The Journal of Supercomputing (2019) 75:6129-6157
https://doi.org/10.1007/s11227-019-02813-w

=

Check for
updates

Indexable sub-trajectory matching using multi-segment
approximation: a partition-and-stitch framework

Jae-Jun Yoo' - Woong-Kee Loh?® - Kyu-Young Whang'

Published online: 15 March 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract

With advances in base technologies for moving objects, many studies have been con-
ducted on the construction of databases of the trajectories of moving objects, includ-
ing the diverse applications related to the trajectories. Most previous studies deal with
whole trajectory matching, which finds the trajectories 7 in the database similar to a
given query trajectory Q ‘as a whole.” However, we often want to find those T contain-
ing the sub-trajectories T, (C T) that are similar to Q. This problem is known as sub-
trajectory matching and is more complicated than whole trajectory matching since the
query trajectory Q can be of any length and the matching sub-trajectories 7, can be at
any position in the data trajectories 7. In this paper, we present a novel indexing-based
sub-trajectory matching algorithm using multi-segment approximation. Our algorithm
partitions a data trajectory into multiple component segments and then stores the
individual segments in an index. The query trajectory is also partitioned into its com-
ponent segments, and the search for similar segments for each query segment is effi-
ciently performed using the index. The sub-trajectories similar to the query trajectory
are reconstructed by our ‘stitching’ algorithm using the individual segments retrieved
from the index. Our stitching algorithm is novel and innovative in the sense that it
facilitates segment-wise partitioning and indexing of data trajectories. Without stitch-
ing, only trajectory-wise operations would be affordable, which causes severe storage
space overhead and degradation in search performance. Our study is the first that uses
indexing in sub-trajectory matching. We define a (multi-segment) trajectory similar-
ity measure that extends a widely used single-segment similarity measure proposed
by Lee et al. (in: Proceedings of ACM SIGMOD international conference on man-
agement of data (SIGMOD), 2007; in: Proceedings of IEEE international conference
on data engineering (ICDE), 2008; Proc VLDB Endow (PVLDB) 1(1):1081-1094,
2008) by using the Hausdorff distance. We perform extensive experiments to compare
our method with EDS (Xie, in: Proceedings of ACM SIGMOD international confer-
ence on management of data (SIGMOD), 2014), which has been proved to outper-
form all representative point-based measures in terms of accuracy and performance.

This work was supported by the National Research Foundation of Korea (NRF) grant funded by
Korean Government (MSIT) (No. 2016R1A2B4015929).

Extended author information available on the last page of the article

@ Springer

6130 J-). Yoo etal.

The accuracy of our similarity measure is better than EDS by up to 52.0%, and our
algorithm significantly outperforms that using EDS by up to 22,543 times. The per-
formance of our algorithm is linearly scalable in the size of the database, which is an
essential property for handling large-scale databases.

Keywords Sub-trajectory matching - Multi-segment approximation - Partition-and-
stitch - Segment-wise indexing

1 Introduction

With advances in base technologies for moving objects such as global positioning
system (GPS), mobile computing/communications, and mass storage devices, many
studies have been performed on the collection and utilization of a variety of infor-
mation from moving objects. In particular, studies on tracing, analyzing, and stor-
ing the location data of moving objects in a database, including the application of
such data to location-based services (LBS), are being actively conducted [16, 26,
32]. A sequence of locations of a moving object obtained for a certain time period
constitutes a trajectory. There are diverse applications of trajectories in transporta-
tion optimization, scientific analysis applications, and sports analyses [2, 32]. In our
study, the core operation involves finding similar trajectories.

Many previous studies represent a trajectory 7" as a sequence of points, 1.e.,
T=(@p,,...,p,), where p,, ..., p, are the d-dimensional points sampled at a
sequence of time points. We refer to this representation as point approximation.
There are various similarity measures for point approximation such as Dynamic
Time Warping (DTW) [29], Longest Common Sub-Sequence (LCSS) [25], Edit Dis-
tance on Real sequence (EDR) [7], Edit distance with Real Penalty (ERP) [6], and
DISSIM [12]. These measures exhibit a drawback such as the possibility of return-
ing different similarity values even for the trajectories obtained from the same route
depending on the moving speed, sampling rate, and sampling phase, which incurs
inaccurate search results [7, 16, 23, 27, 32].

Several recent studies represent a trajectory 7" as a sequence of line segments,
ie., T =(t,...,t), where t; is the line segment connecting two points p, and
p, (1 £u < v < n),and use ‘all continuous points’ on each segment. We refer to this
representation as segment approximation. Figure | illustrates the difference between
two approximations. For an actual trajectory 7 shown by the dashed line, T is rep-
resented as 7' = (py,....pg) and T = (¢, ..., 15) using point and segment approxi-
mations, respectively. As we can observe in the figure, segment approximation bet-
ter represents the actual trajectory and therefore can contribute to improve search

D2 be Ps
P1 - D3 : Pe

t
tl t2 t3 4
T

Fig.1 Representation of a trajectory T using point and segment approximations

@ Springer

Indexable sub-trajectory matching using multi-segment... 6131

accuracy [16, 23, 27]. Lee et al. [16—18] solved the clustering, outlier detection, and
classification problems using segment approximation. Ranu et al. [23] proposed a
similarity measure called Edit Distance with Projections (EDwP) using segment
approximation and solved the k-nearest neighbor (k-NN) problem based on the
measure.

The point-based approach represents a trajectory 7 as a sequence of geograph-
ical points 7, ...,#, sampled at certain time points from an actual trajectory, i.e.,
T =(t,...,t). Any information on the actual trajectory between two adjacent
points #; and ¢, | (1 <i < k) is missing. Segment-based approach forms a line seg-
ment L; between two adjacent points #; and ¢, | to better simulate the actual trajec-
tory. The line segment L; could be regarded as an interpolation of the actual trajec-
tory between two points ¢; and ¢, ;. For similarity matching, while the point-based
approach uses only the sampled points and often incurs inconsistent matching
results (see Table 1) [7, 16, 23, 27, 32], the segment-based approach uses not only
the sampled points but also all the points on the segments to improve matching
accuracy [20, 23]. Even when actual trajectories are sampled at very small inter-
vals, segment-based approach uses more information than point-based approach and
therefore demonstrates better accuracy. Such dense sampling also increases storage
overhead. Therefore, it is efficient to use interpolation segments between a small
number of sampled points.

Most previous studies, including the one by Ranu et al. [23], have dealt with
whole trajectory matching, which finds the trajectories 7 in a database similar to
a given query trajectory Q ‘as a whole.” However, we often prefer finding those
T that contain the sub-trajectories T, (C T) similar to Q. This problem is called

Table 1 Shortcomings of

) X Measure Speed variation = Sampling Phase Additional
previous point-based measures

rate variation variation parameters

DTW v v
LCSS v v v
EDR 4 v v
ERP v v v
DISSIM v v

Fig.2 Comparison of two simi-
lar trajectory matching .
T |

(b) Sub-trajectory matching.

@ Springer

6132

J-J.Yooetal.

unnamed iEoa

Donna

J I"_';-

(a) Query trajectory @ (red) and its matching trajectories (black).

(b) Similar segments in query and matching trajectories.

Fig. 3 Example of sub-trajectory matching (color figure online)

sub-trajectory matching. For instance, consider a hurricane that occurred recently,
we may prefer to find past hurricanes with trajectories similar to that of the recent
one to predict its future course. In this case, the trajectory of the recent hurricane is
‘partially’ similar to those of the past and not as a whole. Figure 2 presents the dif-

ference between the two matching problems.

Figure 3a demonstrates an example of sub-trajectory matching that finds the hur-
ricanes that traversed through Florida and Cuba. The query trajectory Q, indicated
by a red line, was extracted from hurricane ‘Irma,” which struck both locations in
September 2017. The data and result trajectories were denoted by light gray and
black lines, respectively. The result presents the hurricanes Irma (2017), Donna
(1960), and an unnamed one (1899), which have passed through Florida and Cuba.

@ Springer

Indexable sub-trajectory matching using multi-segment... 6133

Figure 3b presents a detailed query and the data trajectories consisting of multiple
segments obtained by enlarging the small dashed box in Fig. 3a. The dashed arrows
indicate pairs of ‘similar’ segments' whose distances are not larger than a pre-spec-
ified threshold e, which is set as the horizontal width of Florida. Data segments
matching with query segments are shown in blue. Note that, in the method that we
proposed in Sect. 4, a query segment can be similar to one or more data segments,
and vice versa.

Since query trajectories can assume any length and the matching sub-trajectories
can be at any position in data trajectories, sub-trajectory matching is more compli-
cated than whole trajectory matching, and the latter is considered a simple form of
the former. In whole trajectory matching, since the query trajectory Q is compared
with a whole trajectory 7, the distance between Q and T is computed only once for
each data trajectory 7. On the contrary, in sub-trajectory matching, since Q is com-
pared with all possible sub-trajectories 7, in 7, the number of distance compu-
tations is O(n?) for each T, where n is the average length of data trajectories [27].
In addition, there have been very few studies that address the matching problem.
Xie [27] proposed a segment-based similarity measure called Edit Distance on Seg-
ment (EDS) for sub-trajectory matching. Although EDS has demonstrated better
performance than the previous point-based measures in sub-trajectory matching,
the algorithm using EDS is hardly indexable by nature and therefore cannot achieve
improvements in performance. We present further discussion on EDS in Sect. 2.

In this paper, we present an indexing-based sub-trajectory matching algorithm
using multi-segment approximation. Our algorithm partitions the multi-segment
data trajectories into their component segments and then independently stores each
individual segment in an index—even those from the same trajectory. The query
trajectory is also partitioned into its component segments, and the search for similar
segments for each query segment is efficiently performed using the index. The data
sub-trajectories similar to the query trajectory are reconstructed by our ‘stitching’
algorithm using the individual segments retrieved from the index.

This partition-and-stitch framework for multi-segment sub-trajectory matching
has never been explored in the literature. In this study, we define a multi-segment
trajectory similarity measure that extends a single-segment similarity measure by
using the Hausdorff distance. The Hausdorff distance facilitates segment-wise pro-
cessing of trajectories; it enables segment-wise partitioning, indexing, and stitch-
ing—Ileading to significant improvements in search accuracy and performance. We
adopt the widely used measure by Lee et al. [16—18] as a segment similarity meas-
ure. Although Lee et al. represented a trajectory as a sequence of multiple segments,
they defined the measure only for individual segments (rather than trajectories), and
therefore the target of their algorithms comprises individual segments; e.g., TRA-
CLUS [16] forms clusters of similar segments. We extend this measure to handle
multi-segment trajectories.

Our stitching algorithm is novel and innovative in the sense that (1) it facili-
tates segment-wise partitioning and indexing of data trajectories (see Sect. 4), and

I Some arrows are omitted to avoid clutter.

@ Springer

6134 J-). Yoo etal.

T

(a) Representation of a trajectory using single-segment
and multi-segment approximations.

T

(b) Representation of a trajectory with MBRs of the whole
trajectory and of its component segments.

Fig.4 Advantages of using multi-segment approximation (color figure online)

(2) it is composed of only a few simple bitmap operations and therefore incurs
very marginal overhead in finding all similar sub-trajectories (see Sect. 5). With-
out our stitching algorithm, since our trajectory similarity measure (as well as all
other previous measures) is complicated and does not satisfy triangular inequal-
ity, it can be extremely challenging to design trajectory-wise efficient indexing
and searching algorithms. Even when such algorithms are feasible, we must build
an index that contains all possible sub-trajectories extracted from all trajectories
in the database. The complexity of the index is O(Dn?), where D is the number
of data trajectories and n is the average number of segments in a data trajectory.
This evidently results in severe storage space overhead and search performance
degradation. Our stitching algorithm enables reconstruction of similar sub-trajec-
tories from similar segments and therefore makes simple and efficient segment-
wise indexing and searching feasible.

Figure 4 demonstrates the advantages of using multi-segment approximation.
Figure 4a compares the representations of a trajectory 7 by a single segment ¢,
(red) and a sequence of multiple segments (¢, ...,7,;). The multi-segment repre-
sentation is closer to the actual trajectory and therefore improves search accuracy.
Figure 4b compares the representations of a trajectory 7 with minimum bounding
rectangles (MBRs), where MBRs R, (red) and R,,...,R, (blue) are the smallest
rectangles containing segments ¢, and ¢, ..., #4, respectively. We can observe that
R, takes up additional unnecessary space than the space covered by R,,...,R,.

@ Springer

Indexable sub-trajectory matching using multi-segment... 6135

Therefore, R, incurs more false positives and degrades search performance. The
indexing element, called vantage descriptor for k-NN search using EDwP [23], is
defined for a whole data trajectory rather than its component segments, resulting
in search inefficiency. In our algorithm, we can set a limit A such that any segment
longer than A must be divided into several segments shorter than A, reducing the
size of MBRs and false positives. This is made possible through our trajectory
similarity measure and our stitching algorithm that facilitates many-to-many (i.e.,
not necessarily one-to-one) segment correspondences between a data sub-trajec-
tory and the query trajectory (see Sect. 3).
The contributions of this paper are summarized as follows:

e We present a partition-and-stitch framework for sub-trajectory matching. In this
framework, we partition the trajectory into individual segments and employ
indexing to facilitate fast search for matching segments. To the extent of our
knowledge, the ‘indexing-based’ approach to ‘sub-trajectory matching’ is novel.
We reconstruct a matching sub-trajectory from individual matching segments
using our innovative ‘stitching’ algorithm based on simple and fast matrix opera-
tions. We formally prove that our stitching algorithm is sound and complete, i.e.,
it produces neither false positives nor false negatives.

e We define a new similarity measure between two multi-segment trajectories
using the Hausdorff distance [21], which is widely used in the field of pattern
recognition [5]. The Hausdorft distance effectively handles the multi-segment
nature of trajectories by decomposing the distance between trajectories into
those between individual segments (not necessarily one-to-one correspondence)
in the trajectories. We employ the similarity measure by Lee et al. [16—18] for
finding similar (individual) segments in our algorithm.

e We perform extensive experiments using real and synthetic datasets to evaluate
our similarity measure and sub-trajectory matching algorithm. We compare our
similarity measure with EDS, which has demonstrated to be superior over all
representative point-based measures in terms of accuracy and performance [27].
Evidently, the accuracy of our similarity measure is better than that of EDS by up
to 52.0%, and our algorithm significantly outperforms that using EDS by up to
22,543 times. The performance of our algorithm is linearly scalable in the size of
the database, which is an essential property for handling large-scale databases.

This paper is organized as follows: Sect. 2 discusses existing trajectory similarity
measures and matching algorithms. Section 3 formally defines the sub-trajectory
matching problem based on multi-segment approximation, and Sect. 4 presents our
indexing-based algorithm for solving the matching problem in detail. Section 5 eval-
uates our algorithm through a series of experiments. Finally, Sect. 6 concludes this

paper.

@ Springer

6136 J-J.Yooetal.

2 Related work

In this section, we discuss previous similar trajectory measures and matching algo-
rithms. Many previous studies presented various similarity measures using point
approximation including DTW [29], LCSS [25], EDR [7], ERP [6], and DISSIM
[12]. These measures have a drawback that there exists a possibility of returning dif-
ferent similarity values even for trajectories obtained from the same route depend-
ing on moving speed, sampling rate, and sampling phase [7, 16, 23, 27, 32]. Some
measures require additional threshold parameters [23], which may also cause dis-
crepancies in similarity values. Table 1 summarizes the factors that may cause dis-
crepancies for each similarity measure [23]. For example, DTW may return different
similarity values for trajectories with different sampling rates and phases. Pelekis
et al. [22] proposed a temporal-constrained sub-trajectory clustering algorithm
using an index structure called Representative Trajectory Tree (ReTraTree), which
supports incremental grouping of similar sub-trajectories. The trajectory clustering
algorithms that use point approximation are summarized in [30].

Segment approximation can overcome the shortcomings of point approximation;
in addition to sampled points, segment approximation uses ‘all continuous points’ on
the line segments to improve accuracy. Lee et al. [16—18] defined a similarity meas-
ure dist(z;, 7;) between two line segments 7; and 7;. Our similarity measure is an exten-
sion of dist() combined with the Hausdorff distance and is applicable to multi-seg-
ment (sub-)trajectories. Our similarity measure overcomes all the shortcomings in
Table 1 since it uses all continuous points as well as end points on the line segments
and does not require any additional parameter for similarity computation. Ranu et al.
[23] presented a segment-based measure EDwP and demonstrated through experi-
ments that it is robust against all factors in Table 1 and exhibits higher accuracy than
the previous point-based measures. Mao et al. [20] proposed a similarity measure
called Segment-based Dynamic Time Warping (SDTW), which adopts point-segment
distance to reduce discrepancies caused by the factors in Table 1 for whole trajec-
tory matching, and demonstrated that its accuracy was improved by about 86% over
EDR. Xie et al. [28] proposed a distributed framework for whole trajectory match-
ing over a large trajectory database. In the framework, the segments extracted from
all data trajectories are partitioned according to their spatial locality, and each parti-
tion is stored in a local multidimensional index. The global result of similar whole
trajectory search is constructed by merging local search results.

Many similar trajectory matching algorithms have been proposed that use the
measures mentioned above. The k-NN algorithms using EDR, DISSIM, EDwP, and
LCSS have been proposed in [7, 12, 23, 25]. Since the measures do not satisfy trian-
gular inequality, these algorithms presented new indexing or pruning methods. Chen
et al. [7] presented three pruning methods using mean value Q-grams, near triangle
inequality, and trajectory histogram to accelerate the computation of EDR whose
complexity is O(mn), where m and n are the lengths of the two trajectories. Ranu
et al. [23] presented a new index structure called TrajTree, which is analogous to the
R-tree, and illustrated that their indexing-based algorithm using EDWP is superior
to the ones using LCSS, EDR, and DISSIM in terms of accuracy and performance.

@ Springer

Indexable sub-trajectory matching using multi-segment... 6137

All these algorithms deal with whole trajectory matching. A straightforward method
of solving the sub-trajectory matching problem using these algorithms involves the
extraction and comparison of all possible sub-trajectories from all data trajectories,
and the complexity is O(Dn?), where D is the number of data trajectories and n is
their average length (the number of comprising points/segments). Even though we
adopt an indexing method such as the TrajTree [23], we must build an index for
every possible length of the query trajectory, which causes severe storage and man-
agement overhead. In this paper, we present an algorithm that can handle query tra-
jectories of any length with only one multidimensional index.

Lee et al. [16—18] proposed three algorithms using the dist() measure: a cluster-
ing algorithm TRACLUS [16], which is a variation of a density-based clustering
algorithm DBSCAN [11], an outlier detection algorithm TRAOD [17], and a classi-
fication algorithm TraClass using region-based and trajectory-based clustering [18].
While these algorithms handle only segments (e.g., TRACLUS forms clusters of
similar segments), our algorithm handles multi-segment (sub-)trajectories.

Alamri et al. [1] proposed a taxonomy of moving object queries in five per-
spectives, namely location, motion, object, temporal, and patterns perspectives, to
address many features of moving objects. Trajectory queries are included in the tem-
poral perspective, which concerns the temporal aspects and characteristics of mov-
ing objects. Alamri et al. also introduced a few data structures for trajectory queries
such as TB-tree (Trajectory Bundle tree) and STR-tree (Spatio-Temporal R-tree).

Buchin et al. [4] proposed an algorithm that finds a pair of similar sub-trajectories
from two given trajectories. Given a large-scale trajectory database D and a query
trajectory Q, the algorithm must sequentially compare Q with all data trajectories in
D, which results in severe performance overhead. Hung et al. [13] proposed a trajec-
tory pattern mining framework that fills in ‘silent durations,’ i.e., time durations with
no data points, by clustering and merging the trajectories consisting of different data
points sampled from similar routes. Xie [27] presented a segment-based similarity
measure EDS for sub-trajectory matching. EDS between two (sub-)trajectories is
defined as the minimum cost of a series of segment-wise transformation. The trans-
formation between two segments is defined as changing (i.e., displacing, stretching,
and rotating) from one segment to another. Since the transformation is different for
every pair of trajectories, the matching algorithm using EDS is hardly indexable by
nature and cannot achieve high-performance improvement. We demonstrate that our
matching algorithm dramatically outperforms that using EDS (see Sect. 5).

Ding et al. [8] proposed an Apache Spark-based distributed platform named
UlTraMan for managing and analyzing a large dataset of trajectories in a unified
manner. While conventional trajectory collection, storage, transformation, and que-
rying were carried out in a series of respective non-compatible systems, overall tra-
jectory processing and analysis in UlTraMan are pipelined without unnecessary data
copying and serialization. Shang et al. [24] proposed a distributed in-memory trajec-
tory analysis system named DITA by extending Apache Spark SQL. Although they
claimed that DITA supports most of trajectory similarity measures, most of algorithm
descriptions and experimental evaluations in [24] were made using DTW, which may
return inconsistent similarity results as shown in Table 1. Both UlTraMan and DITA
dealt with only whole trajectory matching without the notion of segments.

@ Springer

6138 J-). Yoo etal.

Table 2 Summary of notation

Notation Description

T, 0 Data and query trajectories

Tow A sub-trajectory in T

Iy q; Segments in T and Q

17, 101 The number of segments in 7 and Q

Toup = (tz,t3,t4)

T IT| =5
/_._\.
0 lQl =2

Fig. 5 Example of using notations

There have been a few approaches for privacy preservation in trajectory data-
bases. Dong and Pi [9] proposed an approach named TOPF promoting not only pri-
vacy but also usability of published trajectory databases; TOPF removes infrequent
paths and forms trajectory groups satisfying k-anonymity based on frequent paths.
Kaplan et al. [15] showed that ‘secure’ trajectory query services are not robust
against known-sample attacks; given a set K of known trajectories 7, by querying
the distance of target trajectory X or k-nearest trajectories from 7, one can infer pri-
vacy information such as specific locations and timestamps about X. Mao et al. [19]
proposed a scalable de-centralized outlier detection approach over distributed trajec-
tory streams. Their definition on outlier is based on ‘feature-grouping’ which con-
siders various features such as relative speed rather than spatial proximity.

3 Problem definition

In this section, we formally define sub-trajectory matching problem. Table 2 sum-
marizes the notation used in this paper, and Fig. 5 presents an example of the nota-
tions in Table 2 used for two trajectories T and Q. In the figure, the data trajectory
T and the query trajectory Q consist of I71 = 5 and IQl = 2 segments and are repre-
sented as T = (1, ..., t5) and Q = (g,, g,), respectively. The sub-trajectory T, com-
posed of three segments in 7 is represented as T, = (f5, 13, 14).

Note that we do not impose any restriction on segment partitioning. In other
words, regardless of whether a segment is made only between two adjacent points
in the trajectory (as in this paper) or it is made to represent two or more adjacent
points as in [16—18], our similarity measure and sub-trajectory matching algorithm
are still valid. Our similarity measure between two (sub-)trajectories is defined using
the Hausdorff distance [5] based on the distance a’seg() between segments as follows:

@ Springer

Indexable sub-trajectory matching using multi-segment... 6139

Definition 1 For any two trajectories T = (#;,1,, ..., t,) and Q = (41,45, ---» q,)
their Hausdorff distance is defined as:

Dy(T. Q) = max { min {dc,(1;.)1 € THg; € 0}, 0

where d,(#;, g;) is the distance between two segments #; (i = 1..n) and ¢, (j = 1..m)
(explained later in this section).]

Note that two trajectories 7" and Q may have different lengths in Definition 1 (i.e.,
n # m). In general, it does not always hold that D (T, Q) = Dy (Q, T) for arbitrary T
and Q [14]. Therefore, we define the distance D() between T and Q as follows:

Definition 2 The distance between two trajectories 7 and Q is defined as:

D(T, Q) = max {Dy(T,0),Dy(0.T)}, 2)

where Dy() 1s defined in Eq. (1). [l
Before defining the distance d.,() between two segments, we define base dis-
tance dg, () as follows:

Definition 3 For any two segments s, and s,, the base distance dy,((sy,s,) is
defined as the shortest distance between any two points contained in each segment
as follows:

dyee 0(5158,) = min {d(Pl’P2)|P1 €s5,P € Sz}a 3)

where p; and p, are the points contained in s; and s,, respectively, and d() is the
Euclidean distance between the points.]

We demonstrate in the next section that our sub-trajectory matching algorithm
that uses the base distance d, (() is sound and complete. We also illustrate that
for any distance d,() that satisfies d,(s;, ;) = dyeg (s;, 5;) for any two segments
s; and s;, our algorithm is sound and complete (Lemma 1 and Corollary 1). In this
paper, we use d,(s;, s;) = dist(s;, s;) as the distance between two segments s; and
s;, where dist() is defined by Lee et al. [16-18] and is a widely used measure for
the distance between two segments. We can easily illustrate that it always holds
that dy.,(s;,5;) = dgeg(s;55;) (see "Appendix”).

In this paper, two segments s, and s, whose distance d,(s;,s,) is less than or
equal to the search range e are called similar segments. The sub-trajectory match-
ing problem using the similarity measure mentioned above is formally defined as

follows:

Definition 4 (Sub-trajectory matching) Given a query trajectory Q and a

search range e, all sub-trajectories T, that satisfy the following equation in the

@ Springer

6140 J-). Yoo etal.

<---> similar segments

Filtered segment pairs: (q,, t,), (¢, t3), (¢2, t3), (¢2,)
Stitching result: 7., = (t,, 13, 1)

(a) Matching between data and query segments.

r &) '3 / 5

Tl__,-"//r r4

i ./4/ 1
¢ ax
(b) Indexing of data segments in form of MBRs.

Fig. 6 Example of sub-trajectory matching

trajectories 7; (1 < i < |D|) in the database D are returned as the result of sub-trajec-
tory matching:
{ Ti,sub

where D() is given in Definition 2.]

D(Q.T;y) < 6T €T, } 4)

T; g 18 called the similar sub-trajectory of Q. Note that two trajectories Q and

T; ., can have different lengths (i.e., numbers of segments) according to Definition 1.

Figure 6a presents an example of sub-trajectory matching; the sub-trajectory
similar to the given query trajectory Q is T;,, = (f,,13.14). In the figure, the bidi-
rectional dashed arrows indicate the matching segments similar to each other. We
can observe that Dy (Q, T,) < € and Dy(T;,, Q) < € according to Eq. (1) and
thus D(Q, T, ;) < € according to Eq. (2). Note that a segment in one trajectory
can match with two or more segments in the other trajectory. Figure 6b presents
MBRs for data segments in Fig. 6a; MBRs r, ..., r5 contains 7, ... , f5, respectively.
The data segments are handled in form of MBRs; MBRs are stored in the index and
returned as a search result. We discuss the details in the next section.

Our sub-trajectory matching algorithm returns only maximal sub-trajectories as
the search result. In Fig. 6, for example, Tisub = (15, 13) is also a similar sub-trajec-
tory. However, T, contains 7] . (i.e., 7] C T), and therefore, only T}, is
returned as a result of sub-trajectory matching against Q. The maximal sub-trajec-
tory is defined as follows:

@ Springer

Indexable sub-trajectory matching using multi-segment... 6141

Definition 5 (Maximal sub-trajectory) For a query trajectory Q, if there exists
no similar sub-trajectory 77, that properly contains a similar trajectory Ty, (i.e.,
T C T, Ty 1s defined as a maximal sub-trajectory. L]

Although Hausdorff distance is incorporated in our algorithm, any similar-
ity measure D(S,T) between two (sub-)trajectories S and T can be applica-
ble in our partition-and-stitch framework if there are functions F and d such that
D(S,T)=F, J{cAz'(sl-, 1)} and d(s;, 1) 2 dgeg o(s;5 1), Where s; and 7; are the segments
comprising S and 7, respectively, and d(s;, ;) is the distance between s, and 7.

Most of moving object applications require obtaining the same similarity value of
the trajectories with different speed, sampling rates, and sampling phases. For exam-
ple, the same sign languages should be accurately recognized as having the same
meaning in spite of different speed, sampling rates, and sampling phases. We show
in Sect. 5 that our similarity measure based on Hausdorff distance represents the
similarity between two (sub-)trajectories better than the previous measures includ-
ing DTW, LCSS, EDR, ERP, and EDS by comparing their accuracies using various
real and synthetic datasets.

4 MaTIS: an indexing-based multi-segment sub-trajectory matching
algorithm

In this section, we propose an efficient algorithm for solving the sub-trajectory
matching problem defined in the previous section. Our algorithm is an indexing-
based one that improves performance by dramatically reducing the number of can-
didate data trajectories to be compared with the query trajectory using a multidi-
mensional index. We call our algorithm as MaTIS (M ulti-segment sub-Trajectory
matching with Indexing and Stitching). MaTIS is composed of the indexing and
searching phases. The latter, in turn, consists of three sub-phases: index searching,
filtering, and stitching phases.

e Indexing phase All segments t; in all data trajectories 7 in the database D are
stored in a multidimensional index such as the R*-tree (see Sect. 4.1).

® Index searching phase For each segment g; in the query trajectory Q, all candi-
date segments 7, that are possibly within the ¢ distance from g; are retrieved using
the index. We prove that there is no false drop (false negative) in the set of candi-
date segments (see Sect. 4.2).

e Filtering phase For each candidate segment ¢, obtained in the index searching
phase, the actual distance d,(7;, g;) to the corresponding query segment g; is
computed, and those within € distance are returned (see Sect. 4.3).

e Stitching phase The sub-trajectories similar to Q are obtained by stitching contig-
uous segments in the same data trajectory returned during the filtering phase. We
formally prove that our stitching algorithm is sound and complete (see Sect. 4.4).

We use simple and conventional index construction and range search algorithms
for the indexing and index searching phases. As explained in Sect. 1, the use of

@ Springer

6142 J-). Yoo etal.

Fig.7 Spatial relationships
between a query segment and
an MBR

qj2

segment-wise algorithms, which are much more efficient than (sub-)trajectory-wise
algorithms, is made possible through our stitching algorithm. The stitching algo-
rithm itself also runs fast since it is composed of a few simple bitmap operations, as
seen in Sect. 5. Figure 6 demonstrates an example of filtering and stitching phases.
As a result of filtering, data segments 7, and 5 are found to be similar to query seg-
ment g;, and data segments 75 and 7, are found to be similar to query segment g,
(many-to-many correspondence among segments). By stitching these data segments,
we obtain T, = (1,, 13, 1;) as a maximal sub-trajectory.

4.1 Indexing phase

In the indexing phase, the data segments 7; extracted from all data trajectories 7 are
stored in a multidimensional index. Each data segment is stored in the R*-tree [3] in
the form of a minimum bounding rectangle (MBR) that contains the data segment.
In addition to the segment MBR, the ID of data trajectory 7 and the position of #; in
T are stored together in the index.

4.2 Index searching phase

In the index searching phase, all data segment MBRs within the given ¢ distance
from each segment g; are retrieved using the index built in the previous phase. The
distance between a segment and an MBR is formally defined in Definition 6. In
Fig. 7, for example, if the distance d from the query segment g;, to the MBR R is less
than or equal to €, R is returned. Since the internal and terminal nodes represent the
data region in the form of an MBR in the R*-tree, the distance computation between
the query segment and an MBR is recursively performed along the search path.

Definition 6 The distance between a segment s and an MBR R is defined as the
shortest distance between any two points contained in s and R as follows:

d(s, R) = min {d(p,,p,)|p; € 5,p, € R}, (5)
where p, and p, are arbitrary points contained in s and R, respectively, and d() is the
Euclidean distance.]

@ Springer

Indexable sub-trajectory matching using multi-segment... 6143

There are four spatial relationships between a query segment g; and an MBR R
as shown in Fig. 7: (1) ¢; and R never overlap (g;,), (2) g; and R overlap, but both
end points of g; reside out51de of R (g,), (3) g; and R overlap, and one end point of

res1des 1n51de of R (gj3), and finally (4) q; is contained in R (gj4)- In the case of di3
and Qs> where one or more end points of q; reside inside of R, the distance is 0 (< €).
In the case of g;; and g;,, however, the distances from both end points to R might be
greater than e. Therefore, for g;,, the shortest distance d should be computed from all
vertices of R, and for qjp» We must check whether it intersects with any side of R. For
a query segment g; whose spatial relationship with R is unknown, we must perform
both operations, i.e., computing the shortest distance from all vertices and checking
the intersection with any side.

To check whether the distance between a query segment g; and an MBR R is less
than e, we use a fast method that allows a small number of false alarms as follows.
First, a new MBR R, (designated by the dashed rectangle in Fig. 7) is computed by
extending all sides in R by € along all axes. We then check whether any end point of
the query segment is contained in R, as g;; and gj. Since the sides of R, are parallel
to the coordinate axes, it can be checked very quickly with a few inequality compari-
sons. If any end point is contained in R, R is returned as a similar MBR to g;. Next,
we check whether g; intersects with any side of R as g;; and g;,. Since the sides of
R, are parallel to the coordinate axes, this can also be done very quickly with a few
equation computations [10]. If g; intersects with any side of R,, R is regarded to be
closer than e from g; and returned as an MBR similar to g;. However, there are seg-
ments such as g;s in Fig. 7 that intersect with R, but their distance d from R is larger
than €. These false alarms are removed in the filtering phase.

Algorithm 1 summarizes this procedure, and Lemma 1 illustrates that there are
no falsely dropped MBRs (i.e., data segments) by Algorithm 1 for the base distance
dyeo 0() defined in Eq. (3) since the set of data segments returned by Algorithm 1
is a superset of those that could be obtained using Eq. (3). Corollary 1 demon-
strates that we can use Algorithm 1 for any distance d,() between segments that
satisfy dieo() 2 dyeo o). In the previous section, we mentioned that MaTIS uses
() = dist() by Lee et al. [16-18] and proved that d.,() > d., () for any two seg-

seg seg

ments (see “Appendix”).

Algorithm 1 Determination of similarity between a query segment and an

MBR.
Input: Query segment g;, data MBR R, and search range e
Output: true if d(g;, R) < ¢; false otherwise
1: Construct Re by extending each side of R by € along every axis;
for each end point p of ¢; do
if p resides within R, then return true;
end for
for each side S of R do
if q; intersects S then return true;
end for
Return false;

@ Springer

6144 J-J.Yooetal.

Lemma 1 Algorithm I produces no false drop for the base distance dy, (() between
segments in Eq. (3).

Proof For a segment ¢ and an MBR R containing a segment ¢ (# g), it always holds
that dseg’o(q, t) > d(q, R) and therefore dseg,o(q, t) < e = d(q,R) < e for any search
range €. Thus, it also holds that:

{tldyego(q: D) < €} C {tlt € R, d(q.R) < €} . (6)

Therefore, there is no false drop by Algorithm 1 for the base distance. O]
Corollary 1 Algorithm 1 produces no false drop for any distance d.,() between seg-
ments that satisfy dge,() 2 dgeg o0

Proof For any two segments g and 7, since it holds that d.. (g, 1) > dy, (g, 1), it also
holds that dseg(q, t) > d(q, R) for an MBR R containing ¢. Therefore, it holds that:

{1ldye(q.1) <€} C {t]t € R, d(q.R) < €}. 7

Therefore, there is no false drop by Algorithm 1 for d., (). O]

4.3 Filtering phase

For each MBR R obtained in the index searching phase, we compute the distance
dg() between the actual data segment in R and the corresponding query segment.
For each query segment g; and the data segments #; within actual distance € from
g;, all (¢;, g;) pairs are passed to the next phase.

4.4 Stitching phase

In the stitching phase, we find the maximal sub-trajectories T, that are similar
to the query trajectory Q using the (7;, g;) pairs obtained from the filtering phase.
Since the data segments that form a final similar sub-trajectory cannot be derived
from different data trajectories, the first task in this phase is to group (7;, g;) pairs
from the same data trajectory. This task can be easily performed by hashing or
sorting the ID of trajectories 7. The (#;, g;) pairs from the same data trajectory are
collected in the same hash bucket using the hash function on the trajectory ID.
To find the maximal sub-trajectories, we need the following definitions:

Definition 7 (Adjacency segment matrix) For a data trajectory T = (¢, ..., t,) and

a query trajectory Q = (q,, ..., q,,), the adjacency segment matrix M is an adjacency
matrix of size m X n, whose cell values are defined as follows:

@ Springer

Indexable sub-trajectory matching using multi-segment... 6145

Fig.8 Adjacency segment Adjacency segment matrix M

matrix for the matching segment

pairs in Fig. 6 M 4) I Iy ls
q, 0 1 1 0 0

e 0 0 1 1 0

Vertical projection of M
PM) | 0 1 1 1 0

ifd,(q;.1,) <€
otherwise '

mi.n={ ®)

]

Figure 8 presents the adjacency segment matrix M for 7 and Q shown in Fig. 6,
where the matching segment pairs are (g, ,), (¢;, 13), (¢,, t3), and (q,, t,). The cell
values corresponding to the pairs are all 1; O for the remaining cells.

Definition 8 (Vertical projection) For an adjacency segment matrix M of size
m X n, the vertical projection P, (M) is a vector of size n consisting of only 0’s and
1’s, whose element values are defined as follows:

P,(M)[i] =M(1,i))OR ... ORM(m,i). 9)
[

Definition 9 (Horizontal projection) For an adjacency segment matrix M of size
m X n, the horizontal projection P, (M) is a vector of size m consisting of only 0’s
and 1’s, whose element values are defined as follows:

P,(M)[j]l = M(j,1)OR ... OR M(j,n). (10)
]

Algorithm 2, referred to as ProjStitch (Stitching by VH-projection), summarizes
the procedure of finding similar sub-trajectories using these definitions. ProjStitch
is performed for each data trajectory 7. First, we generate the adjacency segment
matrix M for (¢;, g;) pairs collected for a data trajectory T (as defined in Definition 7)
and then the vertical projection P (M) for the matrix M (as defined in Definition 8).
We then extract an adjacency segment sub-matrix N for each sequence of contiguous
I’s divided by one or more 0’s in P, (M). Let s and f be the start and final positions
of the sequence of 1’s in P,(M). Then, N is an m X k(k = f — s + 1) matrix com-
posed of the sth through fth columns of M. For example, the start and end positions
of the sequence of contiguous 1’s obtained from P (M) in Fig. 8 are s = 2 and f =4,
and the corresponding adjacency segment sub-matrix N consists of the 2nd, 3rd, and

@ Springer

6146 J-J.Yooetal.

Adjacency segment sub-matrix N Horizontal
projection of N
M 4 L / 13 ly Is P (N)
: 2
q, U 1 0 10 1
1
9, 0 : 0 1 1 1o 1
L 1
r K
s f

Fig.9 Adjacency segment sub-matrix N obtained from the adjacency segment matrix M in Fig. 8

4th columns of M as shown in Fig. 9 (designated by a dashed box). For each sub-
matrix N, we compute the horizontal projection P, (N). If all elements in the vec-
tor P,(N) are 1, ProjStitch returns the corresponding sub-trajectory Ty, = (&, ... , If)
(T = (15,13, 1,) in Fig. 9) as a similar sub-trajectory.

Lemmas 2—4 demonstrate that ProjStitch is sound and complete. Lemma 2 dem-
onstrates that ProjStitch returns only sub-trajectories similar to the query trajectory
without false positives (soundness). Lemmas 3 and 4 illustrate that all similar sub-
trajectories obtained by ProjStitch are maximal sub-trajectories and that there is no
falsely dropped maximal sub-trajectory by ProjStitch, respectively (completeness).

Algorithm 2 ProjStitch.

Input: Set of (data segment t;, query segment qj) pairs for a data trajectory T'
Output: Set R of sub-trajectories T,; similar to @

1: R «— o;
2: Construct an adjacency segment matrix M as defined in Definition 7;
3: Compute P, (M);
4: for each sequence of consecutive 1’s (separated by 0’s) in P, (M) do
5: Let s and f be segment positions corresponding to the starting and final 1’s;
6: Construct an adjacency segment sub-matrix N that consists of the s-th, ..., f-th
columns of M;
7: Compute Py (N);
8: if all elements in Py (N) are 1 then
9: Add Tsub:(tsa"'7tf) in R;
10: end if
11: end for
12: Return R;

Lemma 2 The sub-trajectory T, obtained by ProjStitch satisfies D(Q, T,,,) < €.

Proof The adjacency segment sub-matrix N constructed in line (6) corresponds to
a sub-trajectory Ty, = (Z,, ... ,1;) composed of contiguous data segments 7, ..., .
Since all element values in the horizontal projection P,(N) are 1 in line (8), there
exists i(s <i <f) such that dseg(ti,qj) < e for all j, and therefore, it holds that
Dy(T, Q) < € according to Definition 3. Since all element values in the vertical
projection P, (N) are also 1 in line (4), there exists j such that d.,(q;, ;) < € for all

@ Springer

Indexable sub-trajectory matching using multi-segment... 6147

Table 3 Complex.ities of e?ach Phase Complexity
phase and the entire algorithm
Index searching O(|Q|logN)
Filtering O(IQIN)
Stitching O(IQIN)
Entire algorithm O(IQIN)

i, and therefore, it also holds that Dy (Q, T,;,) < €. By combining these, we obtain
D(T,;,, Q) < € according to Definition 2, and therefore, the sub-trajectory 7T, is a
similar sub-trajectory of Q, i.e., ProjStitch is sound.]

Lemma 3 The similar sub-trajectory T, obtained by ProjStitch is a maximal
sub-trajectory.

Proof The adjacency segment sub-matrix N corresponding to 7, is constructed
for a maximal sequence S of contiguous 1’s divided by one or more 0’s in P, (M).
Any super-sequence S’ of S must contain at least one 0, which indicates that there
exists no matching data segment for every query segment, i.e., for the data segment
t; corresponding to the 0, it holds that dseg(tlf .q;) > ¢ for all j. For the sub-trajectory
T! . corresponding to §’, we obtain Dy(T’ ,Q) > € or Dy(Q,T!) > € according
to Definition 3 and therefore D(T? , Q) > e. Since any sub-trajectory 7. , properly

containing T is not similar to Q, T, 1s a maximal sub-trajectory.]
Lemma 4 There is no falsely dropped maximal sub-trajectory by ProjStitch.

Proof We prove by contradiction. Assume that there exists a maximal sub-trajectory
M, that ProjStitch has missed. For any similar sub-trajectory 7, of M, (including
Mf itself), there exists an adjacency segment sub-matrix N, in which the cells cor-
responding to similar segment pairs (q;,2,) (¢; € O,1; € 7}) have a value 1. Since,
as shown in line (8) of Algorithm 2, ProjStitch handles all adjacency segment sub-
matrices N whose vertical projection vectors P} (/N) consist of all 1 values, the verti-
cal projection vector Py, (N,) must have at least one 0 value. That indicates that there
exists at least one g; that has no similar segments 7, i.e., dy,(g;, ;) > € for all ¢,

Therefore, by Deﬁmtlons 1 and 2, it holds that DH(Tf, Q) > € and thus D(T;, Q) > e,
Le., Ty is not a similar sub-trajectory—resulting in contradiction. Therefore, there is
no falsely dropped maximal sub-trajectory by ProjStitch, i.e., ProjStitch is complete.

[l

4.5 Complexity analysis

Table 3 summarizes the complexities of each phase and the entire algorithm.
In the index searching phase, since we perform index searching for every seg-
ment g; (1 <j < |Q]) in the query trajectory Q and the complexity of range search
on a multidimensional index is O(logN) [11], the complexity of this phase is

@ Springer

6148 J-J.Yooetal.

Table 4 Additional information on datasets

Dataset GeolLife Hurricane Athens trucks Random
Number of data trajectories 45,782 1,566 1,081 20,000
Number of data segments 15,189,025 55,569 106,986 4,216,640
Average segment length 0.000654 0.013185 0.003822 0.000113
Dataset storage size 806 MB 2.9 MB 5.7 MB 249 MB
Index storage size 10.95 MB 52 KB 88 KB 3.48 MB

O(|Q| log N), where N is the number of all segments in the database D. Any multi-
dimensional index can be used in this phase. In the filtering phase, we compute the
distance d,() to all candidate segments 7; for each query segment g;. The candidate
segments are the data segments residing within e distance from g;, and the number
of candidate segments is proportional to e/N, where d is the dimension of trajectory
data. By considering e? a constant, the complexity of the filtering phase is O(IQIN).
In the stitching phase, we compute the vertical and the horizontal projections (i.e.,
OR operations) for each data trajectory obtained in the filtering phase. In the worst
case, the projection should be performed for all data trajectories in D, and therefore
the complexity is O(IQIN). By combining the complexities of all phases, we obtain
the complexity O(IQIN) of the entire algorithm. As indicated by the complexity, the
execution time of MaTIS is linearly proportional to the dataset size N. This scalabil-
ity is highly desirable especially when dealing with a large-scale trajectory database.
We confirm the scalability of MaTIS through experiments in the next section.

5 Experimental evaluation

In this section, we perform a series of experiments using real and synthetic datasets
to evaluate our trajectory similarity measure and sub-trajectory matching algorithm
MaTIS. We compare both the accuracy of our similarity measure (see Sect. 5.1) and
the performance of MaTIS (see Sect. 5.2) with those of previous state-of-the-art
methods including DTW, LCSS, EDR, ERP, and EDS. We then confirm the com-
plexity of MaTIS as analyzed theoretically in the previous section (see Sect. 5.3).
All experiments are performed on Ubuntu 14.10 Linux installed on a workstation
equipped with Intel 17-4790 3.6GHz CPU, 32GB RAM, and 256GB SSD. For
implementation of MaTIS, we modified the open source R*-tree [3] to suit our pur-
pose. The real and synthetic datasets used in the experiments are briefly described
below with additional information summarized in Table 4. The regions of all data-
sets are mapped to a square region of 1.0 X 1.0 size, and the coordinates of all trajec-
tory points are also transformed accordingly.

@ Springer

Indexable sub-trajectory matching using multi-segment... 6149

GeolLife [31] GPS trajectories of automobiles, bicycles, airplanes, and pedestri-
ans collected from more than 30 cities in China, mostly from Beijing, between
April 2007 and October 2011.% In this paper, we use only the Beijing data.
Hurricane [16] Hurricane trajectories that occurred in the North Atlantic Basin
region between the years 1851 and 2010°.

Athens trucks [27] 1100 trajectories composed of 112,300 GPS positions of 50
trucks transporting concrete in Athens.*

Random Synthetic trajectories generated by choosing a random starting point in
the entire data region and then appending a series of random points within the
specified distance from the previous one.

5.1 Similarity measure accuracy

In this section, we compare the accuracy of our similarity measure D() in Defini-
tion 2 with that of DTW, LCSS, EDR, ERP, and EDS using all the datasets men-
tioned above. A query trajectory Q is generated by choosing an arbitrary data trajec-
tory T from a dataset and then extracting an arbitrary sub-trajectory of the specified
length from 7. Each point in Q is then slightly moved to a random direction within
5% of the average segment length. The query length IQl is specified as 20, 40, and 60
as in [27]. The accuracy is computed in the same way as in [27], i.e., if the original
sub-trajectory is contained in the search result set of a query trajectory, we consider
it as a correct answer.

Figure 10 presents the result. Every measurement is computed with 100 different
query trajectories. A search range e is computed for each combination of a query
trajectory Q and a selectivity o (0 < ¢ < 1); we compute the distances D() to all
possible data sub-trajectories from Q, and then, € is set to be the distance of the 6Sth
nearest data sub-trajectory, where S is the number of all possible data sub-trajec-
tories. An accuracy 0.8 indicates that 80 of 100 queries returned correct answers.
As explained in Sect. 3, our trajectory similarity measure is based on the widely
used segment distance measure dseg() = dist() defined by Lee et al. [16-18]. While
the accuracy has an expected tendency to increase with the increase in selectivity,
the accuracy of our similarity measure is always higher than that of EDS, which
demonstrates highest accuracy among all previous measures including DTW, LCSS,
EDR, and ERP. Our measure is better than EDS by 16.4%, 3.1%, 15.6%, and 7.7%,
respectively, for each dataset on average. The improvement of MaTIS over previ-
ous measures becomes more significant as the selectivity decreases. This is a highly
desirable property in large-scale databases where sub-trajectory queries with smaller
selectivities are much frequent than those with larger selectivities. The improvement
ratio reaches up to 52.0% than EDS with the selectivity 6 = 107 using the GeoLife
dataset.

2 http://research.microsoft.com/en-us/projects/geolife/.
3 http://www.nhc.noaa.gov/data/.
4 http://www.chorochronos.org/?q=node/5.

@ Springer

6150 J-J.Yooetal.

1.4 1.4
MaTlS —%- DTW —B- ERP MaTlS —%- DTW —B- ERP
EDS - EDR —@— LCSS —o— EDS -5~ EDR -@— LCSS —o—
I B e L2 srmm e
1.04 1.04
> >
1o O
o o
5 08 S5 08
[} [}
19} 1}
< <
0.6 0.6
0.4 0.4 -rrme e
021+ : : : : : : : : : 021~
© o1 o> 5 N) & 21 23 3 o o1 o> 5 .l %) S 21 23 >
RUIEERN SN S TN RN S C RN SN S EUIEERN SN S TN SR S C RN SN A
Selectivity(o) Selectivity(o)
(a) GeoLife dataset. (b) Hurricane dataset.
1.4 1.4
MaTlS —- DTW —® ERP MaTlS —- DTW —m ERP
EDS -5~ EDR —@— LCSS —e— EDS -5~ EDR -@— LCSS —o—
L2 s L2 s
1.04 1.04
> >
O O
° e
S5 084 5 08] ----
o 1o
1%} 1%}
<< <
0.6 0.6
0.4 4 0.4 4
021+ : : : : : : : : : 021~ : : : : : : : : :
SIS R SR S Bt TN N BTSSR | S R T B C It TV I« BN S
AN AN SN S N S S RPN SN SR R N SN SN S N S S RPN SN SR
Selectivity(o) Selectivity(o)
(C) Athens trucks dataset. (d) Random dataset.

Fig. 10 Comparison of accuracy of our trajectory similarity measure

5.2 Search performance

In this section, we evaluate the search performance of our algorithm MaTIS. We
compare sub-trajectory matching performance with the algorithms using previous
state-of-the-art measures including DTW, LCSS, EDR, ERP, and EDS. We call the
algorithm using EDS as EDS-SEQ. We perform experiments using the GeoLife,
Hurricane, Athens trucks, and Random datasets. Every experiment is performed for
each of the 20 different query trajectories, and we take the average as the result. As
mentioned earlier in this paper, since the algorithms using DTW, LCSS, EDR, and
ERP are whole trajectory matching algorithms, when applying them in sub-trajec-
tory matching, all possible sub-trajectories T, in each trajectory 7 in the dataset D
must be compared with the query trajectory Q.

Figure 11 presents the result as the selectivity is varied from 107> to 10! using
the GeoLife dataset. Note that the vertical axes are presented in the log scale. The
search range € is computed in the same manner as in the previous subsection. Fig-
ure 1la compares the execution time of MaTIS with the algorithms using DTW,
LCSS, EDR, ERP, and EDS. Since all the algorithms except MaTIS inspect all data
trajectories one by one regardless of selectivity, their execution time remains almost

@ Springer

Indexable sub-trajectory matching using multi-segment... 6151

108 106
MaTIS —%— DTW - ERP Searching+Filtering+Stitching —6—
; EDS-SEQ —&— EDR —@— LCSS —o— Searching+Filtering —%—
L s Searching —8—
g g 105§ mrmmmem e
] L ittt dafllatolletotlotollallatatltotollutolalale alatallatalatatohlatol]
g1 g 8 8 2) £
I R e e — e o 10%H
£ £
-~ -
5 10% 1 S 10°]
+ +
3 102 3
o 10 9]
x X
w n 102<
10?2
10 1— : : : : 10 1—
1073 1074 1073 1072 1071 103 107 1073 1072 107t
Selectivity(o) Selectivity(o)
(a) Comparison of execution time. (b) Execution time for each phase.

Fig. 11 Comparison of execution time as the selectivity is varied (GeoLife dataset)

104 102

MaTIS —%— DTW —&— ERP Searching+Filtering+Stitching —o—

EDS-SEQ —&— EDR —@— LCSS —o— Searching+Filtering —%—

Searching —8—
T T 9
%) w
S £
o g S S 2 9 °

=, = 1= 1=
€ £
BT L S 10 4
C C
o o
- -
3 3
% 101 %
w w
11— 1 1=
1073 1074 1073 1072 107t 1073 1074 1073 1072 107!
Selectivity(o) Selectivity(o)
(a) Comparison of execution time. (b) Execution time for each phase.

Fig. 12 Comparison of execution time as the selectivity is varied (Hurricane dataset)

constant. On the contrary, the execution time of MaTIS increases as the selectiv-
ity grows since the number of candidate data segments within the search region
increases. Figure 11b presents the execution time required for index searching, filter-
ing, and stitching phases of MaTIS. Very little time is needed for the stitching phase.
In fact, the bit operations for vertical and horizontal projections on adjacency seg-
ment matrices in the stitching phase are much less costly compared with the opera-
tions of determining the similarity between a query segment and an MBR in the
index searching phase and computing the segment distances in the filtering phase.
MaTIS dramatically outperformed EDS-SEQ, which demonstrated the highest per-
formance among the algorithms using previous measures, by up to 5739 times for
c =107,

Figures 12, 13 and 14 present the results using the Hurricane, Athens trucks, and
Random datasets; we obtain trends similar to those shown in Fig. 11 for the GeoLife
dataset. As a result using the Random dataset, MaTIS outperformed EDS-SEQ by
up to 22,543 times for ¢ = 107. EDS-SEQ finds all sub-trajectories similar to a

@ Springer

6152 J-J.Yooetal.

105 103
MaTIS —%— DTW —— ERP Searching+Filtering+Stitching ——
EDS-SEQ —8— EDR —o— LCSS —o— Searching+Filtering —%—
4 Searching —&—
T L I S S S
[} l:’:‘:’:. (]
0 ATy o < v
£ £ 102 e
Q 103 [L = e = E £ [J]
£ £
Lo R
C c
O 102 o
- -
> S 10 A
(9] |9}
g s
w10 - L
11 11
1073 1074 1073 1072 107t 1075 1074 1073 1072 1071t
Selectivity(o) Selectivity(o)
(@) Comparison of execution time. (b) Execution time for each phase.

Fig. 13 Comparison of execution time as the selectivity is varied (Athens trucks dataset)

10°
MaTIS —%— DTW - ERP Searching+Filtering+Stitching ——
108 { EDS-SEQ -—H—----EDR-—@—---{:CSS —O—-----=-==-=mrmsomamne Searching+Filtering —%—
e Searching -=8&—
— .10
é 105 { V—=8 - ————=» §
E N = N ° g E 101
@ 10% e o
£ 1S
B S 10%
c 103 A c
o o
5 5 10
2]
g 10 o
X X
w w
10 A 11
1= . : : : 0.1 +— : : : :
107> 1074 1073 1072 107t 1073 1074 1073 1072 107t
Selectivity(o) Selectivity(o)
(a) Comparison of execution time. (b) Execution time for each phase.

Fig. 14 Comparison of execution time as the selectivity is varied (Random dataset)

query trajectory Q in a data trajectory T (€ D) by computing EDS with all possible
suffices (of complexity O(n)) rather than with all possible sub-trajectories (of com-
plexity O(n?)), where n is the number of segments in T. Therefore, for a database
D with D trajectories, EDS-SEQ performs as many as O(Dn) EDS computations,
which is equal to the number of all segments in D. On the contrary, the number of
segments returned in the index search phase in MaTIS (of complexity O(log Dn)) is
much smaller. Accordingly, MaTIS achieves a much better search performance than
EDS-SEQ.

5.3 Complexity

We experimentally demonstrate the scalability of MaTIS, which is analyzed theo-
retically in Sect. 4.5. We compare the execution time for various dataset sizes using
the GeoLife and the Random datasets.

Figure 15 presents the result using the GeoLife dataset. We used five sub-datasets
containing 20%, 40%, 60%, 80%, and 100% of the entire dataset, respectively. Each

@ Springer

Indexable sub-trajectory matching using multi-segment...

6153

5x108
£=0.001 —— £=0.004 —— &=0.007 —h— @ £=0001 —— £=0.004 —— £=0.007
16x102 { €=0.002 €=0.005 -5~ £=0008 4 o €=0.002 £=0.005 8- £=0.008 —4—
£=0003 <A £=0006 -— £=0009 —m = €=0003 —A- £=0.006 ©— &€=0.009 —
— B 4%108 | crerrerre e
v =}
[(o}
2 1S
£ 12x102 4 s
o O 3x108 4
(V]
IS O
= g
2 |
5 &0 B 2x108 |
+ ©
g 5
g C
O 4x102 D 1x108 | s
€
=}
=2
[; ; ; ; 01— ; ; ; ;
20% 40% 60% 80% 100% 20% 40% 60% 80% 100%
Dataset size Dataset size
(a) Execution time. (b) Number of segment distance
computations.
Fig. 15 Performance of MaTIS for various dataset sizes (GeoLife dataset)
£=0.001 —+— €£=0.004 —— £=0.007 —A—
20 1 e=01002 =57 € U005 BT 01008 ST @ €=0001 —— £=0004 <4~ €=0.007 —A
£=0.003 A~ €=0.006 - ¢&=0.009 = O 8x106 { £€=0.002 €=0005 -8 €=0.008 —4—
o ‘E,' £=0.003 —A— £=0.006 —— €=0.009 —m—
é 16 1 3
— E 6><106 4
Q 8
g 12 4 o
= ¢
S £ 4x106 1
S 84 o
8 ©
e kS
ay, 5 2x106 4
Qo
- €
=
0 0

20% 40% 60% 80% 100% 20% 40% 60% 80% 100%

Dataset size Dataset size

(a) Execution time. (b) Number of segment distance

computations.

Fig. 16 Performance of MaTIS for various dataset sizes (Random dataset)

sub-dataset is generated to have a trajectory distribution that is as close as possible to
the entire dataset. We set the search range as € = 0.001, ...,0.009. Figure 15a shows
the execution time of MaTIS for each sub-dataset; we can easily observe that the exe-
cution time increases linearly to the sub-dataset size. Figure 15b shows the number
of segment distance computations in the filtering phase, which has a trend similar to
that of the execution time in Fig. 15a. We had similar performance trends for different
ranges of €.

Figure 16 presents the result of the same experiment using the Random dataset. The
result using the Random dataset demonstrates a performance trend similar to that using
the GeoLife dataset; i.e., the execution time of MaTIS increases linearly as the sub-
dataset size increases. The scalability of MaTIS confirmed by these experiments is a
highly desirable property especially when dealing with large-scale trajectory databases.

@ Springer

6154 J-J.Yooetal.

6 Conclusions

In this paper, we proposed an algorithm called MaTlIS for indexing-based multi-
segment sub-trajectory matching. MaTIS partitions each data trajectory into
component segments, which are individually stored in a multidimensional index.
MaTIS individually searches for segments similar to each component segments
of QO by using the index and then reconstructs data sub-trajectories similar to Q
by ‘stitching’ those segments by our ProjStitch algorithm. ProjStitch is novel and
innovative in the sense that it facilitates segment-wise partitioning and indexing.
Without ProjStitch, trajectory-wise operations would lead to severe storage space
overhead and search performance degradation. The partition-and-stitch frame-
work of MaTIS is an entirely new approach. We adopted the widely used seg-
ment similarity measure by Lee et al. [16—18] and extended it to handle multi-
segment trajectories using the Hausdorft distance. Our approach is the first that
uses indexing for sub-trajectory matching. The indexing is made possible by our
partition-and-stitch framework. We compared our method with EDS [27], a state-
of-the-art sub-trajectory matching algorithm, which cannot employ indexing. The
results illustrate that the accuracy of our similarity measure is better than that
of EDS by up to 52.0%, and our algorithm significantly outperforms EDS-SEQ
by up to 22,543 times. MaTIS is linearly scalable in the size of the database and
therefore efficiently handles large-scale databases.

Appendix

Lemma5 Forany two segments L; and L, the following always holds:
dist(L;, L) > dgegO(Ll, L), (11)

where dlS'[(Ll,]) =w, ~d (L, L) +wy -d(L;, L)) +wy - dp(L;, L;) and

i’] 1°]

Proof Let L, and £; be two lines containing two segments L; and L;, respectively. Let
p, and p, be the pI"O]eCtIOIl points of two end points s; and e; of L onto L;, respec-
tively. Without loss of generality, we assume d(s;, ps) < d(e/, Do) We also assume
that L, is longer than L, as in [16]. We prove for the following three cases:

Case I: p,is located onlL,.

As shown in Fig. 17a, d, o(L;, L;) = [;;. Thus,

Go+05,
dist(L, L) > d, (L, L;) = <122
lu +1;

2 =l

Ly+1,
= dseg,O(Li’ L])

@ Springer

Indexable sub-trajectory matching using multi-segment... 6155

Fig. 17 Similarity measure
between two segments L; and L;

®

(¢) Case 3.

Case 2: p, 1s located behind e;.
As shown in Fig. 17b, d, o(L;, L;) = d(e;, s;). Thus,
>0, + 1”2 > a’(e,-,sj)

- dSBg,U(Li’ Lj).

Case 3: p, is located in front of s,.
Let p; be the projection point of s; in L; onto L, then d., o(L;, L;) < d(s;, p;). If it
holds that li'“ < I’l'l"], then d(L;, L;) = PIPII' Thus,
dist(L,, L_,) >d, (L, L)+ d|| (L, L)) 2 I+ [Jlrll
> d(si,sj) > d(s,-,pj)

2 dgeo o(L;, Ly).

@ Springer

6156 J-J.Yooetal.

If it holds that /| > I/, then dy(L;, L;) = I"’,. Thus,

I I (1

> 1+ 1, +dy 2 d(s;,¢) 2 d(s;. p))

> dyego(Lis L)).

Therefore, combining these three cases, it always holds that

dist(L;, L) > dyego(Ls, L)). n
References
1. Alamri S, Taniar D, Safar M (2014) A taxonomy for moving object queries in spatial databases.
Future Gener Comput Syst 37:232-242
2. Atev S, Miller G, Papanikolopoulos NP (2010) Clustering of vehicle trajectories. IEEE Trans Intell
Transp Syst 11(3):647-657
3. Beckmann N, Seeger B (2009) A revised R*-tree in comparison with related index structures. In:
Proceedings of ACM SIGMOD International Conference on Management of Data (SIGMOD), pp
799-812
4. Buchin K, Buchin M, Kreveld MV, Luo J (2009) Finding long and similar parts of trajectories. In:
Proceedings of ACM SIGSPATIAL International Conference on Advances in Geographic Informa-
tion Systems (GIS), pp 296-305
5. Chen J, Leung MKH, Gao Y (2003) Noisy logo recognition using line segment Hausdorff distance.
Pattern Recognit 36(4):943-955
6. Chen L, Ng R (2004) On the marriage of Lp-norms and edit distance. In: Proceedings of Interna-
tional Conference on Very Large Data Bases (VLDB), pp 792-803
7. Chen L, Ozsu MT, Oria V (June 2005) Robust and fast similarity search for moving object trajec-
tories. In: Proceedings of ACM SIGMOD International Conference on Management of Data (SIG-
MOD), pp 491-502
8. Ding X, Chen L, Gao Y, Jensen CS, Bao H (2018) UlTraMan: a unified platform for big trajectory
data management and analytics. Proc VLDB Endow 11(7):787-799
9. Dong Y, Pi D (2018) Novel privacy-preserving algorithm based on frequent path for trajectory data
publishing. Knowl Based Syst 148:55-65
10. Eberly DH (2006) 3D game engine design: a practical approach to real-time computer graphics, 2nd
edn. Morgan Kaufmann, Burlington
11. Ester M, Kriegel H-P, Sander J, Xu X (1996) A density-based algorithm for discovering clusters in
large spatial databases with noise. In: Proceedings of ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD), pp 226-231
12. Frentzos E, Gratsias K, Theodoridis Y (2007) Index-based most similar trajectory search. In: Pro-
ceedings of IEEE International Conference on Data Engineering (ICDE), pp 816-825
13. Hung C-C, Peng W-C, Lee W-C (2015) Clustering and aggregating clues of trajectories for mining
trajectory patterns and routes. VLDB J 24(2):169-192
14. Huttenlocher DP, Kedem K (1990) Computing the minimum Hausdorff distance for point sets under
translation. In: Proceedings of ACM annual symposium on computational geometry (SCG), pp
340-349
15. Kaplan E, Giirsoy ME, Nergiz ME, Saygin Y (2018) Location disclosure risks of releasing trajec-
tory distances. Data Knowl Eng 113:43-63
16. Lee J-G, Han J, Whang K-Y (2007) Trajectory clustering: a partition-and-group framework. In:
Proceedings of ACM SIGMOD International Conference on Management of Data (SIGMOD), pp
593-604
17. Lee J-G, Han J, Li X (2008) Trajectory outlier detection: a partition-and-detect framework. In: Pro-

ceedings of IEEE International Conference on Data Engineering ICDE), pp 140-149

Springer

Indexable sub-trajectory matching using multi-segment... 6157

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

Lee J-G, Han J, Li X, Gonzalez H (2008) TraClass: trajectory classification using hierarchical
region-based and trajectory-based clustering. Proc VLDB Endow (PVLDB) 1(1):1081-1094

Mao J, Sun P, Jin C, Zhou A (2018) Outlier detection over distributed trajectory streams. In: Pro-
ceedings of STAM International Conference on Data Mining (SDM), San Diego, pp 64-72

Mao Y, Zhong H, Xiao X, Li X (2017) A segment-based trajectory similarity measure in the urban
transportation systems. Sensors 17(3):524

Nutanong S, Jacox EH, Samet H (2011) An incremental Hausdorff distance calculation algorithm.
Proc VLDB Endow (PVLDB) 4(8):506-517

Pelekis N, Tampakis P, Vodas M, Doulkeridis C, Theodoridis Y (2017) On temporal-constrained
sub-trajectory cluster analysis. Data Min Knowl Discov (DMKD) 31(5):1294-1330

Ranu S, Deepak P, Telang AD, Deshpande P, Raghavan S (2015) Indexing and matching trajectories
under inconsistent sampling rates. In: Proceedings of IEEE International Conference on Data Engi-
neering (ICDE), pp 999-1010

Shang Z, Li G, Bao Z (2018) DITA: distributed in-memory trajectory analytics. In: Proceedings of
International Conference on Management of Data (SIGMOD), Houston, pp 725-740

Vlachos M, Kollios G, Gunopulos D (2002) Discovering similar multidimensional trajectories. In:
Proceedings of IEEE International Conference on Data Engineering (ICDE), pp 673-684

Wolfson O, Xu B, Chamberlain S, Jiang L (1998) Moving objects databases: issues and solutions.
In: Proceedings of IEEE International Conference on Scientific and Statistical Database Manage-
ment, pp 111-122

Xie M (2014) EDS: a segment-based distance measure for sub-trajectory similarity search. In:
Proceedings of ACM SIGMOD International Conference on Management of Data (SIGMOD), pp
1609-1610

Xie D, Li F, Phillips JM (2017) Distributed trajectory similarity search. Proc VLDB Endow
(PVLDB) 10(11):1478-1489

Yi B-K, Jagadish HV, Faloutsos C (1998) Efficient retrieval of similar time sequences under time
warping. In: Proceedings of IEEE International Conference on Data Engineering (ICDE), pp
201-208

Yuan G, Sun P, Zhao J, Li D, Wang C (2017) A review of moving object trajectory clustering algo-
rithms. Artif Intell Rev 47(1):123-144

Zheng Y, Zhang L, Xie X, Ma W-Y (2009) Mining interesting locations and travel sequences from
GPS trajectories. In: Proceedings of International Conference on World Wide Web (WWW), pp
791-800

Zheng Y, Zhou X (eds) (2011) Computing with spatial trajectories. Springer, Berlin

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Affiliations

Jae-Jun Yoo' - Woong-Kee Loh?® - Kyu-Young Whang'

< Woong-Kee Loh

wkloh2 @ gachon.ac.kr

< Kyu-Young Whang
kywhang @mozart.kaist.ac.kr

Jae-Jun Yoo

phyntier @kaist.ac.kr

School of Computing, Korea Advanced Institute of Science and Technology (KAIST), Daejeon,
Republic of Korea

Department of Software, Gachon University, Seongnam, Republic of Korea

@ Springer

