBMS access time in A-HDFS. However,
this performance degradation can be significantly reduced by optimization techniques
such as (1) adopting a high-performance main memory RDBMS, (2) optimizing the
database operations based on cluster configuration, and (3) caching/prefetching mech-
anism. However, this optimization is a separate research issue, and we leave it as a
further study. Moreover, in practice, the metadata access does not incur a performance
problem since a metadata access request leads to a large number of subsequent data
access requests due to the write-once-read-many principle [38]. For example, to pro-
cess a 1 TB data file of block size 128 MB, a client accesses NameNode just once for
retrieving the metadata, but it subsequently accesses DataNodes more than 8192 times
for retrieving the actual data. By this difference in metadata and data access requests,
we believe that the overhead of handling metadata access requests in A-HDFS can be
negligible in a practical big data cluster.

6 Conclusions and future work

In this paper, we presented a new metadata management scheme based on RDBMS
for ensuring that the existing HDFS improves its stability, availability, and scalability.
Using this scheme, we proposed the A-HDFS framework. The major contributions of
this paper can be summarized as follows. First, we clearly defined five problems in
the current HDFS and presented their concrete solutions using three requirements of
robustness, availability, and scalability. Second, to satisfy the three requirements, we

123



2680 H. Won et al.

introduced an overall architecture of A-HDFS and re-constructed the internal com-
ponents of (primary) NameNode and MetaManager based on the real source codes.
Third, by the implementation of A-HDFS and its experimental evaluation, we con-
firmed that the proposed system worked correctly with the enhanced functions. To our
best knowledge, this is the first attempt to lay the groundwork for extending HDFS
application fields by improving its functions instead of its performance. We think
that this is a promising result ensuring HDFS provides its stability, availability, and
scalability.

As a future work, we will investigate the performance improvement for the inte-
grated MetaDatabase of A-HDFS. In particular, we will design a new metadata
management system exploiting the in-memory technology for a more stable and fast
MetaDatabase. Furthermore, we plan to develop a functionally improved Hadoop sys-
tem by integrating A-HDFS and Multitenant YARN [10].

Acknowledgements This work was partly supported by the National Research Foundation of Korea
(NRF) grant funded by Korean Government (MSIP) (No. 2016R1A2B4015929). This work was also partly
supported by ICT R&D program of MSIP/IITP [B0101-16-0233, Smart Networking Core Technology
Development] and [R7117-16-0214, Development of an Intelligent Sampling and Filtering Techniques for
Purifying Data Streams].

References

1. Apache Hadoop. http://hadoop.apache.org. Accessed 26 Mar 2017
2. Vavilapalli VK,MurthyAC, Douglas C, Agarwal S, KonarM, Evans R, Graves T, Lowe J, ShahH, Seth

S, Saha B, Curino C, O’Malley O, Radia S, Reed B, Baldeschwieler E (2013) Apache Hadoop YARN:
yet another resource negotiator. In: Proceedings of the 4th Annual Symposium on Cloud Computing,
Santa Clara, Article No. 5

3. Shvachko K, Kuang H, Radia S, Chansler R (2010) The hadoop distributed file system. In: Proceedings
of the 26th IEEE Symposium on Mass Storage Systems and Technologies, Lake Tahoe, pp 1–10

4. Dean J, Ghemawat S (2004) MapReduce: simplified data processing on large clusters. In: Proceedings
of the 6th Symposium on Operating Systems Design and Implementation, San Francisco, pp 137–149

5. Ghemawat S, Gobioff H, Leung S (2003) The Google file system. In: Proceedings of the 9th ACM
Symposium on Operating Systems Principles, Lake George, pp 29–43

6. Kohi J, Neuman C (1993) The Kerberos Network Authentication Service (V5), RFC1510
7. Dean J, Ghemawat S (2010) MapReduce: a flexible data processing tool. Commun ACM 53(1):72–77
8. WonHS,NguyenMC (2015)Multitenant Hadoop across geographically distributed data centers. Strata

+ Hadoop World, Singapore, Oral Presentation
9. Elmasri R, Navathe SB (2015) Fundamentals of database systems, 6th edn. Pearson

10. Won HS, Nguyen MC, Gil MS, Moon YS (2015) Advanced resource management with access control
for multitenant Hadoop. J Commun Netw 17(6):592–601

11. IBM Open Platform with Apache Hadoop. http://www-03.ibm.com/software/products/en/
ibm-open-platform-with-apache-hadoop. Accessed 26 Mar 2017

12. Apache Hadoop on Amazon EMR. https://aws.amazon.com/elasticmapreduce/details/hadoop.
Accessed 26 Mar 2017

13. Cloudera Enterprise with Apache Hadoop. http://www.cloudera.com/products/apache-hadoop.html.
Accessed 26 Mar 2017

14. HortonworksData PlatformwithApacheHadoop. http://hortonworks.com/hdp.Accessed 26Mar 2017
15. Apache Hadoop for the MapR Converged Data Platform. https://www.mapr.com/products/

mapr-distribution-including-apache-hadoop. Accessed 26 Mar 2017
16. Cassandra. http://cassandra.apache.org. Accessed 26 Mar 2017
17. Ceph. http://ceph.com. Accessed 26 Mar 2017
18. Lustre. http://lustre.org. Accessed 26 Mar 2017

123

http://hadoop.apache.org
http://www-03.ibm.com/software/products/en/ibm-open-platform-with-apache-hadoop
http://www-03.ibm.com/software/products/en/ibm-open-platform-with-apache-hadoop
https://aws.amazon.com/elasticmapreduce/details/hadoop
http://www.cloudera.com/products/apache-hadoop.html
http://hortonworks.com/hdp
https://www.mapr.com/products/mapr-distribution-including-apache-hadoop
https://www.mapr.com/products/mapr-distribution-including-apache-hadoop
http://cassandra.apache.org
http://ceph.com
http://lustre.org


Moving metadata from ad hoc files to database tables for… 2681

19. OneFS. http://www.emc.com/en-us/storage/isilon/onefs-operating-system.htm. Accessed 26 Mar
2017

20. Tracey D, Sreenan C (2013) A holistic architecture for the internet of things, sensing services and big
data. In: Proceedings of the 13th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing, Delft, pp 546–553

21. Anderson JW, Kennedy KE, Ngo LB, Luckow A, Apon AW (2014) Synthetic data generation for the
internet of things. In: Proceedings of 2014 IEEE International Conference on Big Data, Washington,
DC, pp 171–176

22. Hromic H, Phuoc DL, Serrano M, Antonic A, Zarko IP, Hayes C, Decker S (2015) Real time analysis
of sensor data for the internet of things by means of clustering and event processing. In: Proceedings
of 2015 IEEE International Conference on Communications, London, pp 685–691

23. Rathore MM, Ahmad A, Paul A (2015) The internet of things based medical emergency management
using Hadoop ecosystem. In: Proceedings of IEEE Sensors, Busan, pp 1–4

24. White T (2015) Hadoop: The Definitive Guide, 4th edn. OReilly Media
25. Liu X, Han J, Zhong Y, Han C, He X (2009) Implementing WebGIS on Hadoop: a case study of

improving small file I/Operformance onHDFS. In: Proceedings of 2009 IEEE InternationalConference
on Cluster Computing and Workshops, New Orleans, pp 1–8

26. Zhang J, Wu G, Hu X,Wu X (2012) A distributed cache for Hadoop distributed file system in real-time
cloud services. In: Proceedings of the 13th ACM/IEEE International Conference on Grid Computing,
Beijing, pp 12–21

27. Lu X, Islam NS, Wasi-ur-Rahman M, Jose J, Subramoni H, Wang H, Panda DK (2013) High perfor-
mance design of Hadoop RPC with RDMA over InfiniBand. In: Proceedings of the 42nd International
Conference on Parallel Processing, Lyon, pp 641–650

28. He H, Du Z, Zhang W, Chen A (2016) Optimization strategy of Hadoop small file storage for big data
in healthcare. J Supercomput 72(10):3696–3707

29. Tanenbaum AS (1992) Modern Operating Systems. Prentice-Hall, Upper Saddle River
30. Rabkin A, Katz RH (2013) How Hadoop Clusters Break. IEEE Softw 30(4):88–94
31. Cohen JC, Acharya S (2014) Towards a trusted HDFS storage platform: mitigating threats to Hadoop

infrastructures using hardware-accelerated encryption with TPM-rooted key protection. J Inf Secur
Appl 19(3):224–244

32. Borthakur D, Gray J, Sarma JS,MuthukkaruppanK, Spiegelberg N, KuangH, RanganathanK,Molkov
D, Menon A, Rash S, Schmidt R (2011) Apache Hadoop goes realtime at Facebook. In: Proceedings
of International Conference on Management of Data, ACM SIGMOD, Athens, pp 1071–1080

33. Hua X, Wu H, Li Z, Ren S (2014) Enhancing throughput of the Hadoop distributed file system for
interaction-intensive tasks. J Parallel Distrib Comput 74(8):2770–2779

34. Neuman BC, Tso T (1994) Kerberos: an authentication service for computer network. IEEE Commun
Mag 32(19):33–38

35. Hairong Kuang synthetic load generator for NameNode testing. https://issues.apache.org/jira/browse/
HADOOP-3992. Accessed 26 Mar 2017

36. Mukund Madhugiri NNBench for NameNode testing. https://issues.apache.org/jira/browse/
HADOOP-2000. Accessed 26 Mar 2017

37. HDFS Federation. https://hadoop.apache.org/docs/r2.4.1/hadoop-project-dist/hadoop-hdfs/
Federation.html. Accessed 26 Mar 2017

38. HDFS Architecture. https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/
HdfsDesign.html. Accessed 26 Mar 2017

39. Organizations Powered by Apache Hadoop. https://wiki.apache.org/hadoop/PoweredBy. Accessed 26
Mar 2017

40. Held G (2010) A practical guide to content delivery network, 2nd edn. CRC Press, Boca Raton

123

http://www.emc.com/en-us/storage/isilon/onefs-operating-system.htm
https://issues.apache.org/jira/browse/HADOOP-3992
https://issues.apache.org/jira/browse/HADOOP-3992
https://issues.apache.org/jira/browse/HADOOP-2000
https://issues.apache.org/jira/browse/HADOOP-2000
https://hadoop.apache.org/docs/r2.4.1/hadoop-project-dist/hadoop-hdfs/Federation.html
https://hadoop.apache.org/docs/r2.4.1/hadoop-project-dist/hadoop-hdfs/Federation.html
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html
https://wiki.apache.org/hadoop/PoweredBy

	Moving metadata from ad hoc files to database tables for robust, highly available, and scalable HDFS
	Abstract
	1 Introduction
	2 Related work
	2.1 Apache Hadoop
	2.2 Metadata management in HDFS

	3 Problem and requirement analysis
	4 RDBMS-based metadata management for A-HDFS framework
	4.1 Overall architecture
	4.2 Relational schema for HDFS metadata
	4.3 A-HDFS with RDBMS-based MetaDatabase
	4.3.1 Step 1: RDBMS-based metadata writing process
	4.3.2 Step 2: RDBMS-based metadata reading process

	4.4 Enhancement analysis of A-HDFS

	5 Experimental evaluation
	5.1 Experimental setup
	5.2 Robustness evaluation
	5.3 Availability evaluation
	5.4 Scalability evaluation

	6 Conclusions and future work
	Acknowledgements
	References




